Show simple item record

dc.contributor.authorIchim, Bogdan
dc.contributor.authorKatthan, Lukas
dc.contributor.authorMoyano Fernández, Julio José
dc.date.accessioned2017-04-03T09:47:23Z
dc.date.available2017-04-03T09:47:23Z
dc.date.issued2017
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.urihttp://hdl.handle.net/10234/167065
dc.description.abstractIn this paper we introduce an algorithm for computing the Stanleydepth of a finitely generated multigraded module M over the polynomialring K[X1,...,Xn]. As an application, we give an example of a module whoseStanley depth is strictly greater than the depth of its syzygy module. In particular,we obtain complete answers for two open questions raised by Herzog.Moreover, we show that the question whether M has Stanley depth at leastr can be reduced to the question whether a certain combinatorially definedpolytope P contains a Zn-lattice point.ca_CA
dc.format.extent18 p.ca_CA
dc.language.isoengca_CA
dc.publisherAmerican Mathematical Societyca_CA
dc.relation.isPartOfMATHEMATICS OF COMPUTATION Volume 86, Number 303, January 2017, Pages 455–472ca_CA
dc.rights(c) 2016 American Mathematical Society. "First published in MATHEMATICS OF COMPUTATION in volume 86 and number 303, January 2017, published by the American Mathematical Society"
dc.titleHow to compute the Stanley depth of a moduleca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1090/mcom/3106
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttp://www.ams.org/journals/mcom/2017-86-303/home.htmlca_CA


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record