Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO₂ photoanode†

Sanghyuk Wooh,‡†ab Yong-Gun Lee,‡ac Muhammad Nawaz Tahir,‡d Donghoon Song,‡e Michael Meister,‡e Frédéric Laquai,‡e Wolfgang Tremel,d Juan Bisquert,f Yong Soo Kang‡c and Kookheon Char*ab

Direct evidence of the effects of the localized surface plasmon resonance (LSPR) of gold nanoparticles (Au NPs) in TiO₂ photoanodes on the performance enhancement in quasi-solid-state dye-sensitized solar cells (DSCs) is reported by comparing gold/silica core–shell nanoparticles (Au@SiO₂ NPs) and hollow silica nanoparticles with the same shell size of the core–shell nanoparticles. The Au nanoparticles were shelled by a thin SiO₂ layer to produce the core–shell structure, and the SiO₂ hollow spheres were made by dissolution of the Au cores of the gold/silica core–shell nanoparticles. Therefore, the size and morphology of the SiO₂ hollow spheres were the same as the Au@SiO₂ NPs. The energy conversion efficiency was improved nearly 36% upon incorporating the Au nanoparticles, mostly due to the increase in J_{sc} while V_{oc} and FF were unchanged. The improvement was mostly contributed by the LSPR of the Au@SiO₂ NPs, whereas the other parameters, such as the electron lifetime and electron diffusion coefficient, were nearly unchanged. Therefore, LSPR is an effective tool in improving the photocurrent and consequently the performance of DSCs.

Introduction

Dye-sensitized solar cells (DSCs) have currently received much attention due to several advantages, such as the low fabrication cost and high power conversion efficiency greater than 12% under 1 sun illumination condition.1–3 The most widely studied DSC is comprised of an electrolyte sandwiched between two electrodes coated on a transparent conducting glass, such as fluorine-doped tin oxide (FTO) glass; a photoanode and counter electrode. The photoanode consists of a mesoporous semiconductor such as a TiO₂ layer with sensitzers, whereas a typical counter electrode is made of a reduction catalyst such as platinum coated onto FTO. Upon light illumination, dye sensitizers adsorbed to the surface of the mesoporous TiO₂ layer generate electrons, which are subsequently injected into the TiO₂ layer for electricity production. Therefore, light absorption by sensitizers on the photoanodes plays a major role in determining the overall energy conversion efficiency of DSCs. A large body of research has been conducted to enhance the light harvesting efficiency in TiO₂ photoanodes. In this context, the development of more efficient dye sensitizers, including organic dyes with a higher extinction coefficient4–6 and energy-relay dyes,7 and their effective utilization methods, such as cocktail dye8 and selective dye adsorption9,10 concepts, have prevailed. In addition, the introduction of a scattering layer and inverse opal nanostructures are also common.11–14

The localized surface plasmon resonance (LSPR) phenomena of metal nanoparticles has also been investigated to enhance light harvesting efficiency.15–17 The LSPR, which refers to the resonance between the electromagnetic field and free-electron oscillation, amplifies the electromagnetic field near the metal nanoparticles, resulting in plasmon enhanced light absorption of dye sensitizers in DSCs.18–21 The Hupp group first reported plasmon enhanced light harvesting in DSCs using silver
nanoparticles on flat TiO$_2$ film, demonstrating considerable potential to increase the photocurrent.24,25 The photocurrent and power conversion efficiency of the DSC increased nearly 6–7-fold upon incorporating silver nanoparticles into a dye monolayer on the flat TiO$_2$ film (J_{SC} from 14.6 to 85.7 μA cm$^{-2}$, from 0.007 to 0.045%). Recently, enhanced charge carrier generation in solid-state DSCs was demonstrated by the LSPR effects of Au NPs coated on a mesoporous TiO$_2$ photoanode26 and a hexagonal array of Ag nanodome-structured counter electrode.27

Direct effects of LSPR by metallic nanoparticles on the performance of DSCs may not be readily evaluated in common γ/λ_5^- redox couples which dissolve metallic nanoparticles, such as gold, by the following reaction:28

$$2\text{Au} + \lambda_5^- + \gamma \rightleftharpoons 2[\text{Au}\lambda_5^-]^- \quad (1)$$

One way to avoid the dissolution problem of metallic nanoparticles is to create a shell with an inert material, such as SiO$_2$. In this study, Au@SiO$_2$ NPs were synthesized in a solution process and mixed with a TiO$_2$ paste to fabricate Au@SiO$_2$ NPs incorporated mesoporous TiO$_2$ photoanodes. In addition, we used polyethylene glycol (PEG) based electrolyte to achieve stability of the Au core, inhibiting interaction between the Au core of Au@SiO$_2$ NPs and γ/λ_5^- ions in the electrolyte. However, the properties of the core–shell nanoparticle-incorporated photoanodes were affected by both the metal cores and shell. Thus, the effects of the shell material on the cell performance must be considered. Until recently, even though a number of researches have been presented to improve the cell performance by utilizing the LSPR effects with metal/TiO$_2$ or SiO$_2$ core–shell structures, the quantitative analyses of the LSPR by metal cores and other changes in the photoanodes by shells are still difficult to separately evaluate.$^{24–26}$ This problem may be solved by comparing the results of the same photoanode structures with and without core metal: core–shell and hollow shell. The hollow shell structure can be prepared by dissolving the core metal of the core–shell sphere by the dissolution reaction with γ/λ_5^-, which readily diffuses through a shell layer, such as SiO$_2$.27 In this context, SiO$_2$ hollow spheres-incorporated TiO$_2$ photoanode was fabricated to quantify the effects of the LSPR clearly by the Au nanoparticles without disturbing the shell properties or structure. The TiO$_2$ photoanodes incorporating SiO$_2$ hollow spheres have the same morphology as the initial TiO$_2$ photoanodes incorporating Au@SiO$_2$ NPs, which is helpful for accurate comparison of photoanodes with and without LSPR. Through this novel approach, the LSPR effect in DSCs can be independently demonstrated with the effect of SiO$_2$ shells, such as the charge injection problem from dyes into the SiO$_2$ shell and the change of morphology and resistance.

Experimental

Materials

All chemicals were used without further purification, and water was doubly ionized. The chemicals used for the synthesis of Au@SiO$_2$ NPs, hydrogen tetrachloroauroate(m) trihydrate (HAuCl$_4$·3H$_2$O), hexadecyltrimethylammonium bromide (CH$_3$(CH$_2$)$_{15}$N(Br)(CH$_3$)$_3$), sodium citrate (HOC(COONa)–(CH$_3$COONa)$_2$·2H$_2$O), ascorbic acid (C$_6$H$_8$O$_6$), (3-mercaptopropyl)trimethoxysilane (HS(CH$_2$)$_2$Si(OCH$_3$)$_3$) and a sodium silicate solution (Na$_2$O(SiO$_2$)$_x$·xH$_2$O) were purchased from Sigma-Aldrich. For the fabrication of the dye-sensitized solar cells, polyethylene glycol dimethylether (PEGDM, M_w: 500), 1-methyl-3-propylimidazoliumiodide (MPII), iodine (I_2) and fumed silica (~14 nm) were obtained from Sigma-Aldrich. TiO$_2$ paste (DSL 18NR-T) and sensitizer dye, cis-dithiocyanato-bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium(n) bis(hexyl-4,4’-dicarboxylato)rhodium(n) (N719), were purchased from Dyesol.

Synthesis of gold nanoparticles

Au NPs were prepared using a seed-mediated method.29 First, 15 nm-diameter Au NP seeds were synthesized via citrate reduction. In a typical procedure, 10 ml of a 1 mM gold(m) chloride trihydrate aqueous solution was refluxed at boiling temperature under vigorous stirring, followed by the quick injection of 1 ml of a 39 mM sodium citrate solution. After 15 min, the heating was stopped, and the reaction contents were cool to room temperature. To make larger nanoparticles, a 2 ml seed particle solution was added to 100 ml of a 0.5 mM gold(m) chloride trihydrate aqueous solution containing 0.03 M CTAB and 1 mM ascorbic acid. The solution was reacted for 4 hours, and the product was collected using centrifugation (9000 rpm, at room temperature for 10 min).

Synthesis of gold/silica core–shell nanoparticles

Au@SiO$_2$ NPs were synthesized by a modified procedure previously reported by Obare et al.29 In this method, growth of silica was performed after surfactant substitution with a silane coupling group, (3-mercaptopropyl)trimethoxysilane (MPTMS). MPTMS in ethanol was added to the Au NPs solution. After three hours, an aqueous sodium silicate solution was added and reacted for three additional days. The contents were purified several times by precipitation using centrifugation and were re-dispersed in ethanol.

Paste preparation

As-prepared Au@SiO$_2$ NPs dispersed in ethanol were added and well mixed with the commercial titanium dioxide (TiO$_2$) paste with an average size of 20 nm (DSL 18NR-T, Dyesol). In order to achieve the same thickness of photoanodes after sintering, excess ethanol from the paste was evaporated using nitrogen to produce a homogenous concentration of paste materials.

Device fabrication

For the formation of an electron blocking layer between the FTO substrate and oxidized species in the electrolyte, 0.1 M of Ti(iv) bis(ethyl acetoacetato)diisopropoxide in a 1-butanol solution was spin-coated on FTO glass (TEC 8, Pilkington) followed by sintering at 500 °C. TiO$_2$ photoanodes were fabricated on the blocking layer with TiO$_2$ paste using a doctor blade method followed by sintering at 500 °C for 15 min. Subsequently, TiO$_2$ nanostructure-coated FTO substrates were dipped into 40 mM
TiCl$_4$ in H$_2$O solution at 70 °C for 30 min and sintered at 500 °C for 15 min.

TiO$_2$ photoanodes were dipped into the 0.3 mM N719 dye (cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium(n) bis-tetrabutylammonium, Dyesol) in an acetonitrile and tert-butanol solution (1 : 1 v/v) at 30 °C for 18 hours and then rinsed with acetonitrile and dried using a stream of nitrogen. A Pt counter electrode was prepared by thermal decomposition of 0.01 M H$_2$PtCl$_6$ in an isopropyl alcohol solution on the FTO substrate followed by sintering at 500 °C for 30 min. After loading the dyes onto the TiO$_2$ electrodes, Surlyn (25 μm, Solaronix) was attached to the TiO$_2$ photoanode as a spacer. The polymer electrolyte was spread on the spacer gap, and the Pt counter electrode was placed on top.

The electrolyte consists of poly(ethylene glycol dimethyl ether) (PEGDME, M_w: 500, Sigma-Aldrich), 1-methyl-3-propylimidazolium iodide (MPII, Sigma-Aldrich), iodine (I$_2$, Sigma-Aldrich), and fumed silica nanoparticles (14 nm, Sigma-Aldrich). The composition of the polymer electrolyte, instead of typical acetonitrile-based liquid electrolytes, was used for quasi-solid-state DSCs in order to retard the possible penetration of I$^-$/I$_3^-$ ions through the SiO$_2$ shell. Based on our experimental results, a SiO$_2$ shell thinner than 8 nm hardly protected the Au core from the electrolyte contact, even though high M_w PEGDME was applied as a viscous solvent for quasi-solid electrolytes. Experimental data suggests that 10 nm was the minimum thickness of the SiO$_2$ shell necessary to protect the Au core from the dissolution.

The localized surface plasmon resonance (LSPR) effects of Au@SiO$_2$ NPs by varying the Au core size were characterized using UV-vis spectroscopy, as shown in Fig. 1d. The absorption peak appears at 537, 547, and 565 nm for Au@SiO$_2$ NPs with the size of the Au core/SiO$_2$ shell 30/12, 50/11, and 160/10 nm, respectively. This shift in the absorption band is attributed to the change in the oscillation frequency of LSPR caused by varying the average diameter of the Au NPs. The absorption band of LSPR shifts to a longer wavelength by increasing the size of Au NPs as a result of the decrease in the oscillation frequency. The coupling between the LSPR of the Au NPs and the absorption of dyes is one of the key factors for the enhanced performance of DSCs using Au NPs. In this case, the absorption peak difference or coupling wavelength mismatch of Au NPs (160 nm) with respect to the N719 dyes was ~40 nm, as shown.

Results and discussion

Fig. 1a–c show TEM images of three, differently sized Au NPs shelled with thin SiO$_2$ (Au@SiO$_2$ NPs). The average diameter of Au NPs obtained by varying the concentration of the Au precursor was (a) 30, (b) 50, and (c) 160 nm. Subsequently, their surfaces were modified with 3-mercaptopropyl trimethoxysilane (MPTMS), and the thickness of the SiO$_2$ shells were controlled to approximately 11 nm by adding an aqueous sodium silicate solution.

Even though the Au NPs were protected by the SiO$_2$ shell, the Au cores were dissolved by contact with I$^-$/I$_3^-$ ions penetrating the thin silica shell in a few hours. Therefore, the SiO$_2$ shell was treated with TiCl$_4$ to block the penetration of I$^-$/I$_3^-$ ions and consequently improve the stability of the Au core nanoparticles against dissolution. In addition, a poly(ethylene glycol) dimethylether (PEGDME, M_w: 500)-based polymer electrolyte, instead of typical acetonitrile-based liquid electrolytes, was used for quasi-solid-state DSCs in order to retard the possible penetration of the I$^-$/I$_3^-$ ions through the SiO$_2$ shell. Based on our experimental results, a SiO$_2$ shell thinner than 8 nm hardly protected the Au core from the electrolyte contact, even though high M_w PEGDME was applied as a viscous solvent for quasi-solid electrolytes. Experimental data suggests that 10 nm was the minimum thickness of the SiO$_2$ shell necessary to protect the Au core from the dissolution.

The electron lifetime in the photoanodes were characterized by controlled intensity modulated photocurrent spectroscopy (CIMPS) under open-circuit conditions as a function of light intensity using a controlled intensity modulated photo spectroscopy (CIMPS) system (Zahner) and a white light source (Zahner). The detailed measurement conditions are described elsewhere.
incorporated photoanode with arrows indicate Au@SiO density (open circles) lines). (b) Power conversion efficiency (PCE) of DSCs with the addition of Au@SiO NPs in TiO2 photoanodes was observed by the reddish photoanode (inset photograph) and by the UV-vis spectrum, as shown in Fig. 2b. Fig. 2c shows Au@SiO NPs in the photoanodes surrounded by TiO2 NPs using scanning electron microscopy (SEM). Noticeably, the shapes of the Au@SiO NPs were unchanged after sintering at 500 °C.

The photocurrent–voltage characteristics of DSCs with TiO2 photoanodes incorporating Au@SiO NPs are represented in Fig. 3. The film thickness of photoanodes with and without Au@SiO NPs was adjusted to 2 μm to more clearly characterize the effects of LSPR, which is thinner than a conventional TiO2 layer (Fig. S1†). In order to optimize the incorporation of Au@SiO NPs for DSC performance, the concentration of Au@SiO NPs in the TiO2 paste was varied from 0.25 to 1.5 wt%. The short circuit current density (Jsc) was increased upon the incorporation of Au@SiO NPs, while the open-circuit voltage (Voc) and fill factor (FF) remained nearly unchanged. The Jsc and power conversion efficiency (PCE) of DSCs with the addition of 1.0 wt% of Au@SiO NPs into the TiO2 layer were increased to 5.67 mA cm$^{-2}$ and 2.66%, respectively, with respect to the same thickness reference TiO2 photoanode without Au@SiO NPs (4.35 mA cm$^{-2}$, 1.94%). However, at concentrations greater than 1.0 wt% Au@SiO NPs, the Jsc (5.44 mA cm$^{-2}$) and PCE (2.53%) were slightly decreased, as shown in Fig. 3b and Table 1. The inclusion of Au@SiO NPs in the photoanode may have possible side effects. First, the Au@SiO NPs could inhibit the light absorption of dyes in the photoanodes while the Au@SiO NPs in the photoanodes absorb the incident light as well as dyes but without converting photons to charges.24 On that account, the light harvesting efficiency may slightly decrease when the concentration of Au@SiO NPs in the photoanode becomes higher than the critical point. Secondly, Au@SiO NPs with a size of ~70 nm decrease the total amount of dye loading in the photoanodes due to the smaller surface area relative to 20 nm TiO2 NPs. Finally, it is difficult to inject electrons from the excited dyes into the insulator SiO2 shell. These side effects of the inclusion of Au@SiO NPs may result in a decrease in photocurrent and consequently the photovoltaic performance of DSCs to a small extent. However, the overall energy conversion efficiency increased from 1.94 to 2.66%, which was a nearly 30% improvement, suggesting that the positive effects of LSPR are significant. Therefore, the performance was further characterized in the following sections. In order to evaluate the quantitative effects of LSPR from Au cores excluding the SiO2 shell effects, the Au@SiO NP-incorporated photoanodes with and without the Au cores were compared. Experimentally, TiO2 photoanodes incorporating SiO2 hollow spheres with the same size of Au@SiO NP shell but without the Au core were
introduced by dipping Au@SiO$_2$ NP-incorporated photoanodes in an I$^-$/I$_3^-$ liquid electrolyte for a few hours, which has the same morphology and thickness of the photoanode with Au@SiO$_2$ NPs. As expected, the SiO$_2$ hollow sphere was formed without a change in morphology due to the exclusive dissolution reaction eqn (1) of Au with I$^-$/I$_3^-$ ions, which was easily demonstrated by the disappearance of the reddish color and characterized by scanning electron microscopy, as shown by the inset photographs of Fig. 4 and S2(a).† Fig. 5a shows the decreased light absorption of N719 dyes upon incorporating the SiO$_2$ hollow spheres rather than Au@SiO$_2$ NPs, indicating the effects of the presence of Au cores. The amount of dyes adsorbed on the TiO$_2$ surface were characterized and this result shows that the dyes loaded in SiO$_2$ hollow sphere incorporated photoanodes are nearly the same as the amount in the Au@SiO$_2$ NPs incorporated photoanode (Fig. S2(c)†). The only difference between these photoanodes was the Au cores, suggesting that the enhanced light absorption is primarily attributed to the LSPR effects of the Au core. In order to confirm the LSPR effect more distinctly, we characterized absorption spectrum of the photoanodes additionally with N749 dyes (green dye) which absorb longer wavelength of light (>600 nm) compare to Au NPs (~530 nm), as shown in Fig. 5a. Through the distinguished peaks of LSPR and light absorption of N749 dyes, the effect of LSPR on the enhanced light absorption of dyes was clearly verified. Moreover, almost the same reflectance of Au@SiO$_2$ NPs and SiO$_2$ hollow spheres incorporated photoanodes were characterized by UV-vis spectroscopy with an integrating sphere and both photoanodes show only ~2% off-specular reflection by scattered light (Fig. S3†). This provides convincing evidence that absorption enhancement was mainly induced by LSPR which is near-field effect and not Mie scattering which is far-field effect.

Fig. 5b shows the photocurrent–voltage (I–V) characteristics of DSCs that are consistent with the results obtained from the difference in the light absorption, as shown in Fig. 5a. DSCs based on the TiO$_2$ photoanode incorporating Au@SiO$_2$ NPs exhibited ~28% greater J_{sc} and PCE than those with the hollow SiO$_2$ spheres. The increase of J_{sc} agrees well with the incident photon-to-current efficiency (IPCE) results, and the difference obtained by subtracting IPCE values increased at the same wavelength as the absorption band of LSPR (Fig. 5c). Moreover, the photoanode incorporating SiO$_2$ hollow spheres shows similar J_{sc} of 4.4 mA cm$^{-2}$ and PCE of 1.97% with respect to the reference TiO$_2$ photoanode, as summarized in Table 1. For the photoanodes incorporating SiO$_2$ hollow spheres, only the Au cores were removed from the Au@SiO$_2$ NPs photoanode, while...
the surface area and morphology of the TiO$_2$ photoanode were unchanged. Thus, the small change of the photovoltaic performance between the reference and SiO$_2$ hollow sphere photoanodes suggested that the effects of the changes in surface area and morphology upon incorporating Au@SiO$_2$ NPs on the cell performance were nearly negligible. The performance enhancement upon incorporating Au@SiO$_2$ NPs into a photoanode is mostly due to the LSPR effects of the Au nanoparticles.

Electrochemical impedance spectroscopy (EIS) was performed in dark conditions with a bias potential of -0.54 V (Fig. 6) to characterize the cell performance, and the performance parameters were obtained by fitting with the general transmission model of DSCs.

In Fig. 6a, the Nyquist plots show two semicircles. The first semicircle at high frequency was attributed to the charge transfer resistance at the Pt counter electrode–polymer electrolyte interface (R_{Pt}), and the second semicircle at mid-frequency was associated with the electron recombination resistance (R_{rec}) and capacitance (C) at the TiO$_2$–polymer electrolyte interface. For Bode plots, the characteristic frequency peak in the mid-frequencies was unchanged (Fig. 6b), indicating nearly the same electron lifetimes for the two samples. The values are listed in the inset table of Fig. 6b.

The roles of the Au@SiO$_2$ NPs in the electron lifetime and the electron diffusion coefficient in the TiO$_2$ photoanodes were also evaluated with incident-modulated photovoltage spectroscopy (IMVS) and incident-modulated photocurrent spectroscopy (IMPS) as a function of the light intensity given in Fig. 7a. In accordance with the EIS measurements, the electron lifetime upon the inclusion of the Au@SiO$_2$ NPs was unchanged compared to that of the photoanode with the hollow SiO$_2$ spheres. Furthermore, the electron diffusion coefficient was also unchanged, and thus the diffusion lengths ($L_n = (D_n \tau_n)^{1/2}$) derived from these values were almost same between the photoanodes containing Au@SiO$_2$ NPs with and without the...
Au core nanoparticles. In addition, the transient photocurrent and the diffusion coefficients of electrolyte \([D_{\text{I}_3}^-]\) were measured, as shown in Fig. 7b and c. Nearly the same values of Au@SiO\(_2\) NPs \((2.36 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1})\) and hollow SiO\(_2\) spheres \((2.38 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1})\) incorporated photoanodes were evaluated. These results reveal that despite the enhanced light absorption of photoanodes by LSRR, the Au NPs had no influence on the electrochemical properties in the photoanodes and electrolyte due to the presence of the insulating layer inhibiting interaction between Au cores and electrolyte.

Conclusions

Au@SiO\(_2\) NPs incorporated into a conventional mesoporous TiO\(_2\) photoanode resulted in a significant increase in the energy conversion efficiency (up to 36% from 1.94 to 2.66% with a 2 μm-thick photoanode under 1 sun illumination condition) in quasi-solid state DSCs, mostly due to the enhanced photocurrent density from 4.35 to 5.67 mA cm\(^{-2}\) by the LSRR effects of the Au NPs. In addition, the LSRR effects were directly observed by comparing results between the Au@SiO\(_2\) NPs- and SiO\(_2\) hollow spheres-incorporated TiO\(_2\) photoanodes, where the hollow spheres were obtained by dissolving the Au core with I\(^{-}\)/I\(^{3-}\) ions and had same morphologies as Au@SiO\(_2\) NPs. The influences from LSRR of the Au core in optical, electrochemical, and photovoltaic properties of the photoanodes were characterized by UV-vis spectroscopy and EIS measurements separate from the effect of SiO\(_2\) shell and morphology change. From this, we demonstrated that the incorporation of the Au@SiO\(_2\) NPs enhanced the light harvesting efficiency of dye molecules without changing the electron lifetime and diffusion coefficient of the TiO\(_2\) photoanodes and were very effective in improving the power conversion efficiency of DSCs.

Acknowledgements

S. Wooh‡ and Y. Lee‡ contributed equally to this work. This work was financially supported by the National Creative Research Initiative Center for Intelligent Hybrids (No. 2010-0018290) through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP). This work was also in part supported by the International Research Training Group (IRTG): Self Organized Materials for Optoelectronics, jointly supported by the DFG (Germany) and NRF (Korea). Additionally, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) for the Center for Next Generation Dye-sensitized Solar Cells (No. 2013004800).

Notes and references

