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Spectral-spatial pixel characterization using Gabor
filters for hyperspectral image classification

Olga Rajadell, Pedro GaezSevilla, and Filiberto Pla

Abstract—This paper presents a spectral-spatial pixel charac- be missed. The same problem is observed in [7] where an
terization method for hyperspectral images. The characterizabn  extension of the watershed segmentation algorithm for ype
is based on textural features obtained using Gabor filters over spectral images was presented in order to define the spatial

a selected set of spectral bands. This scheme aims at improving truct To deal with th tati f I .
land-use classification results decreasing significantly the number StUCtures. 10 deal wi € segmentation of small regions,

of spectral bands needed in order to reduce the dimensionality the same authors suggested in [8] to select the most reliable
of the task thanks to an adequate description of the spatial pixels from a pixel wise classification as markers to be used
characteristics of the image. This allows to require less data and jn a Minimum Spanning Forest Grown obtaining a spectral-

avoid the curse of dimensionality. Very promising results are tial classification map refin fterwar majoritynep
obtained which are similar or better than previous classification spa_ class C. 0 p refined a. € ds by majo
within the spatially connected regions.

results provided by other spectral-spatial methods, but here als At ) ) )
reducing the Comp|exity using a reduced number of Spectra| The characterization of Spatlal structures In an |mage has

bands. been studied in detail when dealing with the analysis of
visual textures [9]. However, most of these methods were
| INTRODUCTION developed mainly for grey level images and their extension
’ ) for multi-channel images has been generally faced as a
Current hyperspectral sensors can have high spectral aGii-dimensional extension of the mono-channel techeiqu
spatlal resolution. Some Sensors can cover spect_ral tmmlu_ Healey et al. [10] made one of the first proposals on how to use
higher than 10nm, reaching 1m per pixel for spatial resoiuti gnatia| information across spectral bands using Gaborsilte
(e.9. some images provided by ROSIS sensor). As a res@hnonent features were first described for color images [10]
hyperspectral images are composed of a high number iy extended to be used over multi-channel images [11]. They
correlated bands that may cause a dimensionality probleggmpine spatial information across spectral bands atreiite
When the spatial resolution was not so high, main efforlggjes by combining the responses of the filters applied-sepa
were focussed at the classification stage. In particulayp8u 51y 10 each channel. Lately they also used three-diroeaki
Vector Machines (SVM) proved to obtain good performanc§anor filter banks [12]. However, all these methods have
in this task [1]. With the increase of the spatial resolutioeen always applied to patches of stationary textures and no
a joint spectral-spatial analysis was identified as a desirgna|ysis has been done about the characterization of ihaivi
goal [2]. Spectral-spatial characterization aims at @@ iyels which allows segmentation of images using this apati
one feature vector for each pixel in the image based on thgyrmation.
spectral measurements (s.pectral in.form.ation). and a sefies |n order to segment and classify hyperspectral land cover
values extracted from spatial operations involving ne@iy  jmages, we classify individual pixels to get a classificatio
pixels (spa_ltlal information). However, as in aII_cIassrﬁoa map following a lately trend [8] [6] [5]. This task has alrgad
problems, it should not be forgottgn that increasing thel®m poen faced using a large amount of data. However, when
of features used does not provide an endless improvemgaices improve, dealing with an increasing amount of data
because of the well-known curse of dimensionaly problem [3]55 increases the risk of reaching the accuracy ceilingsTh
Nowadays, a wide range of techniques is used to inclugg aiso aim at using a very small number of features to
spatial information into the image characterization, s@eh ,pain the same or even better results found in literature
morphological profiles [4] or Markov fields [5]. However,ieaying then room for adding new features that may improve
these methods introduce a scale selection problem. Rgcenfle cjassification. To pursue this objective, a band selecti
several proposals have_ risen to face the over-segmentatighihog will be first used over the whole set of bands provided
problem and the scalability with very good results. Tarkdal ,, the spectrometer. Then the pixel characterization nastho
et al. [6] presented a spectral-spatial classificationrsenthat i pe applied over the selected spectral bands. Threereifit
consists of a pixel wise classification and a partitionab®t- ixe| characterization methods based on Gabor filters well b
ing by a majority vote with adaptive neighborhoods. The ltesy,caq here.
is a segmentation map that needs a spatial post regulanzati The rest of the paper is organized as follows. First, filter
to reduce the noise. This provides more homogeneous regigagk characterization methods are introduced in Section II
than a simple pixel wise classification process but it is it ygahor filters have been used for texture characterizatioh an
suitable for images containing small classes since they Mgy il propose their use for pixel classification in two
All three authors are with the University Jaume |, Castell®p&in), within Qifferent ways. BeSide_s we Wi"_ _adgpt a method from the
the Institute of New Imaging Technologies (see http://wwitiji.es). literature to perform pixel classification and compare dll o



them. In Section Ill, we present the database used in thisin our case, instead of computing the energies for whole
paper followed by the classification set up that will be ferth image patches, a feature vector for each individual pixel is
used, a comparison between the three characterizatiorodgethobtained as the set of all opponent features computed flor it.
and a study of the relation between the characterization athis way we obtain opponent features for each individuaglpix
the scales of the filters within the filter bank. The supeiseapplying the filter bank only once over the whole image. If a
segmentation results are presented in Section IV as imagesture patch was considered around each pixel in the image,
also providing the per class accuracies. Eventually, emnahs the filter bank must be applied over each patch. As each pixel

can be found in Section V. will belong to several patches, it will be repeatedly anatjiz
In this way, we expect to obtain similar results but reducing
Il. FILTER BANK CHARACTERIZATION METHODS the computational effort required.

Several features have been suggested in the literature for

the description of spatial (or texture) information (sekff¥ B. Gabor filters over individual bands

a survey). In this paper, features are obtained by filterirgg t L .
input image with a set of filters (filter bank). The vector of We propose a simplified version where each spectral band

etres per e il coresponds o all h responsieolf. 1907 P o T e s chaserietier
pixel to the filter bank. P '

For an image of3 bands, letl’ be theit" band. Letf, be number of features per pixel keeping the spatial infornmatio

the k" filter in the filter bankF. The response to the filterbu\tNrE'SS'?hg the;]|rlwte;_—lct:hagne:(lr_lformﬁ'_uodn.th feat ¢
when applied over thé' band is given byh?C =TI x f, en the whole Tilter bank 1S applied, the teature vectors

wherex stands for the convolution operator. for the pixels in the image will be obtair_1ed by simply taking
We chose to use a Gabor filter bank. This is a set H?e responses to all filters for all bands:
Gabor filters of M different scales (spatial frequencies) and b = {hZ K.B (5)
N orientations designed to cover the frequency domain: k=1,i=1
In this way, hyperspectral images will be simply decom-

_ M,N

F= {fm’”}m:hn:l (1) posed into separated bands and the same feature extraction
They consist of sine and cosine functions modulated bypaocess will be performed over each band. By filtering with
Gaussian envelope that achieve optimal joint localization such a filter bank, the response of one pixel to each filter is

space and frequency [13]. They can be defined by: a decomposition of the spectral measurement in the amounts
1 22 42 corresponding to a each spatial frequency range and orienta
real(y ) = exp § — 4 (2) tion used to define the filter bank.
2ro2, 202,
X o827 (umx cos O, + umysin by, ))
2 2 C. Gabor filters over complex bands
meey) = o Ty €
mn DY) = 2102, B 202, Filtering each band individually misses the inter-channel

X $in (27 (U @ OS By, + Uy sin 6,,)) information proposed by Healey at al. [10]. In order to test
) ) _ ) its significance, we propose a variation of the characteoza
wherem is the index for the scaley for the orientation and method described above that introduces inter-channel @iata
un, is the central frequency of the scale [14]. pursue this, two real bands are merged into one complex band,
For real signal values, the outputs for orientatidhsand ne as the real part and the other one as the imaginary part.

0, + m will be complex conjugates. These pair of filters argow, each Gabor filter will be applied over a complex band
usually joined together, cancelling in this way the imagya g5 follows:

parts of the outputs and dealing only with real value outputs Wi = (I' + %) % fom (6)

A. Opponent features with 4 = \/—1 whereI* and I are thei'" and j*" spectral

Opponent features [10] use Gabor filters and combine tﬁgnds respectively.

filtered results (spatial information) across spectraldsaat |nt2|r|-cpr?;rnsngllc ;?if,::lt.gir:gsmvcv;ﬂ dbe% Choenrzldbeersguzgdtvcgieg
different scales. According to the authors, this is relaied b

processes in human vision. They are computed from tHgl B%nedssiri‘roerrzgﬁtr)endf:)tmo?ﬁ:szivcgeb;izzor;ﬁc? t:]heebfgazrss
responses to Gabor filters as the difference of respon { '

between two different filters. In other words, the spectr P P€ analyzed are no longer real, now filters for orientation

bands are first individually filtered and their responses a{r?ejna?rgnngt?o\i,\rq! dp;g\é':t?]gﬁirser: sgrﬁzzgsu::gé t?ﬁ;eaoljr?ber
combined afterwards to obtain the opponent features aimingof orientations will be the ciouble of the numbér used for
introducing inter-channel information into the charaiation

process. The combination among responses [11] is made Ill%dr'\”du"’lI bands. Note.also that now each output will be a
all pair of spectral bands j, with i > j, and two scalesn complex number that will be represented using two real wlue

andm/, such that) < (m — m’) < 1, as follows: while in previous cases each output was represented by _Just
- . ‘ one real number. This doubles the number of features rejuire
d? o =Ny — (4) in this case.



[1l. CLASSIFICATION EXPERIMENTS sets keeping the a priori probability of each class. Theegfo

The scheme here proposed combines a band selecti¥hredundancies were introduced. Ten classification atemp
method with the spectral-spatial pixel characterizatiosthm Were carried out and the mean of the error rates of these
ods previously proposed. Among the different band selecti@itempts was taken as the performance. For each attempt one
methods, WaLuMI [15] has been chosen for preserving 6t Was used as training and another for testing and sets were
original bands, providing as output a subset of them. It REVer used twice. This methodology was already used in [15]
based on a clustering of bands that pursues, as a whole2gl [17] in order to increase the statistical independence
maximize the mutual information among bands in each clus@mong the classification attempts.
and to minimize the inter-cluster correlation. Howevery an
other band selection method that fulfills similar criterianc C. Comparison of the characterization methods proposed

be used instead. In this section all classification expertme |n this section, the different characterization methods de
are tested over the Indian Pine hyperspectral dataset (8)IR scribed in section Il are compared. The settings for these
Two classifiers, SVM with a third order polymonial kernel an@xperiments are the ones described in Sect. 11I-B. The value

a 3-nearest neighbour classifier, are used. of B (number of spectral bands) varies from one to ten in
each experiment. The set of bands is provided by the WaLuMI
A. Dataset algorithm.

Hyperspectral image 92AV3C was provided by the spec- The classification results using a SVM can be found in
trometer AVIRIS and acquired over the Indian Pine Test Sifed- 2. The results using only spectral information wereals
in Northwestern Indiana in 1992. The image has a Spatjgpluded as a baseline reference. In all cases the meanfrate o
dimension of145 x 145 pixels. Spatial resolution is 20m perl0 experiments is shown. The variance between experiments
pixel. Spectral coverage ranges froms to 2.50nm with 220 was really small (less than 3%).
spectral bands. Classes range from 20 to 2468 pixels. Dudtll spectral-spatial features clearly outperformed thecsp
to the small size of some classes, this database is suitd# features. Also, we can see that there is almost no differ
for testing if the proposed methods can also success at Biie between the three spectral-spatial methods condidere

classification of small areas which are often missed in kighFxperiments using Gabor filters over texture patches around
unbalanced datasets. each pixel were also carried out providing similar clasatfian

rates. This means that the spatial information is much more

important than the inter-channel information for the ajmpro

e characterization of the pixels in the image. It is imgoit
note that the initial information used in all experiments

B. Experiment set up ‘
For the characterization of the data, a Gabor filter ba%

|s_de3|gned with four orientations and six _scales. The fo&r exactly the same because the spatial features are directl
orientations ¢°, 45°, 90°, 135°) are the minimum number computed from the spectral data
of orientations recommended to get textural informatiop [9  raq its with KNN are slightly lower than the ones obtained

Gabor filte_r scales are chqsen to be_ dyadic, b(_eing the fi th SVM (an average 02% lower) with a small difference
scale of width 1. Hence, given the size of the image Useg | 5o in favour of Gabor filters over complex bands.
the maximum number of scales i¥ = 6. Besides, Gabor

filters were designed to overlap each other when achieving a 100
value of 0.5 following the recommendation in [16]. The filter I

bank is applied according to one of the methods defined in BOW
the previous section and each pixel is characterized wigh th
responses to it. This leads to a different number of features
per pixel regarding the method used (see Fig. 1). This is an

important issue because of the so-called Hughes phenomenon gabor complex
[3], which also leads to the fact that increasing the numlber o © i,
dimensions does not necessary leads to an improvement. number of bands

70

60

o spectral data
50 gabor ——

% of correct pixel classification

Fig. 2. Pixel classification rates for the proposed charaeton methods
gabor —— over the AVIRIS database using a SVM classifier.

gabor complex
2500 opponent features --e--

3000

2000

Thus, we can conclude that spatial information improves
rd the classification but the addition of inter-channel infation

is not relevant enough and does not justify the increase in

the dimension of the classification space. Considering this

1500

1000

number of features

500 T

1 2 3 4 5 6 7 8 o 10 conclusion, for the next series of experiments we suggest th
number of bands - . « .
use of Gabor filters over individual bands.
Fig. 1. Number of features per method vs. the number of specirads For the number of bands, observe that afigr = 3

no significant improvement is achieved when increasing the
For the classification experimenrs, the labeled pixels mumber of bands. An experiment using all bands available
the image database were divided into twenty non-overlappi(B = 220) was performed with a result &7% using a SVM



andg6.6% for the 3-NN, which are below the maximum resulfeatures coming fronB = 3 and combining the features from
presented in Fig. 2. Although B is a parameter to set ftihe two first scales. We chose to reduce the number of features
the process, the performance usually reaches a maximum smdhow that24 features can provide a result as good or even
adding more bands does not improve the classification sesulietter than a much higher number of dimensions.
Hence, the selection @B is not critical as long as we choose The global classification accuracy obtained wW¥#s99%
a value greater than the one needed to reach the flat zonaigihg a SVM (note that the result using a 3-NN classifier
the learning curve. was the same). This result is slightly higher than the ones
in [7] [8], where the same problem for the AVIRIS dataset
D. Scale analysis was addrfessed, obFaininngi.SO% _of correct classification.
X ) L . . Besides, in these cited works, a fixed number of samples per

In a Gabor filter bank, thosg filters W'th different on_endmn %Iass were picked as training set, thus the a priori protiaisil
and the same scale.prowde qurmathn correspondmg 0 N&re not kept and small classes were over-represented in the
same range of s.patlal frequenmes. It IS known that d'f,rereﬂaining and all spectral bands were used there. Theretioee,
frequencies provides a different analysis of the scenéoio, results presented here have been obtained in more realistic

example high frequencies contain most of the noise presenthnditions taking into account that real unbalanced dai@ i
the image. The following experiment is a classification gsmnarder cla:ssification problem

solely the features obtained from each set of filters with the.l.he producer’s accuracy per class for the AVIRIS dataset is
same scale but with different orientations. These resu&s.%hown in Table I. Notice that 7 of the 16 classes are usually

presented in Fig. 3(left). The settings for the classifarati ignored in this sort of experiments because they contaima ve

exp(;riments are the same as in Sect. ll-C, except fortHe$casma” number of pixels [1]. However, we include them in our
used. . experiments and the results are fairly good considering the
Note that the lower the scale is, the better the r_esult. Thﬂﬁfri)culties when treating with such un{)slanced classii‘tixrgt
was expected because most of the areas to classify are qHF{?olem. For example, the class representing oats has only
homogenous. . . .20 pixels, and only one pixel was used for training. There-
Asa further analygls, we also run an experiment performn?gre, an important amount of classification errors is exgect
a progressive combmapon of fegtures from d|ﬁergnt SK:al,el\lonetheless, it is remarkable that other small areas corre-
First, only features using the filters that are defined WI%%Jonding to Alfalfa, Bldg-Grass-Trees-Drives, Grassifas

the first range of spatial freguencies are taken_. In ea_ch SHiBwed, Corn, and Wheat were fairly well classified. We can
the features from the following scale are combined with t so see the same results on the image in Fig. 4 where the

previous by adding one scale at each step until covering Bors are represented in white
whole set of scales. These classification results are shown | '

Flg 3(r|ght) Observe that when we join the features of the class ‘ training/total ‘ Per class accuracy (%D
first two scales, the classification rate improves. When addin Stone-steel towers 4795 76.92
the first, second, and third scales, the results are quit#asim Hay-windrowed 25/489 99.14
However, when adding more than three scales, the results__Som-min il 42/834 96.59
. . . Soybeans-no till 48/968 89.23
progressively worsen. Recall that the higher scales mawglynai Alfalfa 554 1000
contain noise and they do not help in the characterizatidheof Soybeans-clean fill 30/614 87.32
pixels. This highlights the fact that the discriminant gieaf Gf&\‘;/S/P;Sthe 6255//14554 gg-gi
. . . . . . ‘oods .
mformanoq for this sort of images is in the f|rst scales knemaa Bldg-Grass Tree-Drves  10/380 9795
they contain well-defined areas of low spatial frequencies. Grass/pasture-mowed 5126 91.66
Corn 11/234 92.82
Oats 1/20 52.63
IV. SEGMENTATION EXPERIMENTS Cormono i AR 9951
To get a supervised segmentation from the pixel wise Soybeans-min till 124/2468 91.93
PSR ; ; ; Grassltrees 37/747 94.92
classification we split our data in a set of samples with known Wheal o212 5950
labels and a test set to be classified. The resulting labetger Overall accuracy 92.99
a classification map. Unlike the previous experiments, #die s Kappa 0.92
of labeled pixels is here directly split in two. % of samples TABLE |

from the whole data set, keeping the a priori probabilitie®RoDUCER S ACCURACY PER CLASS FOR THAVIRIS DATASET USING 24
forms the training set and the rest the test set. Again i@sult FEATURES(4 ORIENTATIONS, 2 SCALES, AND 3 SPECTRAL BANDS.
using a SVM classifier are shown.

The classification results in Fig. 2 showed that the im-
provement has a maximum. Because any value of B over 3
will provide a similar result, raising the number of featsire V. CONCLUSIONS
(dimensions) in this problem is not convenient. Hence, the A hyperspectral pixel classification scheme that combines
set of bands forB = 3 were selected using the WalLuMia band selection procedure with a spatial feature extractio
algorithm. Besides, as seen in Section 11I-D, adding festurprocess has been presented. The increase of the spatial res-
from more scales is neither improving the characterizatioolution in hyperspectral sensors encouraged this ideaadt h
For that reason we chose to perform this experiment with theen experimentally proven that the proposed scheme g®vid



100

sof /

60 -

60

a0l 7 » 40
scale 1 ——
scales 1-2 ——

scale 1 ——
scale 2 —
r scale 3 scales 1-3
20 scale 4 20 scales 1-4
scale 5 --e—- scales 1-5 --e--
0 scale 6 -~ = 0 scales 1-6 -~ =
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

number of bands number of bands

% of correct pixel classification
% of correct pixel classification

Fig. 3. Pixel classification rates for the AVIRIS datasenhgsspatial features derived from Gabor filters and a SVM dlassLeft: the analysis of individual
scales. Right: joining of features from consecutive asaahdcales.

classes in the image plane. However, the segmentation of the
inner part of the regions was always remarkably homogeneous
despite the fact that no further spatial regularizationpigliad

to the pixel-based classification proposed.
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Fig. 4. Left: Classification results for the AVIRIS datasstng 24 features
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