Mostrar el registro sencillo del ítem

dc.contributor.authorChristodoulou, Sotirios
dc.contributor.authorClimente, Juan I.
dc.contributor.authorPlanelles, Josep
dc.contributor.authorBrescia, Rosaria
dc.contributor.authorPrato, Mirko
dc.contributor.authorMartín García, Beatriz
dc.contributor.authorKhan, Ali Hossain
dc.contributor.authorMoreels, Iwan
dc.date.accessioned2018-11-30T10:24:36Z
dc.date.available2018-11-30T10:24:36Z
dc.date.issued2018
dc.identifier.citationCHRISTODOULOU, Sotirios, et al. Chloride-Induced Thickness Control in CdSe Nanoplatelets. Nano letters, 2018, vol. 18, no 10, p. 6248-6254.ca_CA
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/10234/177811
dc.description.abstractCurrent colloidal synthesis methods for CdSe nanoplatelets (NPLs) routinely yield samples that emit, in discrete steps, from 460 to 550 nm. A significant challenge lies with obtaining thicker NPLs, to further widen the emission range. This is at present typically achieved via colloidal atomic layer deposition onto CdSe cores, or by synthesizing NPL core/shell structures. Here, we demonstrate a novel reaction scheme, where we start from 4.5 monolayer (ML) NPLs and increase the thickness in a two-step reaction that switches from 2D to 3D growth. The key feature is the enhancement of the growth rate of basal facets by the addition of CdCl2, resulting in a series of nearly monodisperse CdSe NPLs with thicknesses between 5.5 and 8.5 ML. Optical characterization yielded emission peaks from 554 nm up to 625 nm with a line width (fwhm) of 9−13 nm, making them one of the narrowest colloidal nanocrystal emitters currently available in this spectral range. The NPLs maintained a short emission lifetime of 5−11 ns. Finally, due to the increased red shift of the NPL band edge photoluminescence excitation spectra revealed several high-energy peaks. Calculation of the NPL band structure allowed us to identify these excited-state transitions, and spectral shifts are consistent with a significant mixing of light and split-off hole states. Clearly, chloride ions can add a new degree of freedom to the growth of 2D colloidal nanocrystals, yielding new insights into both the NPL synthesis as well as their optoelectronic propertiesca_CA
dc.format.extent7 p.ca_CA
dc.language.isoengca_CA
dc.publisherACS Publicationsca_CA
dc.relation.isPartOfNano Lett. 2018, 18.ca_CA
dc.rights© 2018 American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectColloidal synthesisca_CA
dc.subject2D nanocrystalsca_CA
dc.subjecthalidesca_CA
dc.subjectphotoluminescenceca_CA
dc.subjectk·p calculationsca_CA
dc.titleChloride-Induced Thickness Control in CdSe Nanoplateletsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1021/acs.nanolett.8b02361
dc.relation.projectIDCTQ2017-83781-P; B2017-59; Grant 696656 GrapheneCore1; Grant 714876 PHOCONAca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b02361ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem