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Abstract. Shape descriptions and the corresponding matching techniques must

be robust to noise and invariant to transformations for their use in recognition

tasks. Most transformations are relatively easy to handle when contours are rep-

resented by strings. However, starting point invariance is difficult to achieve. One

interesting possibility is the use of cyclic strings, which are strings with no start-

ing and final points. Here we present the use of Hidden Markov Models for mod-

elling cyclic strings and their training using Expectation Maximization. Experi-

mental results show that our proposal outperforms other methods in the literature.

Keywords: hidden markov models, cyclic strings, shape recognition.

1 Introduction

In a shape classifier, shapes can be represented by their contours or by their regions.

Contour based descriptors are widely used as they preserve local information, which is

important in the classification of complex shapes.

Dynamic Time Warping (DTW) is being increasingly applied for shape match-

ing [1]. A DTW-based dissimilarity measure is a natural option for optimally aligning

contours, since it is able to align parts as well as points and it is robust to deformations.

Hidden Markov Models (HMMs) [2] are also used for shape modelling and classifica-

tion [3–7]. HMMs have some of the properties of DTW matching and they also provide

a probabilistic framework for training and classification.

Shape descriptors, combined with shape matching techniques, must be invariant to

many distortions, including scale, rotation, noise, etc. Most of these distortions are rel-

atively easy to deal with. However, invariance to the starting point is difficult to achieve

no matter the representation. In the case of HMMs there are several approaches for deal-

ing with this invariance [3, 5–7, 4], but all of them have drawbacks. The best solution to

this problem is to consider every possible starting symbol of the string that represents

the contour, that is, to use cyclic strings. HMMs can only generate ordinary strings

and not cyclic strings. To overcome this problem, in this paper, we present the use of

HMMs for modelling cyclic strings and their training using Expectation Maximization.

Preliminary work on this problem appears in [8].

⋆ Work partially supported by the Spanish Government (TIN2010-18958) and the Generalitat

Valenciana (Prometeo/2010/028).
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Fig. 1. Examples of HMMs. An HMM state can emit any of four symbols according to the prob-

ability distribution represented by a pie chart. Probability distribution for initial states is repre-

sented by dotted arrows. (a) Ergodic topology with four states. (b) Linear left-to-right topology.

(c) Bakis left-to-right topology. (d) Circular topology as proposed in [4]. Contours are segmented

by associating a state to each segment. Ideally, each state is responsible for a single segment.

2 Defining the Problem of Cyclic Strings with HMMs

2.1 Common Approaches

One crucial aspect when applying HMMs is the definition of an adequate topology.

Many works use ergodic topologies [5–7], which have some problems. The main is that

it is possible to visit a state more than once without using self transitions (Fig. 1a).

Ergodic models do not impose restrictions in the order of the strings of observations.

When the string of observations is temporal or an order exists (as in shape contours),

these topologies do not fully exploit the sequential or temporal information of the data

and many states are used to explain multiple observations from different parts along the

contour. This makes training and recognition a complex problem.

From the previous observations, left-to-right topologies seem more suitable. These

topologies do not allow to visit states that are to the left of the current one (Figs. 1b

and 1c). In left-to-right models there is an initial state and a final state. This way, the

sequence of states is forced to begin in the initial state and it never revisits a state

once it lefts it. When a string of symbols is segmented, all the symbols of a segment

are emitted by the same state, and consecutive segments are associated to consecutive

states. Although these topologies usually have more states, their number of transitions

is low, and consequently the overall complexity of the algorithms is reduced.

In [4], a circular topology is proposed to model contours (Fig. 1d), which can be

seen as a modification of the left-to-right topology, where the last emitting state is con-

nected to the first. This topology eliminates the need for a starting point: the contour can

be segmented by associating consecutive states to consecutive segments in the cyclic

strings, but there is no assumption about which is the first or last segment (Fig. 1d);

therefore, there is an analogy with left-to-right topologies. However, there is a problem

that breaks this analogy: like in the case of ergodic models all the states can be reached

from any state and we can finish in any of them. Therefore, the optimal path can con-

tain non-consecutive repeated states and one state can be responsible of the emission

of several non-consecutive segments of the contour. Besides, it is possible to have an

optimal path that does not visit all the states at least once.
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Fig. 2. (a) Original shapes and their canonical versions using Fourier descriptors [9]. The same

shapes compressed in the horizontal axis have different rotation and starting point. (b) Canonical

version of an elephant with its trunk down and with its trunk raised using the method of least

second moment of inertia [3].

Another approach is the election of a reference rotation and from it a starting point [3,

9]. The basic idea is that, after normalization, all shapes have a canonical version with

a “standard” rotation and starting point, and thus, they can be compared as if their

representations were linear. But invariance is only achieved for different rotations and

starting points of the same shape. Different shapes (even similar ones) may differ sub-

stantially in their canonical orientation and starting point. Fig. 2a shows three percep-

tually similar figures whose canonical versions are significantly different in terms of

orientation and starting point. This problem frequently appears in shapes whose basic

ellipse is almost a circle. Besides, shapes of the same class with little differences can

substantially alter the selection of the starting point. Fig. 2b shows two elephants, one

with its trunk down and the other with its trunk raised, this fact and other little differ-

ences modify the canonical rotation of the method of least second moment of inertia,

and with it, the selection of the starting point.

2.2 Cyclic Strings

The most suitable solution for obtaining the invariance to the starting point is to use

every possible starting point of the strings, i.e., using cyclic strings. A cyclic string can

be seen as the set of strings obtained by cyclically shifting a conventional sequence.

Let x = x1 . . . xm be a string from an alphabet Σ. The cyclic shift ρ(x) of a string x

is defined as ρ(x1 . . . xm) = x2 . . . xmx1. Let ρk denote the composition of k cyclic

shifts and let ρ0 denote the identity. Two strings x and x′ are cyclically equivalent if

x = ρk(x′), for some k. The equivalence class of x is [x] = {ρk(x) : 0 ≤ k < m} and

it is called a cyclic string.

To achieve starting point invariance using cyclic strings we model the generation

process as follows. An HMM generated a string that later suffered an unknown cyclic

shift. That is, a model, λ, has generated a string, x = x1x2 . . . xm, that has suffered the

transformation, ρk
′

(x), for an unknown k′. We treat x as a cyclic string, [x], and we

assume that all the cyclic shifts are equiprobable. Thus, the probability of [x] given a

model λ is

P ([x]|λ) =

m−1∑

k=0

P (x|λ, k)P (k|λ) =
1

m

m−1∑

k=0

P (ρk(x)|λ), (1)

that is, we must compute the probability for every possible cyclic shift and add them.



Similarly, finding the best cyclic shift and sequence of states amounts to compute

P̂ ([x]|λ) =
1

m
max

0≤k≤m−1
P̂ (ρk(x)|λ) ∝ max

0≤k≤m−1
P̂ (ρk(x)|λ). (2)

where P̂ is the Viterbi score for a string.

Initially, we adopt P̂ as an estimation of the real probability because it is a very

good approximation1.

3 Cyclic Training

To train HMMs cyclic strings we have to estimate the Markov model parameters that

maximize the probability of the observed cyclic strings. That is, our objective is to

maximize:

P (X |λ) =
L∏

l=1

P ([x](l)|λ) =
L∏

l=1

1

m(l)

m(l)−1∑

k=0

P (ρk(x(l))|λ), (3)

where X is a set of cyclic strings, X = {[x](1), [x](2), . . . , [x](L)}.

We use an iterative procedure. First, we set some initial values for λ. Then, we ob-

tain new values of these parameters in each iteration, using increasing transformations,

applying the Baum-Eagon inequality [10, 11]. It is guaranteed that the new estimated

values increase the value of the objective function and, therefore, its convergence.

Let Σ = {v1, v2, . . . , vw}, be an alphabet (the set of observable events is discrete

and finite). Let A = {aij} be the matrix of transition probabilities between states (1 ≤
i, j ≤ n, where n is the number of states) and let B = {bij} be the matrix of observation

probabilities (1 ≤ i ≤ n and 1 ≤ j ≤ w) [2]. As we know that
∑n

j=0 aij = 1 for

0 ≤ i ≤ n and that (3) is a polynomial with respect to A, the new estimation, āij , can

be obtained with the Baum-Eagon inequality [10, 11]. Applying logarithms and [10]

to (3), we conclude that:

āij =

∑L

l=1

∑m(l)−1
k=0

1
∑m(l)

−1
k=0 P (ρk(x(l))|λ)

∑m(l)−1
t=0 αlk

t (i)aijbj(ρ
k(x

(l)
t+1))β

lk
t+1(j)

∑L

l=1

∑m(l)−1
k=0

1
∑m(l)

−1
k=0 P (ρk(x(l))|λ)

∑m(l)−1
t=0 αlk

t (i)βlk
t+1(j)

,

(4)

where αlk
t (i) and βlk

t (j) are the forward and backward probabilities for the shifted

string, ρk(x(l)), and are defined similarly to those in [2].

Analogously, with bi(vj) (the probability of observing the symbol vj being in state

i) and knowing that
∑w

j=0 bi(vj) = 1 for 1 ≤ i ≤ n and that (3) is a polynomial with

respect to B (the matrix of observation probabilities [2]), we arrive at

b̄i(vj) =

∑L

l=1

∑m(l)−1
k=0

1
∑m(l)

−1
k=0 P (ρk(x(l))|λ)

∑m(l)−1
t=1
∀ρk(x

(l)
t )=vj

αlk
t (i)βlk

t (i)

∑L

l=1

∑m(l)−1
k=0

1
∑m(l)

−1
k=0 P (ρk(x(l))|λ)

∑m(l)−1
t=1 αlk

t (i)βlk
t (i)

. (5)

1 And it offers certain implementation advantages and reduction of computational time.



A similar reasoning can be used for continuous models.

This cyclic Baum-Welch (CBW) algorithm is an application of Expectation Maxi-

mization, and then, it needs a good initialization for λ. In the next section we propose a

heuristic to solve this.

4 A Heuristic for Selecting the Starting Point

We will see in the experiments that the labelling of the training samples gives us an

heuristic for obtaining a starting point that improves those in the literature (Section 2).

We need to perform a preprocessing. For it we use cyclic DTW (CDTW) [1] that,

apart from returning the cost (distance) of the cyclic alignment, can also return the

corresponding cyclic shift of one of the strings for the alignment with the other string.

Starting from a set of training samples, our aim is to choose an appropriate starting

point for them. We select a representative (the centroid of the class using CDTW) and

an arbitrary starting point for it. With the representative of each class and its starting

point, we compute the CDTW for each one of the other members of the class and the

representative, obtaining the cyclic shift of the alignment that defines a good starting

point for each of them. Once we have an appropriate starting point for the training

samples, we can train the model of each class as if the cyclic strings were ordinary

strings.

In a similar way, to classify a new sample, we begin by finding adequate starting

points for it (one for each class). These starting points are computed by CDTW with

the representative of each class. Thus, with this starting point for each class we can

compute probabilities (or Viterbi scores) in a conventional way.

Although, as we will see in the next section, this solution has worse results than the

CBW algorithm, both training and recognition are much faster. Moreover this training

can be used as a good initialization for the CBW algorithm.

5 Experiments

In order to assess the behaviour of the presented methods, we performed comparative

experiments on a shape recognition task on publicly available databases: MPEG7 CE-

Shape-1 corpus part B (MPEG7B) (1440 samples in 70 classes) [12], Silhouette corpus

(1070 samples in 41 classes) [13], He-Kundu corpus (8 samples) [3] and Subset 1 cor-

pus (7 classes of the MPEG7B corpus, 20 samples per class) [7].

The outer contours of the images were extracted as sequences of points. A random

starting point in each sequence was also selected and 128 landmark points were sam-

pled uniformly. As it is customary in the literature of HMMs and shape recognition we

used the curvature shape descriptor. The evaluation was done with classification rates

for different number of states (we train an HMM for each class): 10 to 120 in steps

of 10. We only use a gaussian per state. The experiments of Section 5.1 were performed

using cross validation. The ones of Section 5.2 were performed with a leaving-one-

out approach for comparing with other results in the bibliography. In all of them, for

classification, we use the Viterbi scores.



5.1 Invariance to the Starting Point, Left-to-right Topologies and Cyclic

Approach

In Section 2 several solutions to the starting point invariance problem are commented.

We compare our heuristic (Section 4) with the circular topology [4], the election of the

starting point using Fourier descriptors [3], and the ergodic topology [5–7]. In Fig. 3a

the results of the comparison are shown, for MPEG7B and Silhouette corpora. The

election of the starting point and the circular topology (especially the latter) happen to

be the most competitive with respect to our heuristic while the ergodic topology obtains

the worst results2.

In Section 2 we mentioned that left-to-right topologies are the most suitable for

modelling strings. However, within these topologies, the linear topology seems to be

the best for this purpose, because having more transitions increases the complexity of

the model. Here we empirically prove this affirmation with a comparison between three

left-to-right topologies: linear, Bakis and the one with four transitions per state. The

last one is similar to Bakis but with another transition to the state three places from the

current. The method used for training and classifying is our heuristic. The results are

shown in Fig. 3b. As we can see the linear topology outperforms the others.

We compare our cyclic approach, the CBW algorithm (Section 3) with our heuristic

and the circular topology [4]. Cyclic training is initialized using the heuristic in a linear

left-to-right topology. Comparative results are in Fig. 3c. We can observe that cases

where CBW algorithm wins predominate. The best results that we obtain using CBW

are 93.93% and 93.84% for the MPEG7B and Silhouette corpora.

5.2 More about the Ergodic Topology

In Section 5.1 we experimentally saw that the ergodic topology does not offer good

results. However, in the literature there are works [3, 5–7] where this topology is used.

More specifically, in [5] experiments are performed with this topology. For training,

the authors choose a number of states with BIC (Bayesian Inference Criterion) over a

clustering of curvatures. The obtained results are good enough but their corpora have

few samples and classes. They use a subset of the MPEG7B corpus of 6 classes with 10

samples per class (a subset of subset 1). They also use He-Kundu corpus for performing

an experiment of invariance to the starting point achieving a classification rate of 100%.

This way, they conclude that HMMs with an ergodic topology are enough for obtaining

this invariance. In our opinion, this experiment is not enough for claiming that affirma-

tion. For this corpus we also achieve a 100% with the CBW algorithm. In [6], a work

of the same authors, another subset of MPEG7B is used (a subset of subset 1, with 12

samples per class). We call this corpus subset 2, as it is done in [7]. In this case, they

use a canonical method for the election of the starting point. Instead of using BIC for

obtaining the number of states, they use a fixed number of states. In [7], the authors,

parting from the work of [5, 6], try to improve their results with a training based on GPD

(Generalized probabilistic descent method). They also use the subset 2 and create a new

one, subset 1. With subset 2 they obtain a classification rate of 97.63% ([6] obtains a

2 We will talk more about this topology in Section 5.2.
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Fig. 3. Classification rates (with corpora MPEG7B (left) and Silhouette (right)) for the compar-

ison between: (a) The circular topology (Arica), the election of the starting point with Fourier

descriptors (FDs), the ergodic topology (Ergodic) and our heuristic (Heuristic); (b) Different

left-to-right topologies. Linear topology, Bakis topology and topology of four transitions. Our

heuristic is used for training and classifying; and (c) cyclic Baum-Welch (CBW), our heuristic

(Heuristic) and circular topology (Arica).



98.8%). With subset 1 they obtain a 96.43%. With subset 1 and the CBW algorithm,

we achieve a 99.28%, that even outperforms the classification rate of [6] with subset 2.

None of the previous works show results with the entire MPEG7B corpus.

6 Discussion

In this work, we have argued and empirically proved that other proposals in the literature

for obtaining the invariance to the starting point do not offer a suitable solution. We have

formalized training and recognition for cyclic strings with Hidden Markov Models,

formulating the corresponding Baum-Welch or Expectation Maximization algorithm.

We have shown that this cyclic treatment is the current best solution for obtaining the

starting point invariance.
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