Mostrar el registro sencillo del ítem

dc.contributor.authorGuerrero, Antonio
dc.contributor.authorPfannmöller, Martin
dc.contributor.authorKovalenko, Alexander
dc.contributor.authorRipollés Sanchis, Teresa
dc.contributor.authorHeidari, Hamed
dc.contributor.authorBals, Sara
dc.contributor.authorKaufmann, Louis-Dominique
dc.contributor.authorBisquert, Juan
dc.contributor.authorGarcia-Belmonte, Germà
dc.date.accessioned2016-02-23T15:35:26Z
dc.date.available2016-02-23T15:35:26Z
dc.date.issued2015
dc.identifier.issn1566-1199
dc.identifier.issn1878-5530
dc.identifier.urihttp://hdl.handle.net/10234/151213
dc.description.abstractOrganic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance–voltage (C–V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance.ca_CA
dc.description.sponsorShipFP7 European collaborative project SUNFLOWER (FP7-ICT). 287594 Generalitat Valenciana (Institute of Nanotechnologies for Clean Energies). ISIC/2012/008 European Research Council (ERC). 335078-COLOURATOMS Brno University of Technology. CZ.1.07/2.3.00/30.0039 SIM NanoForce programca_CA
dc.format.extent24 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.isPartOfOrganic Electronics 16 (2015) 227–233ca_CA
dc.rights© 2014 Elsevier B.V. All rights reserved.ca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectOrganic photovoltaicsca_CA
dc.subjectdegradationca_CA
dc.subjectshelf lifeca_CA
dc.subjectmorphology evolutionca_CA
dc.subjectcontact selectivityca_CA
dc.subjectlow-energy-loss electron spectroscopic imagingca_CA
dc.titleNanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivityca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1016/j.orgel.2014.11.007
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttp://ac.els-cdn.com/S1566119914005102/1-s2.0-S1566119914005102-main.pdf?_tid=dc071636-da3b-11e5-819d-00000aacb361&acdnat=1456238813_250184b24adc2d1e48f5804b8e28cb9cca_CA
dc.type.versioninfo:eu-repo/semantics/submittedVersion


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem