<table>
<thead>
<tr>
<th>Título artículo / Títol article:</th>
<th>The dual space of precompact groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autores / Autors</td>
<td>Ferrer González, María Vicenta; Hernández Muñoz, Salvador; Uspenskij, Vladimir</td>
</tr>
<tr>
<td>Versión / Versió:</td>
<td>Preprint del autor</td>
</tr>
<tr>
<td>url Repositori UJI:</td>
<td>http://hdl.handle.net/10234/88449</td>
</tr>
</tbody>
</table>
THE DUAL SPACE OF PRECOMPACT GROUPS

M. FERRER, S. HERNÁNDEZ, AND V. USPENSKIJ

Abstract. For any topological group G the dual object \hat{G} is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. If G is compact, \hat{G} is discrete. In an earlier paper we proved that \hat{G} is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when G is an almost metrizable precompact group.

1. Introduction

For a topological group G let \hat{G} be the set of equivalence classes of irreducible unitary representations of G. The set \hat{G} can be equipped with a natural topology, the so-called Fell topology (see Section 2 for a definition).

A topological group G is precompact if it is isomorphic (as a topological group) to a subgroup of a compact group H (we may assume that G is dense in H). If H is compact, then \hat{H} is discrete. If G is a dense subgroup of H, the natural mapping $\hat{H} \to \hat{G}$ is a bijection but in general need not be a homeomorphism. Moreover, for every countable non-metrizable precompact group G the space \hat{G} is not discrete [12, Theorem 5.1], and every non-metrizable compact group H has a dense subgroup G such that \hat{G} is not discrete [12, Theorem 5.2]. (The Abelian case was considered in
[5, 6, 14]). On the other hand, if G is a precompact metrizable group, then \hat{G} is discrete [12, Theorem 4.1]. (The Abelian case was considered in [2, 4]). The aim of the present paper is to generalize this result to the almost metrizable case: \hat{G} is discrete for every almost metrizable precompact topological group G. A topological group G is almost metrizable if it has a compact subgroup K such that the quotient space G/K is metrizable. According to Pasynkov’s theorem [1, 4.3.20], a topological group is almost metrizable if and only if it is feathered in the sense of Arhangel’skii.

We reduce the almost metrizable case to the metrizable case considered in [12, Theorem 4.1].

2. Preliminaries: Fell topologies

All topological spaces and groups that we consider are assumed to be Hausdorff. For a (complex) Hilbert space \mathcal{H} the unitary group $U(\mathcal{H})$ of all linear isometries of \mathcal{H} is equipped with the strong operator topology (this is the topology of pointwise convergence). With this topology, $U(\mathcal{H})$ is a topological group.

A unitary representation ρ of the topological group G is a continuous homomorphism $G \to U(\mathcal{H})$, where \mathcal{H} is a complex Hilbert space. A closed linear subspace $E \subseteq \mathcal{H}$ is an invariant subspace for $S \subseteq U(\mathcal{H})$ if $ME \subseteq E$ for all $M \in S$. If there is a closed subspace E with $\{0\} \subsetneq E \subseteq \mathcal{H}$ which is invariant for S, then S is called reducible; otherwise S is irreducible. An irreducible representation of G is a unitary representation ρ such that $\rho(G)$ is irreducible.

If $\mathcal{H} = \mathbb{C}^n$, we identify $U(\mathcal{H})$ with the unitary group of order n, that is, the compact Lie group of all complex $n \times n$ matrices M for which $M^{-1} = M^*$. We denote this group by $\mathbb{U}(n)$.
Two unitary representations \(\rho : G \to U(\mathcal{H}_1) \) and \(\psi : G \to U(\mathcal{H}_2) \) are equivalent if there exists a Hilbert space isomorphism \(M : \mathcal{H}_1 \to \mathcal{H}_2 \) such that \(\rho(x) = M^{-1}\psi(x)M \) for all \(x \in G \). The dual object of a topological group \(G \) is the set \(\hat{G} \) of equivalence classes of irreducible unitary representations of \(G \).

If \(G \) is a precompact group, the Peter-Weyl Theorem (see [15]) implies that all irreducible unitary representation of \(G \) are finite-dimensional and determine an embedding of \(G \) into the product of unitary groups \(U(n) \).

If \(\rho : G \to U(\mathcal{H}) \) is a unitary representation, a complex-valued function \(f \) on \(G \) is called a function of positive type (or positive-definite function) associated with \(\rho \) if there exists a vector \(v \in \mathcal{H} \) such that \(f(g) = (\rho(g)v, v) \) (here \((\cdot, \cdot)\) denotes the inner product in \(\mathcal{H} \)). We denote by \(P'_{\rho} \) the set of all functions of positive type associated with \(\rho \). Let \(P_{\rho} \) be the convex cone generated by \(P'_{\rho} \), that is, the set of sums of elements of \(P'_{\rho} \).

Let \(G \) be a topological group, \(\mathcal{R} \) a set of equivalence classes of unitary representations of \(G \). The Fell topology on \(\mathcal{R} \) is defined as follows: a typical neighborhood of \([\rho] \in \mathcal{R}\) has the form

\[
W(f_1, \cdots, f_n, C, \epsilon) = \{ [\sigma] \in \mathcal{R} : \exists g_1, \cdots, g_n \in P_{\sigma} \forall x \in C \ |f_i(x) - g_i(x)| < \epsilon\},
\]

where \(f_1, \cdots, f_n \in P_{\rho} \) (or \(\in P'_{\rho} \)), \(C \) is a compact subspace of \(G \), and \(\epsilon > 0 \). In particular, the Fell topology is defined on the dual object \(\hat{G} \). If \(G \) is locally compact, the Fell topology on \(\hat{G} \) can be derived from the Jacobson topology on the primitive ideal space of \(C^*(G) \), the \(C^* \)-algebra of \(G \) [7, section 18], [3, Remark F.4.5].

Every onto homomorphism \(f : G \to H \) of topological groups gives rise to a continuous injective dual map \(\hat{f} : \hat{H} \to \hat{G} \). A mapping \(h : X \to Y \) between topological
spaces is \textit{compact-covering} if for every compact set \(L \subset Y \) there exists a compact set \(K \subset X \) such that \(h(K) = L \).

Lemma 2.1. If \(f : G \to H \) is a compact-covering onto homomorphism of topological groups, the dual map \(\hat{f} : \widehat{H} \to \widehat{G} \) is a homeomorphic embedding.

Proof. This easily follows from the definition of Fell topology. \(\square \)

Let \(\pi \) be a unitary representation of a topological group \(G \) on a Hilbert space \(\mathcal{H} \). Let \(F \subseteq G \) and \(\epsilon > 0 \). A unit vector \(v \in \mathcal{H} \) is called \((F, \epsilon)\)-invariant if \(\| \pi(g)v - v \| < \epsilon \) for every \(g \in F \).

A topological group \(G \) has property \((T)\) if and only if there exists a pair \((Q, \epsilon)\) (called a \textit{Kazhdan pair}), where \(Q \) is a compact subset of \(G \) and \(\epsilon > 0 \), such that for every unitary representation \(\rho \) having a unit \((Q, \epsilon)\)-invariant vector there exists a non-zero invariant vector. Equivalently, \(G \) has property \((T)\) if and only if the trivial representation \(1_G \) is isolated in \(\mathcal{R} \cup \{1_G\} \) for every set \(\mathcal{R} \) of equivalence classes of unitary representations of \(G \) without non-zero invariant vectors \[3, Proposition 1.2.3\].

Compact groups have property \((T)\) \[3, Proposition 1.1.5\], but countable Abelian precompact groups do not have property \((T)\) \[12, Theorem 6.1\].

We refer to Fell’s papers \[9, 10\], the classical text by Dixmier \[7\] and the recent monographs by de la Harpe and Valette \[13\], and Bekka, de la Harpe and Valette \[3\] for basic definitions and results concerning Fell topologies and property \((T)\).

3. \textbf{Almost metrizable groups}

If \(A \) is a subset of a topological space \(X \), the \textit{character} \(\chi(A, X) \) of \(A \) in \(X \) is the least cardinality of a base of neighborhoods of \(A \) in \(X \). (If this definition leads to a finite value of \(\chi(A, X) \), we replace it by \(\omega \), the first infinite cardinal, and similarly for
other cardinal invariants.) If A is a closed subset of a compact space X, the character $\chi(A, X)$ equals the pseudocharacter $\psi(A, X)$ – the least cardinality of a family γ of open subsets of X such that $\cap \gamma = A$. In particular, if A is a closed G_δ-subset of a compact space X, then $\chi(A, X) = \omega$.

If K is a compact subgroup of a topological group, then G/K is metrizable if and only if $\chi(K, G) = \omega$ [1, Lemma 4.3.19]. Let G be an almost metrizable topological group, \mathcal{K} the collection of all compact subgroups $K \subset G$ such that $\chi(K, G) = \omega$. Then for every neighborhood O of the neutral element there is $K \in \mathcal{K}$ such that $K \subset O$ [1, Proposition 4.3.11]. We now show that if G is additionally ω-narrow, then K can be chosen normal (in the algebraic sense). Recall that a topological group G is ω-narrow [1] if for every neighborhood U of the neutral element there exists a countable set $A \subset G$ such that $AU = G$.

Lemma 3.1. Let G be an ω-narrow almost metrizable group, \mathcal{N} the collection of all normal (= invariant under inner automorphisms) compact subgroups K of G such that the quotient group G/K is metrizable (equivalently, $\chi(K, G) = \omega$). Then for every neighborhood O of the neutral element there exists $K \in \mathcal{N}$ such that $K \subset O$.

Proof. Let $L \subset O$ be a compact subgroup of G such that the quotient space $G/L = \{xL : x \in G\}$ is metrizable. It suffices to prove that $K = \cap \{gLg^{-1} : g \in G\}$, the largest normal subgroup of G contained in L, belongs to \mathcal{N}.

There exists a compatible metric on G/L which is invariant under the action of G by left translations. To construct such a metric, consider a countable base U_1, U_2, \ldots of neighborhoods of L in G. We may assume that for each n we have $U_n = U_n^{-1} = U_n L$ and $U_{n+1}^2 \subset U_n$. Let $\gamma_n = \{gU_n : g \in G\}$. The open cover γ_n of G is invariant under left G-translations and under right L-translations, and γ_{n+1} is a barycentric refinement
of γ_n. The pseudometric on G that can be constructed in a canonical way from the sequence (γ_n) of open covers (see [8, Theorem 8.1.10]) gives rise to a compatible G-invariant metric on G/L. A similar construction was used in [1, Lemma 4.3.19].

If an ω-narrow group transitively acts on a metric space X by isometries, then X is separable [1, 10.3.2]. Thus $X = G/L$ is separable. Let Y be a dense countable subset of X. Then $K = \{g \in G : gx = x \text{ for every } x \in X\} = \{g \in G : gx = x \text{ for every } x \in Y\}$ is a G_δ-subset of L, hence $\chi(K, L) = \omega$. It follows that $\chi(K, G) \leq \chi(K, L)\chi(L, G) = \omega$ ([8, Exercise 3.1.E]).

□

4. MAIN THEOREM

Theorem 4.1. If G is a precompact almost metrizable group, then \hat{G} is discrete.

Proof. Let ρ be an irreducible unitary representation of G. We must prove that $[\rho]$ is isolated in \hat{G}. It suffices to find a discrete open subset $D \subset \hat{G}$ such that $[\rho] \in D$.

Precompact groups are ω-narrow, so Proposition 3.1 applies to G. Let \mathcal{N}, as above, be the collection of all normal compact subgroups $K \subset G$ such that $\chi(K, G) = \omega$. Then \mathcal{N} is closed under countable intersections, and it follows from Proposition 3.1 that for every G_δ-subset A of G containing the neutral element there exists $K \in \mathcal{N}$ such that $K \subset A$. In particular, there exists $K \in \mathcal{N}$ such that K lies in the kernel of ρ. Let $D \subset \hat{G}$ be the set of all classes $[\sigma] \in \hat{G}$ such that K is contained in the kernel of σ. Then $[\rho] \in D$. It suffices to verify that D is open and discrete.

Step 1. We verify that D is open. Let \mathcal{R} be the set of equivalence classes of all finite-dimensional unitary representations (which may be reducible) of K without non-zero invariant vectors. Let τ_n be the trivial n-dimensional representation $1_K \oplus \cdots \oplus 1_K$ (n summands) of K, $n = 1, 2, \ldots$. In the notation of section 2, P_{τ_n} does not depend
on n and is the set of non-negative constant functions on K. It follows that in the space $S = \mathcal{R} \cup \{[\tau_n] : n = 1, 2, \ldots \}$, equipped with the Fell topology, the points $[\tau_n]$ are indistinguishable: any open set containing one of these points contains all the others. Since K has property (T), $[\tau_1] = [1_K]$ is not in the closure of \mathcal{R}. Therefore \mathcal{R} is closed in S and $S \setminus \mathcal{R}$ is open in S.

We claim that for every irreducible unitary representation σ of G the class of the restriction $\sigma|_K$ belongs to S. In other words, the claim is that $\sigma|_K$ is trivial if it admits a non-zero invariant vector. Let V be the (finite-dimensional) space of the representation σ. For $g \in G$ and $x \in V$ we write gx instead of $\sigma(g)x$. The space $V' = \{x \in V : gx = x$ for all $g \in K\}$ of all K-invariant vectors is G-invariant. Indeed, if $x \in V'$, $g \in G$ and $h \in K$, then $g^{-1}hx = x$ because $g^{-1}hg \in K$ and x is K-invariant. It follows that $hx = gx$ which proves that $gx \in V'$. Since σ is irreducible, either $V' = \{0\}$ or $V' = V$. Accordingly, either $\sigma|_K$ admits no non-zero invariant vectors or else is trivial.

We have just proved that the restriction map $r : \hat{G} \to S$ is well-defined. Clearly r is continuous, and therefore $D = r^{-1}(S \setminus \mathcal{R})$ is open in \hat{G}.

Step 2. We verify that D is discrete. Let $p : G \to G/K$ be the quotient map. Then D is the image of the dual map $\hat{p} : \hat{G/K} \to \hat{G}$. According to [12, Theorem 4.1], the dual space of a metrizable precompact group is discrete. Thus $\hat{G/K}$ is discrete. Since p is a perfect map, it is compact-covering, and Lemma 2.1 implies that $\hat{p} : \hat{G/K} \to \hat{G}$ is a homeomorphic embedding. Therefore, $D = \hat{p}(G/K)$ is discrete. □

References

Universitat Jaume I, Instituto de Matemáticas de Castellón, Campus de Riu Sec, 12071 Castellón, Spain.

E-mail address: mferrer@mat.uji.es

Universitat Jaume I, INIT and Departamento de Matemáticas, Campus de Riu Sec, 12071 Castellón, Spain.

E-mail address: hernande@mat.uji.es

Department of mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701, USA

E-mail address: uspenski@ohio.edu