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Abstract 

Histone acetylation and other modifications of the chromatin are important regulators of 

gene expression and, consequently, may contribute to drug-induced behaviors and 

neuroplasticity. Previous studies have shown that a reduction on histone deacetylase 

(HDAC) activity results on the enhancement of some psychostimulant-induced 

behaviors. In the present study, we extend those seminal findings by showing that the 

administration of the HDAC inhibitor sodium butyrate enhances morphine-induced 

locomotor sensitization and conditioned place preference. In contrast, this compound 

has no effects on the development of morphine tolerance and dependence. Similar 

effects were observed for cocaine and ethanol-induced behaviors. These behavioral 

changes were accompanied by a selective boosting of a component of the transcriptional 

program activated by chronic morphine administration that included circadian clock 

genes and other genes relevant in addictive behavior. Our results support an specific 

role for histone acetylation and the epigenetic modulation of transcription at a reduced 

number of biologically relevant loci on non-homeostatic, long lasting, drug-induced 

behavioral plasticity.  
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Introduction 

Behavioral changes observed after chronic exposure to drugs of abuse, such as 

tolerance, dependence and addictive behavior, appear or are maintained long after the 

drugs have been cleared from the organism and cannot be accounted by acute effects of 

the interaction of drugs with their primary molecular targets. Although these clinically 

relevant phenomena notably differ in their temporal persistence, all of them arise from 

the ability of drugs to promote persistent structural and functional changes in the central 

nervous system (Chao and Nestler, 2004). These phenomena are usually referred as 

“drug-induced neuroplasticity” and depend on changes in gene expression (McClung 

and Nestler, 2008).  

There is a growing interest in the possible functional consequences of covalent 

modifications of the chromatin in the appearance and maintenance of behavioral 

changes (Sweatt, 2009), including the development and manifestation of addictive 

behavior (Renthal and Nestler, 2008b; Tsankova et al, 2007). Changes in the structure 

of the chromatin could underlay long-lasting changes on neuronal gene expression and 

ultimately contribute to explain the persistence of addictive behavior. Recent studies 

have provided initial support to this hypothesis. For example, the administration of 

psychostimulants, such as cocaine, at dosages that promote conditioned place 

preference (CPP) or locomotor sensitization result in histone hyperacetylation at 

specific loci relevant in the development of addictive behavior (Kumar et al, 2005; 

Levine et al, 2005; Renthal et al, 2008a; Renthal et al, 2007) and perhaps also at the 

bulk chromatin level (Kalda et al, 2007). Furthermore, genetic studies have established 

a functional role for histone acetyltransferase (HAT) (Levine et al, 2005) and histone 

deacetylase (HDAC) (Renthal et al, 2007) activities in the mechanisms of action of 

psychostimulants, a view also supported by pharmacological experiments with HDAC 
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inhibitors (HDACi) (Kalda et al, 2007; Kumar et al, 2005; Renthal et al, 2007).  

Because most of the research conducted in this area has focused on 

psychostimulants such as cocaine or amphetamine, here we explore the effect of HDAC 

inhibition on drugs of abuse belonging to three different pharmacological families: 

cocaine, ethanol and morphine. We found that the HDACi sodium butyrate selectively 

enhanced some, but not all, behavioral responses to chronic administration of these 

drugs. We also extended previous studies by performing a detailed biochemical and 

gene profiling analysis of striatal tissue, which showed that morphine, as cocaine, 

induces striatal histone H3 phosphorylation, and indicated that the effects on behavior 

are not associated to global changes in gene expression or chromatin acetylation, but to 

the specific modulation of relevant loci and genetic programs.   

 

Methods and Materials 

Subjects 

Male Swiss-Albino mice, 6-8 weeks old, were purchased from Janvier España, S.A. 

(Madrid, Spain). Subjects housing, care and experimental manipulation followed the 

national guidelines and approved by the Institutional Animal Care and Use Committees. 

Behavioral procedures 

Sensitization. Locomotor sensitization induced by ethanol, cocaine and morphine was 

evaluated using a protocol divided into two phases: Induction and challenge. The 

induction phase involved six trials on alternate days, one trial per day. On each one of 

these trials mice received an injection of saline or sodium butyrate (100, 150 or 300 

mg/kg) followed by a second injection of ethanol (2.5 g/kg), morphine (20 mg/kg) or 

cocaine (10 mg/kg). Based on the results of previous studies (Kumar et al., 2005) both 

treatments were separated by a 20 minutes delay in the case of ethanol or cocaine 
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experiments. However, attending to the need of using a longer period in morphine 

related experiments (see below), sodium butyrate was simultaneously administered with 

morphine. Immediately after this second injection mice were placed in open-field 

chambers, consisting of glass cylinders of 25 cm in diameter, and locomotion was 

registered by a computerized video-tracking system (SMART; Panlab SL; Spain). The 

duration of these testing sessions was restricted to 20 minutes in the case of ethanol and 

cocaine, whereas it was prolonged to 60 minutes in the case of morphine. On the other 

hand, the challenge phase consisted of a single trial conducted 7 days after the last test 

of the induction phase. In this case, all animals received a single injection of ethanol 

(2.5 g/kg), cocaine (10 mg/ kg) or morphine (20 mg/kg) and locomotion was assessed as 

in the treatment phase. Conditioned place preference (CPP). Morphine-induced CPP 

was assessed using four black acrylic chambers (30 x 15 x 20 cm). Tactile cues 

(interchangeable grid and hole floors) were used as conditioned stimuli. The behavioral 

procedure was divided into three consecutive phases. First, initial preference was 

assessed in three successive daily tests by placing each animal in the CPP chambers 

(floor divided with half grid, half holes) for 15 min. The individual scores of the third 

test were used to match two groups that did not differ according to their initial 

preference for any of both floors. The second phase of this procedure consisted of six 

trials (20 min duration; one trial per day), corresponding to three morphine/CS+ 

pairings and three saline/CS- pairings. In each one of the 6 conditioning sessions, mice 

received an injection of saline or sodium butyrate (150 mg/kg) twenty minutes before of 

receiving the corresponding injection of morphine (20 mg/kg) or saline. Immediately 

after this second injection mice were confined into the conditioning chamber prepared 

with the corresponding CS+ or CS- floor for 20 minutes. The third phase consisted of a 

single test (duration: 15 min) conducted the day after the last conditioning session. In 
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this case the floor of the conditioning chambers was divided (half grid, half holes) and 

the time spent in each floor was assessed by a video-tracking system (SMART, Panlab 

SL, Spain). Tolerance. The development of tolerance to the analgesic effects of 

morphine was assessed using the tail-flick procedure using an automated 

analgesiometer (Ugo Basile, Italy). The procedure had three main phases: First, drug-

naïve mice were first tested to establish their individual pain thresholds in a single assay 

(infrared intensity: 50). Accordingly to these initial values mice were matched in two 

pre-treatment (saline vs. sodium butyrate) groups. In the second phase, that started 

twenty-four hours later, mice received an acute saline or sodium butyrate (300 mg/ kg; 

i.p.) injection and, 20 minutes later, all mice received a saline injection. The latency to 

withdraw the tail from the heat focus was evaluated in a single assay performed 10 

minutes after the saline injection. Finally, the third phase of this experiment addressed 

the analgesic effects of morphine and the development of tolerance to this effect. This 

phase consisted of 6 trials. (one trial per day, on consecutive days). Each trial was 

identical to that described for phase 2, but mice were treated with morphine (5 mg/kg; 

i.p.) instead of saline 10 min before of assessing the latency to flick the tail. The 

development of tolerance to the motor impairing effects of ethanol (2.5 g/kg) was 

assessed using a commercial rota-rod for mice (rota-rod 9756;Ugo Basile, Italy). First, 

ethanol-naïve mice were trained in the rota-rod under a constant acceleration schedule 

(3.75-37.5 rpm over 5 min) till they were able to stay in the rod for 120s for two of three 

consecutive trials. All mice learned this ability after two training sessions (5 trials per 

session) conducted in consecutive days. Twenty-four hours after this training phase, 

mice were randomly assigned to a pre-treatment group and received an acute saline or 

sodium butyrate (300 mg/ kg) injection. Twenty minutes after this treatment, mice 

received a saline injection and 10 min later were tested once in the rota-rod under the 
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same schedule used in the training phase. This test was conducted to assess a possible 

effect of sodium butyrate in motor coordination per se. The third phase of this 

experiment addressed the motor impairing effects of ethanol and the development of 

tolerance to this effect and consisted of 6 trials (one trial per day, on consecutive days). 

These trials were identical to that previously described but ethanol (2.5 g/kg) instead of 

saline was administered to saline or sodium butyrate pretreated mice. 

Dependence/withdrawal. Opioid dependence was induced by repeated injections of 

morphine based on the procedure described by (Maldonado et al, 1997). Mice received 

morphine injections twice a day (9 AM and 9PM) with progressively increasing doses 

(20, 40, 60, 80 and 100 mg/kg, i.p.) in their home cages for 5 consecutive days. Saline 

or sodium butyrate (150 mg/kg) was intraperiotneally injected immediately before each 

morphine injection. On the 6th day, mice were pre-treated with saline or sodium butyrate 

followed by a last morphine (100 mg/kg, i.p.; 9 AM) injection. Ninety minutes later 

mice were individually placed in cubic metacrylate boxes (40 x 40 x 40 cm). Fifteen 

minutes later, morphine withdrawal was precipitated by a subcutaneous naloxone 

injection (1mg/kg) and mice behavior was videotaped for 15 additional mice. Several 

signs of the morphine withdrawal syndrome were evaluated by an observer blind to 

treatment conditions. Ethanol dependence was induced by repeated injection of ethanol 

accordingly to a self-developed experimental protocol adapted from (Gililland and Finn, 

2007) using the reduction of locomotion as an index of ethanol withdrawal intensity 

(Kliethermes, 2005). Our experimental procedure had two main phases, namely, 

dependence induction and withdrawal assessment. In the first one, four separate groups 

of mice received in their home cages an injection of saline or sodium butyrate (150 mg/ 

kg; IP) immediately followed by an ethanol (4 g/kg; IP) or saline challenge. This 

treatment was repeated twice a day (9 AM and 9PM) for 5 consecutive days. The 
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second phase consisted in a single test session conducted 15 hours after the last saline/ 

ethanol injection. In this test, mice locomotion was assessed during 20 in an open field 

and following the same experimental conditions described above. 

Western blotting and immunohistochemistry 

Mice striatal tissue was rapidly dissected from anterior 6mm coronal sections using a 

chilled acrylic mouse brain slicer matrix (Zivic Instruments) with 2 mm coronal section 

slice intervals, frozen in dry ice and stored at -70ºC until further protein extraction. 

Western blot and immunohistochemistry analyses were performed as previously 

described (Lopez de Armentia et al, 2007). See supplementary methods for additional 

details. 

Microarray and quantitative reverse transcription polymerase chain reaction (qRT-

PCR) analyses 

For microarray analysis, striatal tissue was dissected as described above and placed on 

RNAlater solution (Qiagen, Venlo, The Netherlands). Equal amounts of total RNA from 

four animals were pooled, processed and hybridized to Mouse Gene 1.0 ST genechips 

(Affymetrix, Santa Clara, CA). Three to six biological replicates were prepared for each 

experimental condition (saline-saline, N=6; saline-morphine, N=3; butyrate-morphine, 

N=3). Microarray data were processed, normalized and statistically analyzed using 

GeneSpring GX. This dataset will be accessible at the GEO database upon manuscript 

acceptance. For qRT-PCR, cDNA was prepared from eight independent mice per group. 

Real-time quantitative PCR was performed using ABI 7300 Real-Time PCR System 

(Applied Biosystems, Foster City, CA) and amplified using SYBR GreenER qPCR 

reagent mix (Invitrogen, Carlsbad, CA). Each sample was assayed in duplicate and 

normalized using GAPDH levels. Primer sequences for qRT-PCR amplification were 
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designed using Primer Express® Software v2.0 (Applied Biosystems) and are available 

on request. 

Statistics 

All data are depicted as mean + SEM. Most data were analyzed using ANOVAs, 

followed by Tuckey HSD posthoc tests because it does not requires a significant 

interaction between factors and it is highly conservative against type I error (Wilcox et 

al., 1980). Experimental designs involving the comparison of multiple dependent 

variables were analyzed using between-groups MANOVA. Comparisons involving only 

two means were compared by means of Student’s t test for independent samples. For 

clarity, details of statistical comparisons that did not yield significant  (p<0.05) 

differences are not fully described in the results section. 

 

Results 

Sodium butyrate administration enhances cocaine-induced locomotor sensitization. 

To confirm and extend previous findings on the ability of HDACi to enhance 

psychostimulants-induced behaviors, we assessed the effects of sodium butyrate on 

cocaine-induced locomotor sensitization. Our experimental protocol was divided in two 

phases: induction and challenge (see figure 1A for details). Mice were divided into eight 

groups and injected either with saline or cocaine (10 mg/kg, ip) in the presence or 

absence of sodium butyrate pretreatment (100, 150 or 300 mg/kg, ip). The 

administration of sodium butyrate enhanced the development of cocaine-induced 

locomotor sensitization without affecting locomotion in saline treated mice (figure 1B). 

A three-way ANOVA (pretreatment x treatment x days) revealed that the (cocaine) 

treatment as well as the days factors reached statistical significance (F1,85= 144.08, 

p<0.001; F5,425 = 9.16, p<0.001) whereas the pretreatment (sodium butyrate) factor did 
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not. Further, all bifactorial (F3,85= 3.37, p<0.05; F5,425= 10.73, P<0.001; F15,425=2.56, 

p<0.001) as well as the three way interaction (F15,425=1.99, p<0.05) yielded a significant 

effect. Tuckey HSD posthoc comparisons revealed that repeated cocaine injections in 

saline pretreated mice lead to a progressive enhancement of locomotion, confirming the 

development of locomotor sensitization (p<0.05). This behavior was boosted in mice 

pre-treated with sodium butyrate. Notably, the effect of sodium butyrate was very 

persistent. A challenge test conducted 7 days later, in which the same eight groups of 

mice received cocaine (10 mg/kg, ip), but not sodium butyrate, revealed that the mice 

that had received moderate (150 mg/kg) or high (300 mg/kg) doses of sodium butyrate 

concurrently with cocaine during the treatment phase exhibited higher locomotion in the 

challenge test than those that were pretreated with saline (figure 1C). Two-way 

ANOVA (pretreatment x treatment) comparing the locomotor scores in this test 

revealed a significant effect for both factors (F3,85= 3.57, p<0.05; and F1,85= 56.84, 

p<0.001, respectively) as well as for their interaction (F3,85= 3.63, p<0.05), whereas 

posthoc comparisons showed significant increases for both sodium butyrate 

concentrations (p<0.01). As expected, regardless of their pre-treatment conditions, all 

the mice that did not receive cocaine during the sensitization induction phase showed in 

the challenge phase enhanced locomotion in response to acute cocaine administration 

(figure 1C, compare white bars to dashed line). 

 

Sodium butyrate administration enhances ethanol-induced locomotor sensitization but 

not ethanol tolerance or withdrawal 

We next investigated the effects of sodium butyrate in ethanol-induced behaviors. First, 

we evaluated the effects of this HDACi on ethanol (2.5 g/ kg, ip)-induced sensitization 

using the same experimental scheme previously described for cocaine (figure 2A). As 
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depicted in figure 2B, we observed that sodium butyrate enhanced ethanol-induced 

locomotor sensitization. A three way ANOVA (pretreatment x treatment x days) 

revealed a significant effect of the three main factors (F3,106= 4.39, p<0.001; F1,106= 

162.98, p<0.001; F5,503= 19.16, p<0.001, respectively). Two bi-factorial interactions 

reached statistical significance (pretreatment x treatment: F3,106= 6.21, p<0.001; 

treatment x days: F5,530= 29.43, p<0.001). Posthoc comparisons revealed that all doses 

of sodium butyrate significantly enhanced ethanol-induced locomotion as compared to 

the saline pretreated group (100 mg/ kg: p<0.05, 150 mg/ kg: p<0.001; 300 mg/ kg: 

p<0.001, respectively). The same sodium butyrate doses did not affect the daily scores 

of saline treated mice (figure 2C). Again, these differences between groups were 

persistent and were expressed in a challenge test conducted 7 days later at which all 

mice received a single ethanol injection (figure 2C). A two way ANOVA (pretreatment 

x treatment) comparing the locomotor scores on this challenge test revealed that both 

main factors as well as their interaction reached statistical significance (F3, 92= 3.51, 

p<0.05; F1, 92= 86.17, p<0.001; F3, 92= 5.60, p<0.01; respectively). Thus, mice that had 

received sodium butyrate and ethanol during the sensitization induction phase exhibited 

higher locomotion than the group that received saline as a co-adjuvant treatment of 

ethanol (p<0.01 in all cases). All mice that had been treated with saline during the 

induction phase equally reacted to an acute ethanol administration.  

In addition to locomotor sensitization, the repeated administration of ethanol can 

cause other relevant behavioral adaptations, such as tolerance and withdrawal 

symptoms. We extended our study to these other behavioral effects of ethanol and 

found that sodium butyrate co-administration did not affect the development of 

tolerance to the motor incoordinating effects of ethanol (figure 2D). Similarly, we also 

observed that the co-administration of this iHDAC during the induction of alcohol 
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dependence did not affect the hypolocomotion associated to ethanol withdrawal (figure 

2E). These effects were not caused by changes in ethanol pharmacokinetics 

(supplementary table 1). 

 

Sodium butyrate administration enhances morphine-induced sensitization and CPP, but 

not tolerance or withdrawal. 

To extend and confirm this intriguing dissociation on the effects of HDACis on 

different drug-induced behavioral phenomena, we assessed the effect of sodium 

butyrate on several behavioral effects of chronic morphine administration. First, we 

evaluated the effects of this HDACi on morphine-induced sensitization using the same 

protocol described for cocaine and ethanol (figure 3A). A three-way ANOVA 

(pretreatment x treatment x days) revealed a significant effect of the three main factors 

(F3,87= 12.12, p<0.001; F1,87= 36.66, p<0.001 and F5, 435= 41.01, p<0.001, respectively). 

The dyadic interactions treatment x days (F5,435= 47.22, p<0.001) and pre-treatment x 

treatment (F3,87= 10.99, p<0.001) reached statistical significance. Tuckey HSD posthoc 

comparisons revealed that all mice treated with morphine displayed a significant 

increase in locomotion across days, and this effect was significantly boosted in mice 

pre-treated with moderate (150 mg/kg, p<0.05) or high doses of sodium butyrate (300 

mg/kg, p<0.01). The same doses of sodium butyrate did not affect locomotion of saline-

treated mice. As observed for cocaine- and ethanol- treated mice, the co-administration 

of sodium butyrate (150 or 300 mg/kg) selectively enhanced the development of 

morphine-induced locomotor sensitization (figure 3B). Notably, as observed for 

cocaine- and ethanol- treated mice, the effects of sodium butyrate persisted and were 

still apparent in a challenge test conducted 7 days after the last sodium butyrate 

injection. As in previous experiments, in the challenge phase all mice received 
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morphine, but not sodium butyrate. We found that those mice that had concurrently 

received intermediate or high doses of sodium butyrate and morphine during the 

induction phase exhibited higher locomotion than the group that had received saline as 

the co-adjuvant of morphine (figure 3C; p<0.01).  

We also compared the interaction between a sodium butyrate dose (300 mg/kg) 

and two doses of morphine (10 and 20 mg/kg) that differed in their ability to promote 

locomotor sensitization under the treatment conditions described above (figure 3D). A 

three way ANOVA (pre-treatment x morphine dose x days) revealed a significant effect 

of all three main factors (F1,20=6.05, p<0.05; F1,20=56.62, p<0.001; F5,100=11.01, 

p<0.001; respectively) as well as the bifactorial interactions pretreatment x morphine 

dose (F1,20=6.20, p<0.05) and pretreatment x days (F5,100=3.72; p<0.001). Follow up 

Tuckey HSD comparisons revealed that the administration of sodium butyrate did not 

affect the locomotor scores observed after repeated injections of a low dose of morphine 

(10 mg/ kg) but it significantly boosted the acute and chronic effects of a higher dose 

(20 mg/kg, p<0.01). We further analyzed these effects of sodium butyrate by calculating 

the linear regression equations describing the dynamic changes in morphine-induced 

locomotion across the different days of the induction phase. The equations 

corresponding to the regression lines describing the changes of morphine-induced 

locomotion over time in each group were: SM10= 9283.4 + 774.69x, r2=0.953; BM10= 

9092.0 + 825.47x, r2=0.683); SM20= 20101.4 + 2284.9x, r2=0.941; BM20= 32289.4 

+3280.3x, r2=0.857). These results indicated that the intercept and the slope values of 

the regression line of the two groups treated with a low dose of morphine unable to 

trigger locomotor sensitization were almost identical and independent of the 

pretreatment conditions. Conversely, in mice receiving a higher morphine dose, both the 

intercept and the slope values of the regression line corresponding to the group of mice 
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co-treated with sodium butyrate were larger than in the group co-treated with saline. 

These results indicate that sodium butyrate did not only enhanced morphine locomotion 

but also exerted a positive modulation of the mechanisms leading to the sensitization of 

this response with repeated morphine administration. Taken together these data support 

an interactive effect rather than a merely additive effect of sodium butyrate and 

morphine in locomotor sensitization.  

We also examined other addiction-related behaviors and found that sodium 

butyrate enhanced morphine-induced CPP (figure 3E, t23= 2.30, p< 0.05). In contrast, 

but in close parallelism to the results obtained in experiments involving repeated 

ethanol administration, the same doses of this HDACi did not affect the development of 

tolerance to the analgesic effects of morphine (figure 3F) nor the intensity of morphine 

withdrawal (figure 3G). 

 

 Acute administration of drugs of abuse does not modify bulk chromatin acetylation in 

the striatum, but triggers histone H3 phosphorylation 

We assessed the ability of the drugs morphine, ethanol and cocaine, at the 

concentrations used in our behavioral experiments (respectively, 20 mg/kg, 2.5 g/kg and 

10 mg/kg), to induce changes in the acetylation state of bulk chromatin in striatal 

neurons. To this end, we assessed acetylation of the four nucleosome histones, H2A, 

H2B, H3 and H4, as well as phosphorylation of histone H3. Although the administration 

of sodium butyrate increased bulk histone aceylation in a dose dependent manner 

(figure S1), we found that neither one of the three drugs had a significant effect on bulk 

histone acetylation levels. We, however, confirmed that cocaine administration 

increased phosphorylation of histone H3 at Ser10 (p<0.05, figure 4A) (Brami-Cherrier 

et al, 2005; Kumar et al, 2005; Stipanovich et al, 2008). This increase in H3 
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phosphorylation was probably also responsible of the increase in H3 phosphoacetylation 

observed after cocaine administration (Brami-Cherrier et al, 2005; Kumar et al, 2005; 

Stipanovich et al, 2008). Similar results (figure 4B) were obtained in response to higher 

doses of morphine (60 mg/kg), ethanol (6 g/kg i.p.) and cocaine (40 mg/kg i.p.). To 

confirm these results and, at the same time, gain spatial resolution and sensitivity in our 

assays, we performed immunohistochemistry experiments in brain sections of animals 

treated with high doses of morphine, cocaine and ethanol using antibodies against the 

same histone modifications. As observed in the western blot analyses of striatal extracts, 

we could not detect significant changes in histone acetylation for neither one of the four 

nucleosome histones (figure S2), but we found striking differences in the abitity of 

drugs to enhance histone H3 phosphorylation (figure 4C and figure S3). Thus, whereas 

phospho-H3 antibody in brain sections of control mice only labeled proliferating cells in 

the subventricular zone (figure S3), the injection of cocaine caused, as previously 

reported (Brami-Cherrier et al, 2005), a robust increase in histone phosphorylation in 

broad regions of the dorsal striatum, nucleus accumbens and olfactory tubercle 

(supplementary table 2).  Interestingly, we found that morphine increased histone H3 

phosphorylation in the same brain regions than cocaine, although the magnitude and 

number of cells affected was lower, which may explain the absence of significant 

changes in response to morphine in our western blot analysis. Ethanol injection did not 

cause any obvious change in striatal histone H3 phosphorylation.  

We also explored the interaction at the level of histone acetylation between 

sodium butyrate and acute administration of cocaine (10mg/kg), ethanol (2.5 g/kg) or 

morphine (20 mg/kg). Sodium butyrate at the dose used in our behavioral analyses did 

not cause a significant increase in histone acetylation, neither alone nor in combination 

with either one of these drugs (figure S4A). In the case of morphine, we also examined 
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whether changes in bulk chromatin acetylation became evident after chronic drug 

administration. For this purpose, mice received the same dose and treatment previously 

described for behavioral sensitization and the tissue was collected 48h after the last 

morphine injection. Repeated morphine injection did not cause changes in the bulk level 

of acetylation of neither one of the four nucleosome histones or in the phosphorylation 

of histone H3 as examined by western blot analysis (figure S4B). The lack of significant 

changes in bulk chromatin acetylation after drug administration does not discard that 

more subtle changes could take place at specific genomic loci or restricted neuronal 

populations. 

 

Previous co-administration of sodium butyrate alters the transcriptional response to 

morphine re-exposure 

To further investigate the molecular bases of sodium butyrate action on long-lasting 

behavioral responses to morphine, we screened for potential substrates of their 

interaction by performing a genome-wide comparison of the striatal transcriptome after 

chronic administration of morphine in the absence or presence of sodium butyrate. To 

this end, additional groups of mice underwent the same protocol described in the 

sensitization experiments (figure 5A). Striatal RNA was extracted 1 h after the 

morphine challenge in groups of four animals that received either saline (N=6), or 

morphine (N=3), or the sodium butyrate-morphine co-treatment (N=3) during the 

sensitization induction phase. One-way ANOVA of microarray data identified 240 

differentially expressed probe sets, corresponding to 197 identified genes (figure 5B and 

supplementary table 3). Most of these genes (80%) were upregulated in response to the 

morphine challenge including both genes previously identified as important in 

neuroplasticity, such as Arc and Nfkbia, and novel genes that may be highly relevant in 
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additive behavior, such as Ttr and Kcnj13, which showed the largest response to chronic 

morphine administration in our study (figure S5). The list of genes altered in the mice 

that received the morphine-sodium butyrate co-treatment (BM group) was very similar 

to that obtained for the mice that only received morphine (SM group). Interestingly, in 

105 genes  (53% of those identified in the ANOVA), the sodium butyrate pretreatment 

led to an increase in expression when compared to animals treated with morphine alone. 

This upregulation was significant for 26 genes (13%), which represent interesting 

candidates to mediate HDACi effects, only 14 genes (7%) showed the opposite 

behavior. Of note is the presence, among the genes with an increased transcriptional 

response to morphine, of several circadian clock genes, namely Per1, Rev-erbα and 

Cry1, whose expression was consistently and significantly affected by the HDACi 

pretreatment, indicating that the previously described transcriptional feedback loop 

involving these genes was enhanced (figure 5C). Other genes highly relevant in the 

context of drug addiction, such as c-fos, nr4a1, Zbtb16 and fosB, also showed the same 

trend toward enhanced upregulation by co-administration of sodium butyrate and 

morphine. We validated relevant changes by qRT-PCR (figures 5D-E), confirming the 

boosting effect of sodium butyrate on a component of the transcriptional response to 

morphine. 

 

Discussion  

Four important conclusions can be drawn from this study. First, the HDAC inhibitor 

sodium butyrate enhances some behavioral responses to drugs of abuse, such as 

locomotor sensitization or conditioned place preference. This interaction was observed 

for drugs of abuse of different pharmacological families, including psychostimulants, 

opioids and ethanol. Second, the modulatory effects of histone acetylation cannot be 
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generalized to all the behavioral effects derived from chronic exposure to these drugs of 

abuse (e.g. tolerance and dependence). Third, we show that morphine, as previously 

demonstrated for cocaine, induces the phosphorylation of histone H3 in a restricted 

population of striatal neurons. In contrast, we could not detect significant changes in the 

acetylation state of bulk chromatin in striatal neurons triggered by either drug. Fourth, 

gene profiling analysis indicates that the interaction between morphine and HDACi first 

revealed at the behavioral level had a clear transcriptional correlate on specific loci 

highly relevant in neuroplasticity and addiction.  

More specifically, our data suggest that HAT/HDAC activities have a prominent 

and selective role on the development of long-lasting behavioral effects, such as CPP 

and sensitization. These effects arise from non-homeostatic neuroplastic responses to 

drugs of abuse and are considered highly relevant in the development and maintenance 

of addictive behavior. Conversely, acetylation-related processes seem less relevant in 

the development of drug tolerance and dependence (as measured by the intensity of 

drug withdrawal), which result from transient homeostatic adaptations occurring within 

the cells and circuits directly stimulated by each drug and are not considered core 

symptoms of addiction (Hyman et al, 2006). This view is in agreement with previous 

pharmacological and genetics studies on psychostimulants-induced sensitization and 

CPP (Bilbao et al, 2008; Kalda et al, 2007; Kumar et al, 2005; Levine et al, 2005; 

Renthal et al, 2007), as well as with the few preceding studies indicating that HDACis 

do not facilitate the development of tolerance (Wang et al, 2007) and that histone 

acetylation might be more involved in the expression than in the induction of drug 

dependence (Pandey et al, 2008). Future studies should further explore this intriguing 

dissociation. 



HDACi and drugs of addiction interaction 

16/07/09 19

This study also provides the most comprehensive analysis to date of 

posttranslational modifications of histones in the chromatin of striatal neurons in 

response to drugs of abuse. Previous analyses on histone acetylation in response to 

cocaine (Brami-Cherrier et al, 2007; Brami-Cherrier et al, 2005; Cassel et al, 2006) or 

ethanol (Kim and Shukla, 2006; Pandey et al, 2008) have produced somewhat 

conflicting results. Despite the dose-dependent hyperacetylation observed in response to 

sodium butyrate, our analysis failed to reveal significant changes in bulk chromatin 

acetylation after acute administration of cocaine, ethanol or morphine to saline or 

sodium butyrate pretreated mice. These negative findings might result of the insufficient 

sensitivity of the techniques used here (i.e. western blot and immunohistochemistry) to 

detect small increases over already high basal levels of histone acetylation, or more 

likely, of the unsuitability of these techniques to reveal subtle modifications of the 

chromatin that are presumably restricted to the promoters of specific genes in the nuclei 

of particular neuronal ensembles that are part of a large and cellularly-heterogeneous 

brain structure like the striatum. On the other hand, in agreement with previous studies 

(Brami-Cherrier et al, 2005; Kumar et al, 2005; Stipanovich et al, 2008), we found that 

cocaine administration caused the phosphorilation and/or phosphoacetylation of histone 

H3. The identification of these changes using western blot and immunohistochemical 

procedures was probably favored by the very low basal level of H3 phosphorylation 

and/or phosphoacetylation in saline-treated mice. Further, our results also present the 

first evidence indicating that the activation of this signaling pathway is not exclusive of 

cocaine, since morphine administration also increased H3 phosphorylation in several 

brain areas although to a lower extent than cocaine. In contrast, ethanol administration 

did not result in any change on bulk histone acetylation/phosphorylation identifiable by 

western blot or immunistochemical procedures. Ethanol could still promote changes in 
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histone H3 phosphorylation that are below the sensitivity of our assays. Alternatively, it 

is also possible that ethanol does not activate the signaling pathway that leads to H3 

phosphorylation, but can still interact with sodium butyrate.  

We also observed that HDACi and morphine interact on the regulation on the 

transcription of several genes. Thus, our microarray analysis, in addition to confirm a 

number of transcriptional targets of morphine (Korostynski et al, 2007; McClung et al, 

2005) and reveal novel ones, provided a short list of candidate genes to play a role in 

HDACi-mediated enhancement of non homeostatic behavioral responses to morphine. 

Particularly remarkable is the case of circadian clock genes. In this regard, we observed 

an enhanced upregulation of Per1 in mice that received the sodium butyrate as 

coadjuvant treatment of repeated morphine injections. Although we did not assess 

chromatin acetylation at this specific locus, it has been shown that both HDACi (Naruse 

et al, 2004) and cocaine (Renthal et al., 2009) can induce histone acetylation at the Per1 

promoter and increase its transcription. Interestingly, the enhanced expression of Per1 

in mice co-treated with sodium butyrate and morphine was associated to increased 

downregulation of Cry1 and upregulation of Rev-erbα (figure 5C). These changes are in 

good agreement with current models indicating that Rev-erbα acts as a potent repressor 

of Cry1 expression and that Cry1 works as a negative regulator of Per1 expression 

(Etchegaray et al, 2003). The potential behavioral relevance of these changes in Per1 

expression is highlighted by studies showing that both mice and Drosophila mutants, 

lacking respectively Per1 or Per, failed to show sensitization to cocaine (Abarca et al, 

2002; Andretic et al, 1999), and the reduction of Per1 activity in mice by DNAzyme led 

to a reduction in CPP for morphine (Li et al, 2008). The mechanisms by which 

circadian clock genes regulate addictive behavior remain however elusive have not been 

fully elucidated (Perreau-Lenz et al, 2007), but probably involve their regulatory role on 
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dopamine receptor responsiveness (Andretic and Hirsh, 2000). 

Although circadian clock genes are appealing candidates for mediating the 

interaction between sodium butyrate and morphine, the transcriptional program 

activated by chronic morphine is broad (Korostynski et al, 2007; McClung et al, 2005), 

and its interaction with sodium butyrate complex (figure 5 and figure S5). Beside 

circadian genes, our results show that morphine and sodium butyrate interact on the 

regulation of the expression of several other transcription factors that may lead to 

further transcriptional changes, such as fosB, the activity-regulated transcription factors 

Npas4 and Nr4al and the transcriptional repressor Zbtb16 that positively regulates the 

ERK pathway and can potentially enhance drug effects. Genes encoding proteins 

involved in neurite outgrowth and structural changes (Mpp7, Btg2, Cdc42ep2, Rem2, 

Cdh9) or that may contribute to the enhanced behavioral response observed during 

sensitization, such as the translation enhancer Rbm3, were also differentially regulated. 

All these genes represent interesting candidates for further analysis of epigenetic 

regulation of addiction-related behaviors. 

 Taken together, our behavioral, histone posttranslational modification and gene 

profiling studies support a scenario in which drug-induced changes in the chromatin 

would be restricted to specific genomic loci relevant in neuronal plasticity, rather than 

global, genome-wide, changes in chromatin acetylation and gene expression. These loci 

are the most likely sites where HDACi and drugs of abuse interact to promote non-

homeostatic neuroadaptations that underlie behavioral phenomena relevant in the 

context of addictive behavior, such as CPP and sensitization. This view is supported by 

a number of recent studies exploring changes in histone phosphorylation and acetylation 

at the promoters of Per1, c-fos, fosB, bdnf and NK1R, among other genes, in response to 

the acute administration of HDACi or drugs of abuse (Kumar et al, 2005; Levine et al, 
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2005; Renthal et al, 2008a; Renthal et al, 2009; Renthal et al, 2007; Russo et al, 2009; 

Schroeder et al, 2008). However, it should be also noted that HDACs do not only 

acetylate nucleosome histones, but a much wider range of cellular proteins and can 

therefore influence cell physiology and animal behavior also through non-genomic 

mechanisms (Glozak et al, 2005; Spange et al, 2009). Indeed, some behavioral 

consequences observed after the administration of HDACi might be difficult to 

reconcile with the temporal requirements of the genomic actions of these compounds, 

which imply not only gene transcription but also the synthesis of proteins de novo and 

their transport to cellular structures/organelles. In agreement with this view, others and 

we (Kumar et al., 2005) have observed a rapid enhancement of cocaine-, ethanol- or 

morphine-induced locomotion when these drugs were injected simultaneously or shortly 

after (i.e. 20 min) HDACi administration. Therefore, it is possible that these compounds 

influence drug-induced behaviors by epigenetic and non-epigenetic mechanisms. Initial 

support for this dual action of HDACi was obtained in our detailed analysis on the 

effects of sodium butyrate on morphine-induced locomotor sensitization which revealed 

that this compound affected both the intercept and the slope of the regression line 

describing the progressive enhancement of locomotion observed after repeated 

administration of this drug. Future research should further explore the relative 

contribution of the different molecular changes triggered by sodium butyrate on the 

behavioral effects of its co-administration with drugs of abuse.  

 In summary, our results confirm and extend previous reports on the ability of 

HDACi to modify the behavioral effects of drugs of abuse belonging to different 

pharmacological families. This modulatory activity is complex and might imply 

different mechanisms when considering acute vs. chronic drug administration. HDAC 

inhibition also seems to differentially affect addiction-related behaviors associated to 
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non homeostatic neuroplasticity and those resulting from homeostatic adaptations to the 

drug. Future studies should explore further how drugs of abuse can trigger changes in 

histone acetylation and phosphorylation at specific genomic loci and determine whether 

these transient chromatin modifications can lead to more stable and specific molecular 

marks, such as histone or DNA methylation (Borrelli et al, 2008) that could better 

account for the persistence of addiction features revealed in our locomotor sensitization 

studies, in which the boosting effect of HDAC inhibition was maintained even one 

week after the last sodium butyrate injection. Our microarray screen has revealed a 

number of interesting candidates for such in depth epigenetic analysis.  
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Figure legends 

Figure 1. Effects of sodium butyrate administration on cocaine-induced locomotor 

sensitization.  A. Scheme of the behavioral training and treatment groups used for the 

sensitization experiment. The development and expression of locomotor sensitization 

was evaluated using a protocol divided into two phases: induction and challenge. B. 

Sodium butyrate enhanced the ability of repeated cocaine (10 mg/kg) injections to 

promote locomotor sensitization, but it did not alter locomotion in saline treated mice. 

C. The effects of sodium butyrate were persistent and those mice receiving this HDACi 

as co-adjuvant during the induction phase exhibited higher locomotion when re-exposed 

to cocaine in the challenge phase 7 days later. B100, B150 and B300 denotes 

pretreatment with 100, 150 or 300 mg/kg of sodium butyrate, respectively. The 

horizontal line of panel 1C depicts average locomotion of saline treated groups at the 

induction phase. In all panels +: p<0.05, * p< 0.01 as compared to SC group. 

Figure 2. Effects of sodium butyrate administration on ethanol-induced behaviors. 

A. Scheme of the behavioral training and treatment groups used for the sensitization 

experiment. The development and expression of locomotor sensitization was evaluated 

using a protocol divided into two phases: induction and challenge. B. Co-administration 

of sodium butyrate and ethanol (2.5 g/kg) increased the development of locomotor 

sensitization (in all panels of this figure :+: p<0.05, * p< 0.01 as compared to SE 

group). C. Mice that had received sodium butyrate and ethanol during the induction 

phase exhibited higher locomotion when re-challenged 7 days later with ethanol (2.5 

g/kg) than those that had been only exposed to ethanol. B100, B150 and B300 denotes 

pretreatment with 100, 150 or 300 mg/kg of sodium butyrate, respectively. The 

horizontal line depicts average locomotion of saline treated groups at the induction 

phase. D. The administration of sodium butyrate (300 mg/kg) did not modify the motor-
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incoordinating effects of ethanol (2.5 g/kg) or the development of tolerance as this 

treatment was repeated. E. Fifteen hours after the termination of an intense ethanol 

administration regimen (4 g/kg, twice daily; 5 days) a significant reduction on 

spontaneous locomotion was observed (p<0.05). The magnitude of this ethanol 

withdrawal sign was not modified in mice that had received sodium butyrate (150 

mg/kg) with each ethanol injection. 

Figure 3. Effects of sodium butyrate administration on morphine-induced 

behaviors. A. Scheme of the behavioral training and treatment groups used for the 

sensitization experiment. The development and expression of locomotor sensitization 

was evaluated using a protocol divided into two phases: induction and challenge. B. The 

development of morphine-induced locomotor sensitization was enhanced in mice 

treated with intermediate (150 mg/kg) or high (300 mg/kg) doses of sodium butyrate. C. 

Expression of locomotor sensitization in the same 8 groups of mice seven days after the 

termination of the induction phase. All mice were challenged with a single morphine 

(20 mg/kg) injection. The horizontal line depicts the averaged locomotion score of all 

groups receiving saline injections during the last test of the induction phase. The 

boosting effect of sodium butyrate still persisted when the mice were re-exposed to 

morphine 7 days after the last injection. B100, B150 and B300 denotes pretreatment 

with 100, 150 or 300 mg/kg of sodium butyrate, respectively. D. The analysis of 

locomotor sensitization in four additional groups of mice receiving sodium butyrate (0 

or 300 mg/kg) and morphine (10 or 20 mg/kg) revealed that repeated administration of 

the lower dose of morphine did not result in locomotor sensitization regardless of the 

co-adjuvant (saline or sodium butyrate) treatment. In contrast, repeated administration 

of a higher dose of morphine resulted on the development of locomotor sensitization, an 

effect that was boosted by the administration of sodium butyrate. These data were 



HDACi and drugs of addiction interaction 

16/07/09 30

further analyzed by a linear-regression-based procedure (straight lines on the figure; see 

results section for further details). E. Sodium butyrate (150 mg/kg) increases morphine-

induced CPP. F. Sodium butyrate (300 mg/kg) does not affect the development of 

tolerance to the analgesic effects of morphine (5 mg/kg; tail-flick test). G. Effects of 

sodium butyrate (150 mg/kg) on naloxone-precipitated morphine withdrawal. For all 

panels of this figure: + p<0.05 and * p<0.01 as compared to SM group.  

Figure 4. Modification of striatal bulk chromatin by drugs of abuse. A-B. Upper 

schemes: Drug administration dose (A: low, B: high) and protocol. Left: Bar graph 

summarizing data from immunoblots analysis. Data (mean±SEM; 4 mice per group) are 

expressed relative to saline-treated control subjects, after normalization to β-actin. * 

p<0.05. Right: Representative immunoblots. C. Representative immunostaining of 

coronal sections showing phospho-H3 reactivity at the medial portion of the dorsal 

striatum. Histone modification was analyzed 30 min after injection of saline (0.9% 

NaCl), morphine (60 mg/kg), ethanol (6 g/kg) and cocaine (40 mg/kg) intraperitoneal 

administration (3 mice per experimental condition were analyzed and produced similar 

results). Scale bar: 100 μm. The diagram at the left indicates the striatal area showed in 

the pictures. 

Figure 5. Chronic inhibition of HDAC alters the genetic program activated by 

morphine administration. A. Scheme of the regime injections and treatment groups 

used in the microarray experiment. B. Hierarchical clustering of the 197 genes that were 

significantly affected by treatment in one-way ANOVA of microarray data and showed 

a fold change larger than 1.3 in at least one comparison between treatments. Candidate 

gene names for further validation are shown. C. Several circadian rhythms genes 

showed a differential regulation in response to morphine (20 mg/kg) as result of their 

differential treatment during the sensitization induction phase. The upper inset shows 
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that the changes in expression found in our analysis are in agreement with current 

models of their regulatory interactions (Etchegaray et al, 2003). D-E Quantitative real-

time RT-PCR of selected transcripts identified in our screening as selectively 

upregulated by the co-treatment (D) or equally induced by morphine or morphine plus 

sodium butyrate (E). (*, **, ***: p<0.05, p< 0.01 or p<0.001 as compared to SS group; 

(#, ##: p<0.05 or p< 0.01 as compared to SM group). Data are presented as fold change 

(mean ± SEM; 8 mice per group).  

 













SUPPLEMENTARY DATA 
 
Supplementary Methods 
 
Measure of blood alcohol levels 

Mice were sacrificed by decapitation and 1 ml of trunk blood was collected in 

heparinized microcentrifuge tubes and immediately placed in a microcentrifuge where 

the samples were spun down for 5 min at 5000 rpm. 160 µl of supernatant were mixed 

with 1.44 ml of TCA (20%) and the mixture was spun down again to obtain a clear, 

protein-free supernatant. This protein-free serum samples were stored at −80°C until 

chromatographic analysis using a CE Instruments GC 8000 gas chromatograph 

(Polyethylene glycol column: 122–7032 DB-WAX, 30 m × 0.25 mm in J&W Scientific) 

with an HS-850 headspace analyzer. Nitrogen was used as a carrier gas (flow rate 84 

ml/min). The injector temperature was set to 90°C and the oven temperature was 60°C. 

The retention time for ethanol was 3.9 min and the detection limit 0.5 µg/ml.  

Antibodies 

We used the following antibodies: α-H2B, α-H3 and α-AcH3 (Lys14) (Abcam, MA, 

USA); α-AcH2A (Lys 5,9,13,15), α-AcH2B (Lys 5,12,15,20), α-AcH3 (lys 9,14), α-

pAcH3 (Ser10, Lys14), α-AcH3 (Lys14), pH3 (Ser 10) and α-AcH4 (Lys 5,8,12,16) 

(Millipore, Billerica, MA, USA); α-AcH2A (lys 5) (Cell Signaling Technology, 

Beverly, MA, USA); and α-β-actin (Sigma-Aldrich, Barcelona, Spain). In addition, we 

also raised and used rabbits antisera obtained against acetylated peptides corresponding 

to the N-terminal tail of each one of the four nucleosome histones. The specificity of the 

different polyclonal antisera was compared to that of commercial antibodies and 

evaluated by competition assays in the presence of increasing amounts of acetylated or 

unacetylated peptides (data not shown). 
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Supplementary Figure legends 

Supplementary Figure S1. Striatal histone acetylation by the HDAC inhibitor 

sodium butyrate. Bar graph showing striatal histone acetylation is dose-dependent 

increased 30 min after inhibiting HDAC activity by intraperitoneal injection of NaBt 

(600 mg/kg or 1.2 g/kg). Data (mean±SEM) are expressed relative to saline-treated 

control subjects, after normalization to β-actin (n=3 per group). *=p < 0.05. Panels at 

the right show representative immunoblots demonstrating dose-dependent increase of 

histone acetylation in the striatum by sodium butyrate. 

Supplementary Figure S2. Absence of drug-mediated modifications at bulk histone 

acetylation levels. Coronal sections covering the rostral and medial portion of the 

dorsal striatum, of mice subjected to acute morphine (60 mg/kg), ethanol (6 g/kg), 

cocaine (40 mg/kg) or saline intraperitoneal administration were stained using anti-

Acetyl histone H2A, H2B, H3 and H4. Scale bar: 100 µm 

Supplementary Figure S3. Morphine and cocaine-mediated phosphorylation of 

histone H3. Representative coronal sections showing immunoperoxidase labeling for 

phospho-H3 at dorsal striatum (caudate putamen) (A, C and E) or ventral striatum 

(nucleus accumbens and olfactory tubercle) (B, D and F) of mice subjected to saline (A, 

B), morphine (60 mg/kg) (C, D), or cocaine (40 mg/kg) (E, F). There is a substantial 

labeling in dorsal and ventral striatum in cocaine-treated mice (E, F). The 

immunolabeling is also pronounced, both in dorsal and ventral striatum, upon morphine 

treatment (C, D). Note the labeling of proliferating/mitotic cells in the subventricular 

zone of both saline and drug treated animals (A, C, E). Scale bar: 200 µm 

Supplementary Figure S4. Bulk histone acetylation by drug administration in the 

presence of sodium butyrate. A. Intraperitoneal NaBt (300 mg/kg) was given 15 min 

before an acute administration of morphine (20 mg/kg); cocaine (10 mg/kg); or ethanol 
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(2.5 g/kg). Mice were sacrificed and brain removed for micro-dissection of the striatum 

15 min after drug administration (upper scheme). Left: Quantification of acetylated 

histones levels after sodium butyrate treatment either alone or in combination with the 

different drugs. Data (mean ± SEM) are expressed relative to saline-treated control 

subjects after normalization to β-actin (n=3-4 per group). Right: Representative 

immunoblots of modified histones extracted from striatum of mice subjected to the 

indicated treatment and dose. B. Morphine (20mg/kg) was administered on alternate 

days by intraperitoneal injection and the development of locomotor sensitization was 

monitorized. Mice were sacrificed and the striatum dissected 48 h after the fifth 

injection (upper scheme). Left: Bar graph summarizing data from immunoblots 

analysis. Data (mean ± SEM) are expressed relative to saline-treated control subjects, 

after normalization to β-actin (n = 4 per group). Right: Representative immunoblots 

showing absence of change in striatal histone acetylation levels in mice subjected to 

chronic administration of morphine. 

Supplementary Figure S5. A. Forty-five genes showing the strongest transcriptional 

response to the morphine challenge after chronic morphine administration. The response 

of these genes to morphine challenge in the group of chronic morphine administration in 

presence of sodium butyrate is also shown. B-C. Graphs showing normalized signal 

intensity (log scale) for Trt (B), Kcnj13 (C) and Lbp (D) across the different 

microarrays used in this study (SS, saline-saline; SM, saline-morphine; BM, butyrate-

morphine). E. Pahtway created with the 197 genes significantly altered by treatment 

upon ANOVA analysis using Pathways Studio 5.0 software; only direct interactions 

were considered and unlinked entities were excluded. Note the high degree of causative 

relations and interaction among the differentially expressed genes upon drug treatment 

(51 genes out of 176 entities are directly interconnected).  
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Supplementary Table 1 

 

 Saline Sodium butyrate P value 

Induction phase 200.47 + 3.81 207.59 + 9.12 0.59 

Challenge phase 233.058 + 10.54 243. + 3.54 0.38 

 
The administration of sodium butyrate does not affect blood alcohol levels (mg/ Dl). 
Locomotor sensitization induced by ethanol was evaluated using a protocol divided into 
two phases: Induction and challenge. The induction phase involved six trials on 
alternate days, one trial per day. On each one of these trials mice were pre-treated with 
saline or sodium butyrate (300 mg/kg) and, 20 min later, injected with ethanol and 
immediately placed in an open field for 20 min. The challenge phase consisted of a 
single trial conducted 7 days after the last test of the induction phase. In this case, all 
animals received a single injection of ethanol (2.5 g/kg) and locomotion was assessed as 
in the preceding phase. Blood samples were collected from different groups (n=4-6, per 
group) of lightly anesthetized mice immediately after the end of the 6th trial or 
immediately after the end of the challenge test. Blood alcohol levels (mg/ Dl) were 
evaluated by gas chromatography (see Supplementary Methods for details). Data are 
presented as the mean + SEM and were compared by means of two separate Student’s t 
test for independent samples. 
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Supplementary Table 2 
 

 saline morphine ethanol cocaine 

motor cortex - - - - 

somatosensory cortex - - - - 

insular cortex - - - - 

piriform cortex - - - - 

lateral septum - - - + 

lateral ventricle (SVZ) + + + + 

striatum (caudate putamen) - ++ - +++ 

nucleus acumbens core - + - ++ 

nucleus acumbens shell - ++ - +++ 

olfactory tubercle - + - ++ 

 
 Relative effects of saline, morphine (40 mg/kg), ethanol (4 g/kg) and cocaine (20 
mg/kg) acute administration on H3 phosphorylation levels. Three mice per treatment 
were used in this analysis. 

 

 

 



FC [SM] vs [SS] p-value FC [BM] vs [SS] p-value
[BM] vs [SM] % 

change p-value gene symbol

1.86 0.001 2.41 0.001 29.85 NS Nr4a1
1.69 <0.001 2.17 <0.001 28.47 0.043 Dusp1
1.58 0.001 1.97 <0.001 24.89 0.047 Npas4
1.90 <0.001 2.26 <0.001 18.85 NS Zbtb16
1.49 <0.001 1.75 0.001 18.09 NS Fos
1.32 <0.001 1.51 <0.001 14.12 NS 2010002N04Rik
1.39 <0.001 1.58 <0.001 13.81 0.015 Trp53inp1
1.36 0.004 1.52 <0.001 11.62 NS Arl4d
1.33 0.049 1.47 0.029 10.78 NS ND6
1.40 0.028 1.54 0.004 10.16 NS Cdh19
1.52 0.004 1.66 0.001 9.03 NS Arc
1.62 <0.001 1.76 <0.001 8.81 NS Adipor2
1.34 <0.001 1.45 <0.001 8.52 NS Sult1a1
1.38 <0.001 1.50 <0.001 8.40 NS Slc2a1
1.95 <0.001 2.11 <0.001 7.79 NS Cdkn1a
1.74 <0.001 1.87 <0.001 7.59 NS Pdk4
1.39 <0.001 1.50 <0.001 7.51 NS Tsc22d3
1.30 0.048 1.39 0.002 7.36 NS Fut11
1.32 <0.001 1.41 <0.001 6.98 NS Rhou
1.43 <0.001 1.53 <0.001 6.89 NS Fkbp5
1.56 <0.001 1.67 <0.001 6.82 NS Nfkbia
1.30 0.002 1.39 <0.001 6.29 NS Dclre1b
1.31 <0.001 1.39 <0.001 6.25 NS Fzd4
2.46 <0.001 2.61 <0.001 6.13 NS Polr3e
1.31 0.001 1.39 <0.001 5.91 NS Mfsd2
1.39 <0.001 1.48 <0.001 5.84 NS Errfi1
1.31 <0.001 1.36 <0.001 3.41 NS Snf1lk
1.30 0.005 1.34 0.003 3.31 NS Mertk
1.32 <0.001 1.36 0.001 2.92 NS Sdpr
1.62 <0.001 1.66 <0.001 2.82 NS Tiparp
1.69 0.002 1.73 <0.001 2.75 NS
1.68 0.003 1.70 <0.001 1.08 NS
1.47 <0.001 1.51 <0.001 2.62 NS Cldn1
1.49 <0.001 1.51 <0.001 1.90 NS Zfp189
1.47 <0.001 1.48 0.001 0.86 NS Pkp2
1.31 0.007 1.31 NS 0.25 NS
1.33 0.001 1.31 0.017 -1.48 NS
1.49 0.002 1.48 0.001 -0.46 NS Plekhf1
1.32 <0.001 1.31 <0.001 -0.78 NS Rhpn2
2.09 <0.001 2.07 <0.001 -1.01 NS Sgk1
1.33 0.001 1.31 0.001 -1.28 NS Adamts1
1.43 <0.001 1.41 <0.001 -1.75 NS Klf15
1.30 <0.001 1.28 <0.000 -2.10 NS Wdr52
1.43 <0.001 1.39 <0.001 -2.66 NS Ucp2
1.48 0.001 1.43 0.001 -3.81 NS Txnip
1.45 <0.001 1.40 <0.001 -3.97 NS Cab39l
1.42 0.001 1.36 0.002 -4.45 NS S3-12
1.33 0.001 1.26 <0.001 -5.30 NS Slc4a2
1.31 <0.001 1.24 0.004 -5.32 NS Bbox1
1.78 <0.001 1.68 <0.001 -5.52 NS Clic6
1.50 0.008 1.41 0.009 -5.85 NS Zic2
1.47 <0.001 1.38 0.001 -6.42 NS 2310016C16Rik
1.39 0.001 1.30 0.008 -6.70 NS Ak7
1.33 0.002 1.24 0.006 -6.84 NS Gjb6
1.33 <0.001 1.24 0.002 -7.01 NS AB041803
1.54 <0.001 1.42 <0.001 -7.75 0.024 F5
1.38 <0.001 1.26 <0.001 -8.44 NS Acss3
1.34 <0.001 1.23 0.001 -8.48 NS F3
1.34 0.001 1.21 0.003 -9.41 NS Rnf152

Supplementary Table 3. Genes significantly altered by treatment (One-way ANOVA, FC>1.3, p<0.05)

Hspa8

Ptpn3



1.46 <0.001 1.32 <0.001 -9.42 NS Ddit4
1.34 <0.001 1.21 <0.001 -9.79 0.040 Cldn2
1.34 <0.001 1.21 0.001 -10.03 0.023 Pcolce2
1.44 <0.001 1.29 <0.001 -10.12 NS Spint2
1.37 0.001 1.23 0.018 -10.64 NS Zic5
1.34 <0.001 1.19 0.003 -10.75 NS D19Ertd652e
1.57 <0.001 1.39 <0.001 -11.34 NS C230095G01Rik
1.37 < 0,001 1.21 0.005 -11.73 NS
1.41 0.004 1.32 0.003 -6.31 NS
1.31 < 0,001 1.32 0.001 1.25 NS
1.31 0.006 1.16 0.022 -11.93 NS Tmem22
1.33 0.002 1.16 0.013 -12.30 NS Morn2
1.53 <0.001 1.34 <0.001 -12.38 NS Trpm3
1.40 0.001 1.23 0.014 -12.40 NS Ccdc135
2.20 <0.001 1.92 <0.001 -12.80 NS Kl
1.45 0.002 1.26 0.024 -12.97 0.049 Slc13a4
1.31 <0.001 1.14 NS -13.18 NS Col8a1
1.41 <0.001 1.22 0.005 -13.38 NS Kcne2
1.66 0.003 1.43 0.029 -13.61 NS AI506816
1.40 0.003 1.21 0.029 -13.86 NS Trpc4
1.56 0.033 1.34 NS -13.90 NS Agxt2l1
1.38 <0.001 1.19 0.003 -13.94 NS Slc4a5
1.56 <0.001 1.34 0.003 -14.01 NS Rasd1
1.34 0.017 1.14 NS -14.39 NS Ptgds
1.80 <0.001 1.54 <0.001 -14.58 NS Igf2
1.32 0.013 1.12 0.046 -15.24 NS Hap1
1.39 0.007 1.17 NS -15.29 NS Tbrg3
1.31 0.002 1.09 NS -16.46 NS Nnat
1.72 <0.001 1.44 0.002 -16.71 NS Otx2
1.32 0.013 1.10 NS -16.72 NS Dgkk
1.50 <0.001 1.24 0.003 -17.05 NS Calml4
1.43 0.003 1.18 NS -17.06 NS Ngb
1.61 0.014 1.30 NS -19.35 NS Zic1
1.34 0.035 1.08 NS -19.51 NS Itih3
1.55 <0.001 1.24 0.002 -19.62 NS Igfbp2
2.07 <0.001 1.66 <0.001 -19.85 NS Enpp2
1.37 0.009 1.09 NS -20.15 NS Cbln1
13.41 <0.001 10.68 <0.001 -20.33 NS Ttr
1.51 0.009 1.19 0.026 -21.04 NS 6430550H21Rik
1.83 <0.001 1.44 <0.001 -21.11 0.005 Slc2a12
1.32 0.004 1.04 NS -21.19 NS LOC675636
2.23 <0.001 1.73 <0.001 -22.47 NS Sostdc1
1.36 <0.001 1.06 NS -22.50 0.001 LOC244958
1.41 0.022 1.09 NS -22.82 NS Agt
1.58 0.002 1.20 NS -23.62 NS 1500015O10Rik
2.27 <0.001 1.73 <0.001 -23.79 NS
1.65 <0.001 1.34 <0.001 -18.88 <0.001
1.45 0.039 1.10 0.009 -23.87 NS Nts
1.43 0.038 1.08 NS -24.11 NS 1100001E04Rik
1.50 0.008 1.14 0.034 -24.21 NS Gpr165
1.95 <0.001 1.47 <0.001 -24.31 NS Folr1
1.31 0.021 -1.02 NS -24.81 NS Irs4
1.92 0.003 1.44 0.005 -25.26 NS Calb2
1.52 0.007 1.12 NS -26.12 NS Baiap3
1.75 0.004 1.29 NS -26.54 NS Slc17a6
3.19 0.000 2.33 <0.001 -27.00 0.013 Lbp
1.54 0.005 1.11 NS -28.31 NS AW551984
5.96 <0.001 4.20 <0.001 -29.62 NS Kcnj13
1.46 0.023 -1.11 0.101 -36.31 0.059 Oxt
1.15 0.030 1.65 <0.001 43.68 0.005 Asah3l
1.10 NS 1.57 0.001 42.36 0.018
1.15 0.040 1.58 <0.001 37.50 0.023
1.06 NS 1.41 <0.001 33.08 0.006

Rbm3

A330023F24Rik|C030002C11Rik

Prlr

Mpp7



1.08 NS 1.42 <0.001 31.71 0.032
1.09 NS 1.33 0.001 22.16 0.008
1.01 NS 1.33 0.001 32.00 0.006 Rev-erbα
1.21 NS 1.60 0.026 31.73 0.008
1.15 NS 1.49 0.008 29.96 0.001
1.00 NS 1.31 0.012 31.33 0.049 Btg2
1.12 NS 1.43 0.005 28.32 NS Magoh
1.25 0.004 1.56 <0.001 25.27 0.012 Per1
1.20 NS 1.49 0.008 24.37 NS Ssh2
1.09 0.018 1.33 <0.001 22.60 0.017 Hes1
1.14 0.013 1.39 <0.001 21.93 0.034 Bmp2
1.16 NS 1.41 0.025 21.71 NS LOC280487
1.16 NS 1.41 0.025 21.31 NS
1.16 NS 1.40 0.025 21.26 NS
1.16 NS 1.40 0.026 21.18 NS
1.16 NS 1.40 0.025 21.02 NS
1.16 NS 1.41 0.025 20.98 NS
1.16 NS 1.40 0.025 20.97 NS
1.12 NS 1.36 0.026 21.08 0.049 Tmem16b
1.18 NS 1.43 0.004 21.06 NS Acp1|LOC631286
1.16 NS 1.40 0.025 20.89 NS LOC280487
1.09 NS 1.30 0.005 19.66 NS Hdx
1.17 NS 1.37 0.003 16.97 0.040 Gpr3
1.23 0.009 1.44 <0.001 16.89 NS Kcna5
1.16 NS 1.34 0.003 16.05 NS 5730403M16Rik
1.27 0.001 1.47 0.001 15.45 NS Nr4a3
1.14 0.002 1.31 0.001 15.16 NS Fosb
1.27 0.002 1.45 <0.001 14.58 NS Stard13
1.20 <0.001 1.37 <0.001 13.80 NS Gadd45g
1.15 0.022 1.31 <0.001 13.63 NS Mt2
1.24 0.005 1.41 0.002 13.52 NS Slc25a13
1.28 <0.001 1.45 <0.001 13.12 NS Nt5e
1.15 0.002 1.30 <0.001 13.07 0.011 Snx24
1.25 0.002 1.40 0.001 12.10 NS Ppp1r3g
1.24 0.009 1.38 <0.001 11.48 NS Bcl6
1.22 0.003 1.34 0.001 9.82 NS Phactr4
1.22 0.031 1.34 0.001 9.55 NS Net1
1.26 0.002 1.38 <0.001 9.51 NS Pxdn
1.20 0.002 1.31 0.001 9.25 NS Usp54
1.28 0.003 1.39 0.001 8.41 NS Camk1g
1.22 <0.001 1.32 <0.001 8.25 NS Nostrin
1.23 0.003 1.34 0.001 8.23 NS Sap30
1.24 <0.001 1.32 <0.001 6.11 NS Lifr
1.24 <0.001 1.31 <0.001 6.04 0.005 2310007D09Rik
1.24 0.002 1.30 0.001 4.84 0.006 Dyrk3
1.27 0.001 1.32 0.001 4.12 0.018 2610301F02Rik
-1.48 0.002 -1.67 <0.001 -12.61 NS Cldn5
-1.34 0.013 -1.37 0.007 -1.97 NS EG329126
-1.32 0.030 -1.34 0.030 -1.29 NS 2610044O15Rik
-1.32 <0.001 -1.30 <0.001 1.58 NS Cxcl12
-1.33 0.004 -1.30 <0.001 2.07 NS Cckbr
-1.30 0.001 -1.27 0.001 2.58 NS Rgs20
-1.55 <0.001 -1.51 <0.001 3.05 NS Kdr
-1.35 <0.001 -1.31 <0.001 3.48 NS Gbp4
-1.43 <0.001 -1.36 <0.001 4.95 NS P2ry13
-1.50 <0.001 -1.42 <0.001 5.18 NS Rasgef1b
-1.40 <0.001 -1.32 <0.001 6.28 NS Slc40a1
-1.32 <0.001 -1.23 0.001 6.89 NS Sh3rf2
-1.30 <0.001 -1.21 <0.001 6.89 NS Jag1
-1.36 <0.001 -1.26 0.002 7.39 NS Hmgb1
-1.30 <0.001 -1.18 0.006 9.44 NS 9430020K01Rik
-1.33 0.003 -1.19 0.010 10.76 NS Gbp3
-1.35 0.001 -1.19 0.008 12.11 NS Tgfa

Rbm3

Gm129

LOC100043775|LOC100043821



-1.37 <0.001 -1.20 0.010 12.46 NS Cdc42ep1
-1.35 <0.001 -1.18 0.001 12.82 0.047 Cdh9
-1.38 0.003 -1.20 0.022 13.14 NS Rspo2
-1.36 0.001 -1.17 0.010 13.57 NS Kcnv1
-1.37 <0.001 -1.16 0.006 15.30 0.045 1110032E23Rik
-1.36 <0.001 -1.15 0.024 15.60 NS Myo3b
-1.46 <0.001 -1.18 0.029 19.16 NS Trim59
-1.32 0.001 -1.05 NS 20.66 0.016 Rasl11b
-1.31 0.006 -1.03 NS 21.49 0.045 Cntnap3
-1.31 0.007 -1.03 NS 21.62 NS Ephb6|Mon2
-1.68 0.008 -1.24 NS 26.18 NS
-1.68 0.008 -1.24 NS 26.20 NS
-1.68 0.008 -1.24 NS 26.21 NS
-1.68 0.008 -1.24 NS 26.24 NS
-1.68 0.008 -1.24 NS 26.24 NS
-1.68 0.008 -1.24 NS 26.24 NS
-1.68 0.008 -1.24 NS 26.25 NS
-1.01 NS -1.37 0.003 -35.21 NS LOC676959
-1.10 NS -1.42 <0.001 -29.99 NS Sdf2l1
-1.11 NS -1.32 <0.001 -19.57 NS N6amt2
-1.12 0.015 -1.31 <0.001 -17.10 0.001 Cry1
-1.12 NS -1.30 0.001 -16.23 0.008
-1.15 NS -1.33 <0.001 -15.24 0.023
-1.22 0.005 -1.38 <0.001 -13.48 0.008 Eif2c4
-1.21 0.001 -1.30 <0.001 -7.99 0.041 Cdc42ep2
-1.23 0.037 -1.32 0.001 -7.71 NS B930094E09Rik
-1.23 0.004 -1.32 <0.001 -7.19 NS Magef1
-1.24 NS -1.31 0.036 -5.58 NS LOC632394
1.07 NS 1.10 0.002 3.26 0.025 Klhl1
-1.07 NS 1.09 0.042 13.79 0.019 Slc39a1
-1.14 0.048 1.16 0.037 23.08 0.005 Rem2
-1.15 0.049 1.19 NS 25.37 0.042 Thbs4
1.26 0.022 -1.10 NS -26.47 0.028 Gpr101

Chchd2

Table showing genes significanly affected by morpine challenge after sodium butyrate or saline pretreatment before morphine 
administration during the induction phase (one-way ANOVA, FC>1.3, p<0.05) sorted by percentage of change between BM 
and SM conditions. Selected genes for further validation by quantitative real-time RT-PCR are shown in bold.

BC003993
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