Mostrar el registro sencillo del ítem

dc.contributor.authorParola, Stephane
dc.contributor.authorJulian-Lopez, Beatriz
dc.contributor.authorCarlos, Luís D.
dc.contributor.authorSánchez, Clément
dc.identifier.citationPAROLA, Stephane, et al. Optical Properties of Hybrid Organic‐Inorganic Materials and their Applications. Advanced Functional Materials, 2016, vol. 26, no 36, p. 6506-6544.ca_CA
dc.description.abstractResearch on hybrid inorganic-organic materials has experienced an explosive growth since the 1980s, with the expansion of soft inorganic chemistry based processes. Indeed, mild synthetic conditions, low processing temperatures provided by “chimie douce” and the versatility of the colloidal state allow for the mixing of the organic and inorganic components at the nanometer scale in virtually any ratio to produce the so called hybrid materials. Today a high degree of control over both composition and nanostructure of these hybrids can be achieved allowing tunable structure-property relationships. This, in turn, makes it possible to tailor and fine-tune many properties (mechanical, optical, electronic, thermal, chemical…) in very broad ranges, and to design specific multifunctional systems for applications. In particular, the field of “Hybrid-Optics” has been very productive not only scientifically but also in terms of applications. Indeed, numerous optical devices based on hybrids are already in, or very close, to the market. This review describes most of the recent advances performed in this field. Emphasis will be given to luminescent, photochromic, NLO and plasmonic properties. As an outlook we show that the controlled coupling between plasmonics and luminescence is opening a land of opportunities in the field of “Hybrid-Optics”.ca_CA
dc.description.sponsorShipC.S acknowledges the “Fondation du Collège de France”. S.P. is grateful to the Ecole Normale Supérieure de Lyon, the University Lyon 1 and the CNRS for support. L.D.C. acknowledges the project CICECO – Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER and COMPETE under the PT2020 Partnership Agreement. B.J.L. is grateful to the PPI project from Universitat Jaume I for financial support.ca_CA
dc.format.extent39 pca_CA
dc.relation.isPartOfAdvanced Functional Materials, 2016, vol. 26, no 36ca_CA
dc.subjecthybrid materialsca_CA
dc.titleOptical Properties of Hybrid Organic-Inorganic Materials and their Applicationsca_CA

Ficheros en el ítem


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Ministerio Este proyecto ha recibido una ayuda de la Dirección General del Libro, Archivos y Bibliotecas del Ministerio de Cultura.
Metadatos sujetos a :Public Domain | Información y | Centro de seguridad y privacidad | Nota legal
Universitat Jaume I - Av. de Vicent Sos Baynat, s/n 12071 Castelló de la Plana, España - Tel.: +34 964 72 87 61 Fax: +34 964 72 87 78