ℓp-Maximal regularity for a class of fractional difference equations on umd spaces: the case 1<α≤2

Ver/ Abrir
Metadatos
Mostrar el registro completo del ítemcomunitat-uji-handle:10234/9
comunitat-uji-handle2:10234/7037
comunitat-uji-handle3:10234/8635
INVESTIGACIONMetadatos
Título
ℓp-Maximal regularity for a class of fractional difference equations on umd spaces: the case 1<α≤2Fecha de publicación
2016-11Editor
Duke University PressResumen
By using Blunck’s operator-valued Fourier multiplier theorem, we completely characterize the existence and uniqueness of solutions in Lebesgue sequence spaces for a discrete version of the Cauchy problem with fractional ... [+]
By using Blunck’s operator-valued Fourier multiplier theorem, we completely characterize the existence and uniqueness of solutions in Lebesgue sequence spaces for a discrete version of the Cauchy problem with fractional order 1<α≤2. This characterization is given solely in spectral terms on the data of the problem, whenever the underlying Banach space belongs to the UMD-class. [-]
Palabras clave / Materias
Cita bibliográfica
Lizama, Carlos; Murillo-Arcila, Marina. ℓ p -maximal regularity for a class of fractional difference equations on UMD spaces: The case 1 < α ≤ 2 . Banach J. Math. Anal. 11 (2017), no. 1, 188--206. doi:10.1215/17358787-3784616. http://projecteuclid.org/euclid.bjma/1480474819.Tipo de documento
info:eu-repo/semantics/articleDerechos de acceso
© 2017 Project Euclid
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Aparece en las colecciones
- MAT_Articles [362]