Show simple item record

dc.contributor.authorBeltrán Felip, Antonio
dc.contributor.authorshao, Changguo
dc.date.accessioned2017-11-16T10:39:28Z
dc.date.available2017-11-16T10:39:28Z
dc.date.issued2017-07
dc.identifier.citationBELTRÁN, Antonio; SHAO, Changguo. On the number of invariant Sylow subgroups under coprime action. Journal of Algebra, 2017, vol. 490, p. 380-389.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/170115
dc.description.abstractLet A and G be finite groups such that A acts coprimely on G via automorphisms. We study the number of A-invariant Sylow p-subgroups of G, say V a/p (G), for every prime p, and establish several arithmetical properties and formulae for these numbers. More precisely, we prove that if G is solvable and H is any A-invariant subgroup of G, then V a/p (H) divides V a/p (G) .ca_CA
dc.format.extent9 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.rights© 2017 Elsevier Inc. All rights reserved.ca_CA
dc.subjectfinite groupsca_CA
dc.subjectsylow subgroupsca_CA
dc.subjectcoprime actionca_CA
dc.subjectgroup action on groupsca_CA
dc.titleOn the number of invariant Sylow subgroups under coprime actionca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.jalgebra.2017.07.005
dc.relation.projectIDValencian Government (Proyecto PROMETEOII/2015/011) ; Universitat Jaume I (grant P11B2015-77) ; NNSF of China (No 11301218) and the Natural Science Foundation of Shandong Province (No. ZR2014AM020).ca_CA
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://www.sciencedirect.com/science/article/pii/S0021869317303988ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record