Mostrar el registro sencillo del ítem

dc.contributor.authorŚwiderek, Katarzyna
dc.contributor.authorArafet Cruz, Kemel
dc.contributor.authorKohen, Amnon
dc.contributor.authorMoliner, Vicent
dc.date.accessioned2017-06-22T11:47:01Z
dc.date.available2017-06-22T11:47:01Z
dc.date.issued2017-02
dc.identifier.citationŚWIDEREK, Katarzyna, et al. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer. Journal of Chemical Theory and Computation, 2017, vol. 13, no 3, p. 1375-1388.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/168073
dc.description.abstractGiven the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5–40 °C.ca_CA
dc.description.sponsorShipThis work was supported by the Spanish Ministerio de Economía y Competitividad for project CTQ2015-66223-C2-1-P, Universitat Jaume I (project P1·1B2014-26), Generalitat Valenciana (No. PROMETEOII/2014/022), the Polish Ministry of Science and Higher Education (“Iuventus Plus” Program Project No. 0478/IP3/2015/73, 2015–2016) and the USA National Institute of Health (Ref No. NIH R01 GM065368). V.M. is grateful to the University of Bath for the award of a David Parkin Visiting Professorship. Authors acknowledge computational resources from the Servei d’Informàtica of Universitat Jaume I.ca_CA
dc.format.extent13 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfJ. Chem. Theory Comput., 2017, 13 (3)ca_CA
dc.rightsCopyright © 2017 American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectQuantum Mechanics/Molecular Mechanics (QM/MM)ca_CA
dc.subjectQM/MMca_CA
dc.subjecthydride-transfer reactionsca_CA
dc.subjectenzyme-catalyzed processesca_CA
dc.titleBenchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transferca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1021/acs.jctc.6b01032
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b01032ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem