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Abstract: We present an analysis of the recognition performance of 3-D objects recon-
structed from digital holograms recorded under photon counting conditions. The digital
holograms are computed by applying four-step phase-shifting techniques to interferograms
recorded with weak coherent light. Recognition capability is analyzed as a function of the
total number of photons by using a maximume-likelihood approach adapted to one-class
classification problems. The likelihood is modeled assuming a Gaussian distribution, whose
centroid corresponds to the highest value in a mixture of two Gaussian values. The recog-
nition capability is studied both in terms of the axial distance and the lateral position of the
reconstructed 3-D object.

Index Terms: Digital holography, pattern recognition, photon counting imaging, three-
dimensional image processing.

1. Introduction

Digital holography can be used to record both the phase and amplitude distribution associated to
the light diffracted by a 3-D object with conventional image sensors [1]. Different interferometric
techniques such as off-axis interferometry, phase shifting interferometry, or even Gabor holography
have allowed extending holographic methods to the digital domain when combined with CCD or
CMOS cameras [2]-[6]. An advantage of digital recording is that it permits the application of digital
processing techniques and this is of great importance in 3-D imaging and 3-D image processing
[71-[9]. In particular, digital holography has been applied very efficiently for 3-D object recognition
techniques [10]. In a different context, photon counting techniques have been widely used for
imaging applications under photon starved conditions. Research fields such as night vision, infor-
mation security, radiology, and stellar imaging, just to cite a few, have benefited from photon
counting [11]-[13]. These imaging approaches have been possible thanks to new sensitive
receivers that can detect single photons by high gain techniques. Images are therefore recorded on
a photo-count at a time basis. Some of these methods have been extended to 3-D imaging and 3-D
object recognition, mainly by applying photon counting to integral imaging [14]-{18]. Recently some
digital holographic techniques have been developed in the photon counting regime with remarkable
results but only for reconstruction purposes of 2D images [19], [20]. In [19] phase-shifting digital
holograms of low-resolution 2D images are recorded with ultraweak illumination and successfully
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Fig. 1. (a) Phase shifting interferometer used to record the holograms. (b) Reconstructed scene at a
distance z = —345 mm from the camera. See Section V for details.

reconstructed. In the case of [20], holograms are captured with parallel phase shifting techniques
and the technique is tested thoroughly on simulated holograms of 2D images. In this paper, we
present results of the performance analysis of a technique for 3-D object recognition using digital
holography in the photon counting domain. The digital holograms are calculated by applying phase-
shifting techniques to a set of interferograms. These interferograms are obtained experimentally
and photon counting conditions are simulated. The 3-D recognition ability of our system is analyzed
as a function of the total number of photons by using a maximum-likelihood (ML) approach adapted
to one-class classification problems. The likelihood is modeled assuming a Gaussian distribution of
the data to the class to be recognized, and the centroid of this Gaussian is considered as the one
with the highest value in a mixture of two Gaussians. The behavior of the system is studied in terms
of the 3-D position of the reference 3-D object. Section 2 describes the technique used to obtain the
holograms and briefly comments on the propagation in the Fresnel approximation. Section 3 de-
scribes the generation of the photon counting images, and Section 4 the classification strategy
using an ML approach and the one class classification characteristics of the problem. Section 5
presents and discusses the recognition results under photon counting conditions. Conclusions are
presented in Section 6.

2. Phase-Shifting Interferometer for Digital Holography

A phase-shifting interferometer is used to record the Fresnel digital hologram of a 3-D scene
containing one or several objects. The interferometer is based on a Mach—Zehnder architecture
[see Fig. 1(a)]. The object beam illuminates the 3-D input object, and the reference beam forms an
on-axis interference pattern with the light diffracted by the object onto the CCD camera. A set of four
interferograms I,(r), with p = 1,2, 3,4, is recorded, each adding a different constant phase delay
between the signal and the reference beam, where r is the vector denoting the transversal coor-
dinates. To this end, the reference beam travels through a phase shifter, constituted by two rotating
retarder plates, which modulates the phase of the reference beam with phase shifts: Apq =0,
Apr = —71/2, Apg = —m, Aps = —(37/2). If we denote by G(r) the complex amplitude distribution
of the light field diffracted by the object at the output plane, i.e., our digital hologram, then the
measurements made by the CCD camera can be written as

(1)

where we have assumed a constant reference amplitude R and phase ¢,. From this equation, it can
be shown that the hologram G(r) can be evaluated by the following mathematical operation:

Ip(r) = |G(|’) +R- ei(ipoJrAa,ap) 2

an=}{mn—mn+wmm—umn @)
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The resulting complex hologram, G(r) allows to numerically reconstruct the complex amplitude
distribution, O(r, z), generated by the 3-D object at planes located at a distance z from the sensor.
The reconstruction can be obtained by computing a discrete Fresnel integral or by using the
propagation transfer function method, i.e.

/) ®

where F denotes the fast Fourier transform, (u,v) are discrete spatial frequency variables, r;
denotes the discrete transversal spatial position in both the CCD plane and the output plane, Ny
and N, are the number of samples in the x and y directions, and X is the wavelength of the light
source. Note that negative values of z are to be considered to simulate backward propagation. In
this approach, the resolution at the output plane is the same for any propagation distance z, and is
given by the resolution at the input plane, i.e., the size of the pixel (Ax, Ay) in the CCD sensor.
Fig. 1(b) shows a grey scale visualization of the Fresnel reconstructed scene of the die (in parti-
cular, of |O(r;, z)[?) for a distance of z = —345 mm from the object to the camera (see Section 5 for
further details).

2 V2

(AXNE | (AyN, )2

o(rj,z) = F1 (F[G(r,-)] -exp{—im\z

3. Photon Counting Digital Holography

The statistical model for a photon counting detector is assumed to be a Poisson distribution be-
cause the average number of photons per pixel is low. The probability of counting k photons in a
time interval 7 can be shown to be Poisson distributed [21]. In particular, the probability distribution
follows the equation:

alr)ri*e 2
k! ’

where k is the number of photons produced by a detector centered on a position vector r during a
time interval 7, and a(r) is the rate parameter. The mean of photon counts is given by:

np(r) = a(r)r. )

Photon-counting images can be simulated from irradiance images because the recorded irradiance
on a pixel is related to the mean number of photons that arrive at that pixel. In our experiments, a
CCD camera records the irradiance distribution of phase-shifted interferograms as is shown in
Fig. 1(a). The mean number of photons at a pixel at position r; will be given by [21]:

np(ry) = —elelfD)_ )

Zj:T1 lp(rj)

In the previous equation, /I, is the irradiance, Nr is the total number of pixels, and N, is the expected
number of photons in the image, which will be changed in our experiments in order to generate
reconstructed images at different photon counting levels. Therefore, by following Eq. (6), a photon
counting version of each interferogram recorded with the optical system in Fig. 1(a) can be
simulated by normalizing each one of the interferograms with the whole irradiance, multiplying the
normalized image by N, and applying Eq. (4) to generate a Poisson distribution. From these four
photon counting interferograms, a photon counting hologram can be generated using Eq. (2). As in
conventional holographic techniques, this photon counting hologram can be used to reconstruct the
object at planes orthogonal to the output plane by using Eq. (3). This will allow us to apply statistical
pattern recognition techniques, as is described in Section 4.

Py(k;r,7) = k=0,1,2,... @)

4. 3-D Object Recognition in the Photon Counting Domain

The approach we will use to perform object recognition in the photon counting domain is similar to
that applied in [16] and [22]. In [16], authors use an ML approach and consider a series of
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hypothesis, where each hypothesis corresponds to a different object class in a scene. However,
there are two important differences between the approach in [16] and the approach we follow here:

¢ In our case, we will consider that there is only one class in the scene and therefore it will make
the process different to the case of two or more classes. In fact, the problem we are facing may
be characterized as the so-called one-class classification problem in the field of pattern
recognition [23]. In a multi-class classification scenario, we may design a classification strategy
able to adapt to a series of pre-established classes (types of objects). However, in a one-class
classification scenario there is reliable information only about the farget class.

e In[16], it is assumed that the conditional density of the number of counts for the ith pixel in the
image follows a Poisson distribution. In our case, instead of modeling the distribution of photon
counts we will model the values of the set of pixels that belong to the target class object
assuming that they follow a Gaussian distribution. In fact, these pixel values can be statistically
modeled as a mixture of Gaussians taking into account that Gaussian mixtures are used as
generic probability density estimators.

Therefore, let us consider the following tfarget class likelihood equation:
0;—p\2
PmoAH)A,<;)-eﬂff) (7)

where o; = |O(r;, z = constant)|®. C is the Gaussian normalization constant, i.e., C = /270, and 1
is the center of the 1D Gaussian distribution corresponding to the histogram of the target object
class. H represents the hypothesis that the farget class is present in the scene. We will not make
any assumption about noise distribution, apart from the fact that the pixel values will be Gaussian
distributed and their likelihood may be modeled following a Gaussian distribution as well. The
likelihood function of the reconstructed scene under hypothesis H will be given by

M
L(RIH) =[] Pr(oilH) 8)
i=1

where in our case the product over i considers the pixels inside the window of the size of a mask
representing a model of the object in the image, and M is the number of pixels in the mask. In an
object and background disjoint model we will consider the approach that Pr(o;|H) can be written
as [16]

Pr(°i|H) = Pr(0j|H)Wi . Pr(°i|H)1—Wi (9)

where w; is the window corresponding to the object of the farget class, i. e., it is 1 inside the
target object class support and zero elsewhere. Under the assumption that the second product is
irrelevant to the recognition problem (when the noise on the farget is small, see [16], [22]), we
finally have Pr(o;|H) oc Pr(o;|H)". Thus, the log-likelihood for Eq. (8) taking into account the
previous equation, becomes: log[L(R|H)] = 2,411 w; - log[Pr(o;|H)]. Doing some operations, we
finally arrive at

oglLRIH) = S w;-log tge=mA)]° 10
oglL(R >J;[w,-og(c>] Z[w(z{ =3k (10)
The maximization of Eq. (10) at a given mask location in the image will establish where the target
class object is likely to be located. In order to finally decide if the maximum of the log[£(R|H)] found
in an image belongs to a target location, a one-class classification approach is used [24], where we
consider the target class hypothesis H and the complementary class of any other possible object H
in the image. Therefore, in order to decide if a certain location corresponds to a target object class
hypothesis, by the Bayes rule, it should satisfy the maximum a posteriori (MAP) criterion, that is:
L(R|H) - L(H) > L(R|H) - L(H). Since we usually do have little or no knowledge about the com-
plementary class of objects hypothesis, which could be considered anything that may appear in the

Vol. 5, No. 6, December 2013 6900309



IEEE Photonics Journal Photon Counting 3-D Object Recognition

1 e
6000 I Histogram distribution

e First gaussian

----- Second gaussian

. Resulting mixture of the first
and second gaussian

14000
12000

10000

80001 1,=362.3

Number of pixels

6000

4000

2000

400 600 800 1000 1200
Pixel value

(a) (b)

Fig. 2. Reconstructed scene visualization corresponding to N, = 3981072 photons (0.95 photons per
pixel at interferogram level). The use of such a high level of photons has been made just for this figure to
help visualize the object under photon counting conditions. (b) Histogram for a window of size 653 x
857 centered in the die. A mixture of two Gaussians is fitted to it and the mean (centroid) and standard
deviation values (u, o) of the Gaussian with highest mean value of the mixture is indicated as well. The
centroid of this second Gaussian is used in Eq. (10).

image background, we could assume that the density £(R|H) should be smaller in regions where
L(R|H) is large. Thus, we could write £(R|H) o F(L(R|H)), where F is considered a monotonically
descreasing function [24], and thus: £(R|H) > P~'{L(R|H)/L(R|H)}, where P(¢) = F(&)/¢. There-
fore, a constant threshold ¢ can be defined in order to decide whether a given location that has a
maximum log[£(R|H)] in the image belongs to a target object class or not. This threshold is defined
as linearly proportional to the standard deviation of the log-likelihood of the target class hypothesis
for each N, value, that is, 8(N,) = 8- o(N,), where o(N,) is the standard deviation (over the
number of repetitions of the experiment) of the log-likelihood measure for target class objects at the
photon counting regime N, and 3 is a proportional constant. Let log[£(R|H)] be the expected log-
likelihood of a target object class for a given photon counting regime, N,, which can be measured
and learned in advance from an object sample image. If we have a new image without previous
knowledge about whether the target object is or is not present, the classification rule D(£'(R|H)) to
decide whether or not the maximum of the measured log-likelihood log[£(R|H)] in an image
belongs to the target object class is defined as

1, iflog[ZL(RIH)] - [0(Np)| < log[£'(R|H)]

D(L(RIH)) = {0, otherwise. (11)

Applying Eq. (11), we can decide whether the maximum of the log-likelihood can be associated to
the target class or not even considering a very low number of photons for generating the
holograms.

5. Results and Discussion

In the optical set-up used to create the holograms [Fig. 1(a)] an Argon laser with wavelength
A =514.5 nm was used. The wave plates were a A\/2 and a \/4 phase retarders adapted to that
wavelength. The detector was a 4.2 million pixels (2048 x 2048) CCD with pixel size Ax x Ay =
9 x 9 um? capturing 16 bits images. The reference object was a cubic die with a lateral size equal to
4.6 mm. The center of the die was located at a distance of d; = —345 mm from the output plane. In
order to detect the die using the ML criterion for one-class classification problems, a mask w; is
created centered in the die. Using Egs. (4) and (6), a photon counting version of each interferogram
lb,p=1,...,4 is created. The corresponding photon counting version of the hologram is made
applying Eq. (2). The hologram is propagated to a distance z = —345 mm using Eq. (3). Fig. 2(a)
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Fig. 3. Log-likelihood distribution for each pixel in the reconstructed plane at z = —345 mm. (a) N, =
5 x 10* photons. (b) N, = 1 x 10% photons. (c) N, =4 x 10° photons. (c) N, = 1 x 108 photons. A
reconstructed version of the die scene has been overlapped to the log-likelihood plot for visualization
purposes. The maximum is correctly located for the cases (b), (c), and (d), but not in (a).

shows the reconstruction given by the hologram at a distance of z = —-345 mm when using
Ny =4 x 10° photons for each one of the four interferograms lb,p=1,...,4. The whole image size
is 2048 x 2048. Therefore, this corresponds to 0.95 photons per pixel at interferogram level. The
use of such a high level of photons has been made just to help visualizing the object under photon
counting conditions. Fig. 2(b) shows the histogram of the pixel value distribution for a window of size
653 x 857 centered in the die. Fig. 2(b) also shows a mixture of two Gaussians for this distribution.
The Gaussian with highest centroid is the Gaussian we assume models the target object. The
Gaussian with lower centroid value may be considered the background included in the generation
of the support function. The use of Gaussians and mixtures of Gaussians is widely accepted when
solving one-class classification problems [23]. It is important to note that this distribution is different
to that obtained when photon counting methods are directly applied to images, such as in photon
counting integral imaging. This difference is due to the propagation process between our photon
counting hologram and the reconstructed images. Equation (10) determines the likelihood corre-
sponding to the window centered in a specific pixel and with a size of 653 x 857. The value of the
maximum of the log-likelihood for a particular N, value is then selected after the window has swept
through the entire image. We select the centroid, i, and its standard deviation, o with the highest
value in order to use them for the farget class hypothesis in Eq. (10). Fig. 3(a)—(d) show the log-
likelihood per pixel for N, = {5 x 10%,1 x 10%,4 x 10°,1 x 10°} photons. For 1 x 10° photons, this
means 0.024 photons per pixel for the whole 2048 x 2048 image. A reconstructed version of the die
scene has been overlapped in order to help visualizing whether the position of the maximum in each
case is correct or not. This reconstructed version of the die is obtained without applying photon
counting. As we can see, the maximum is correctly located for the cases (b)—(d), but not in (a).
Fig. 4(a) shows the log-likelihood mean curve and standard deviation for the pixel whose value is
maximum (continuous red line) and for a pixel that is confidently part of the background (dotted
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Fig. 4. (a) Log-likelihood value as a function of the total number of photons (N,) for the range:
N, = [100,4 x 10°] photons. (b) 3-D plot with the (x, y) coordinates of the maxima of the log-likelihood
for the reconstruction distances in the interval: z=[-265,-375] mm, with 6z = —10 mm, for
Ny =1x 10® photons. The position of the maximum for the case z = —345 mm has been included
as a line in order to see the change in the coordinates of the maxima.
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Fig. 5. 3-D plot of the log-likelihood for three different reconstruction distances: (a) z = —285, (b) z =
—345, and (c) z = —365 mm, for N, = 1.5 x 10° photons.

green line), for a set of 10 image repetitions generated for each N, value in the range: N, =
[100,4 x 10°] photons. The log-likelihood curve corresponding to the die class will be used as
L'(R|H) in Eqg. (11) to identify the presence of the target object class. We also analyzed the
capability of the proposed strategy to detect the presence of the die for different reconstruction
distances. We varied the reconstruction distance, z from z = —265 mm to z = —375 mm, with 6z =
—10 mm for N, = 1 x 10° photons. Fig. 4(b) shows a 3-D plot with the position of the maximum of
the log-likelihood for the 12 reconstruction distances used, for N, = 1 x 10° photons. The position
of the maximum for the case of z = —345 mm is used to generate a blue dotted line to compare the
positions against the value for that reconstruction distance. For each circle in the plot the
reconstructed distance z is also indicated. As we can see, the center estimated by the maximum of
the log-likelihood shifts from the blue dotted line which means that deviates from the correct value.
Fig. 5 shows the 3-D shape of the log-likelihood function for three different reconstruction distances,
for N, = 1.5 x 10° photons. As we can see, the maximum spreads over a higher range of pixels for
Fig. 5(a) and (c), which is in agreement with the fact that the die becomes out of focus as the
reconstruction distance separates from the in-focus distance (i. e., z = —345 mm). To overcome
this effect, we could use image processing algorithms to determine that the object is out of focus
and thus to determine when the maximum of the log-likelihood will not be accurate. In order to
associate a classification error to our methodology, we changed the position of the reconstructed
die for the N, range of interest. To generate a transversal shift of the object ér = (6x,6y) we
reconstructed the hologram with a tilted plane wave. This is performed by multiplying the complex
hologram distribution G(r) by a tilted plane wave factor exp{j2=(r;- ér)} in Eq. (3), where the -
symbol refers to the dot product. Taking this into account, we shifted the reconstruction of the die to
30 different locations following a 5 x 6 grid covering the whole image size. The axial position was
fixed at a distance of z = —345 mm. The difference, in pixels, between these regular coordinates
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TABLE 1

Mean (éx,6y) and standard deviation (e(6x),e(6y)), in pixels, of the difference between the position of
the log-likelihood maxima and the groundtruth maxima in x and y directions, for N, = {8 x 104, 1 x
10%,1.5 x 10%} photons. Mean and standard deviation have been obtained using a 5 x 6 regular grid
covering the whole image size

Ny (x2) (%) | Fy%) | @)% | @m)%)

8 x 10*(0.019) | 379.3(44.3) | 330.0(50.5) | 291.0(34.0) | 226.9(34.7)

1.0 X 10%(0.024) | 22.7(2.6) | 39.4(6.0) | 32.1(3.7) | 45.0(6.9)
1.5 x 10°(0.036) | 37.3(4.4) | 14.9(2.3) | 34.9(4.1) 3.3(0.5)

and those measured by using the maximum of the log-likelihood was assessed for each position in
the grid. The detected maximum of the log-likelihood in each image was classified according to the
decision rule introduced in Eq. (11) and only those maxima identified as target objects were used.
Table | shows the mean (é6x,6y) and standard deviation (¢(0x),s(6y)) over 30 positions of the
difference between the considered correct die center and the maximum of the log-likelihood, for
three photon counting regimes: N, = {8 x 10*,1 x 10°,1.5 x 10°} photons. A value of 3 = 1 was
selected for the application of the decision rule, in the three N, cases. Table 1 also shows in
parenthesis, for the first column, the number of photons per pixel (Nt represents the total number of
pixels in the image) and, for the rest of columns, the relative error in percentage with respect to the
size of the support function in each (x, y) direction.

6. Conclusion

We have shown a method to recognize 3-D objects in a 3-D input scene by using digital holography
in the photon counting domain. The optical system used for recording the digital hologram was a
phase-shifting interferometer based on a Mach—Zehnder architecture. The photon counting simula-
tions were applied directly to each one of the four interferograms recorded by the optical system.
These photon-counting interferograms were then combined by using a phase-shifting algorithm to
generate the new hologram. The amplitude distribution of the 3-D object under weak illumination
was finally reconstructed from the photon-counting hologram by simulating diffraction in the Fresnel
approximation.

For detecting the presence of the farget object in the input scene in photon counting conditions,
we applied an ML approach under the existence of a hypothesis consisting of the distribution of this
class as a mixture of two Gaussians, where one of the Gaussians models the target class object,
and the other the background included in the support function defined. We must stress that this
problem is different to other methods applying photon counting techniques directly to the images to
be processed. In our case the hologram is created under photon counting conditions but the images
are obtained by reconstructing the hologram at a certain distance and therefore the data distribution
changes.

We analyzed the behavior of the log-likelihood as the reconstruction distance varied, concluding
that the shape of this function spreads over as the reconstruction distance departs from the “in-
focus” distance. We also analyzed the recognition capability of our strategy for different positions of
the object and under three different photon counting regimes. Because of the statistical nature of
our approach, these results are generalizable to other real or virtual objects independently of its
position in the scene.

Summarizing, we have described a method for 3-D object recognition that uses holograms
obtained under photon counting conditions to generate the object. Our results show that the objects
can be recognized and their position determined for very low number of photons. This paves the
way to its use for discriminating target objects in application fields like holographic microscopy
under photon counting conditions as well as in biomedicine applications where low illumination
conditions are necessary.
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