Show simple item record

dc.contributor.authorSanchis López, Manuel
dc.date.accessioned2012-05-28T14:36:50Z
dc.date.available2012-05-28T14:36:50Z
dc.date.issued2008
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2007.02.015
dc.identifier.citationTopology and its Applications, 155, 8, p. 883-888
dc.identifier.issn1668641
dc.identifier.urihttp://hdl.handle.net/10234/39029
dc.description.abstractA well-known result on Moscow spaces states that every G<sub>δ</sub>-dense subset of a Moscow space X is C-embedded in X. We present here the selection version of this result and also (by means of two different approaches) we use selection theory to characterize the open bounded subsets of a uniform space (X, U) in the case when its completion is a Moscow space. © 2007 Elsevier B.V. All rights reserved.
dc.language.isoeng
dc.publisherElsevier
dc.subjectBounded subset
dc.subjectC-embedded subset
dc.subjectContinuous carrier
dc.subjectG<sub>δ</sub>-dense subset
dc.subjectLower semicontinuous carrier
dc.subjectMoscow space
dc.subjectu-selection
dc.titleMoscow spaces and selection theory
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doihttp://dx.doi.org/10.1016/j.topol.2007.02.015
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Publisher version

Show simple item record