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Abstract 

Energy disorder reduces the achievable open-circuit voltage in organic bulk-

heterojunction solar cells. Here the effect of disorder on charge carrier recombination 

flux is numerically modeled. The recombination current follows an exponential 

dependence on voltage (Fermi level splitting) parameterized by   (inverse of the diode 

ideality factor), which reduces the power conversion efficiency through lower fill 

factors.  -parameter approaches unity (Boltzmann approximation) at room temperature 

only in the case of weak disorder ( 50  meV). For larger disorder values ( 100  

meV) usually encountered in real devices, a huge reduction in   (open-circuit voltage, 

and fill factor) is predicted following a relationship as 1ln   .  
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I. Introduction 

Organic photovoltaic technology allows reducing the production costs of solar 

energy. A considerable effort has led very recently to achieve power conversion 

efficiencies near 10% in the case of bulk-heterojunction solar cell structures[1]. 

Although several limiting factors have been studied, and their detrimental effects 

quantified [2], further improvements need for detailed understanding of specific 

phenomena. Among others, energy disorder originated by either inherent complex 

structure, or polarization effects in organic solid films has been recently identified as a 

primary factor leading to reduction in open-circuit voltage ocV  [3-5]. Apart from 

influencing photovoltage, distributions of energy states have been identified as affecting 

charge carrier recombination kinetics through different charge transfer routes. Energetic 

tails of trapping states entering the effective gap of active materials has been proposed 

to affect the recombination rate by modulating the participation of mobile carriers into 

the recombination process [6-9]. Disorder energetic effects producing electronic 

density-of-states (DOS) were identified by means of subbandgap external quantum 

efficiency signals [10], and incorporated to device modeling [11] to analyze carrier 

recombination dynamics from transient photocurrent and photovoltage experiments 

[12]. 

A fruitful way to explore carrier recombination is by monitoring the open-circuit 

variation with irradiation intensity and temperature. Most models devised to simulate 

electrical response of organic solar cell are drawn upon regarding charge density as 

following the Boltzmann statistics [9, 13, 14]. In accordance with this approach a useful 

relation is expressed as 











np

NN
TkEqV g

HOMOLUMO
Boc ln . (1) 

Here )D()A( HOMOLUMO EEEg   corresponds to the effective energy gap. LUMON , 

and HOMON  are the acceptor lowest-unoccupied molecular orbital (LUMO), and donor 

highest-occupied molecular orbital (HOMO) density-of-states, respectively. n  ( p ) 

stands for the electron (hole) concentration. TkB  is the thermal energy, and q  the 

elementary charge. Equation (1) can be used to derive a general dependence of ocV  on 

the irradiation intensity [14, 15]. This was proposed by assuming that in the steady state 

under continuous irradiation, the effective photogeneration flux G  equals the 

recombination flux R  because no direct current is allowed to flow in open-circuit 

conditions, i.e GR   (or equivalently phrec jj   in terms of recombination current and 
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photocurrent). The recombination flux is usually written as obeying a bimolecular law 

knpR   (being k  the recombination coefficient). Therefore ocV  depends on light 

intensity, which is proportional to G , following GqTkV ln/Boc   as derived from Eq. 

(1) [15]. The slope in the relationship GV lnoc   equaling qTk /B  has been reported in 

some cases, signaling a bimolecular-like recombination process with a charge density-

independent k  [14, 15].  

In other cases larger slopes around qTk /B  with 75.0  have been observed in 

the experimental relationship GV lnoc  , and a change in the recombination 

mechanisms has been proposed to account for. Instead of a purely bimolecular 

recombination process, a trap-assisted recombination was employed in terms of the 

Shockley-Read-Hall (SRH) mechanism [16, 17]. From that approach it is derived that 

the slope in the relation GV lnoc   is a fingerprint of the particular recombination 

process governing the solar cell performance. Knowledge about the physical 

mechanisms influencing   parameter is then of primary importance to improve organic 

photovoltaic devices. 

However if the occupancy deviates from the simpler Boltzmann statistics because of 

the existence of density-of-states (DOS) distributions in the transport levels or tail states 

penetrating the band gap [18, 19], able to capture free carriers, the determination of ocV  

is only feasible by numerical calculation based on the more general expression 

FpFn EEqV oc , written in terms of the separate carrier Fermi levels. In such cases a 

useful strategy to evaluate the output ocV  has been the determination of carrier 

concentration resulting from the kinetic balance between photogeneration and 

recombination rates [3]. Because this approach does not constrain the DOS occupancy 

to obey the Boltzmann function, the origin of the GV lnoc   slope deviation from 

qTk /B  is not necessarily linked to a change in the recombination mechanism. We will 

next demonstrate that the slope of the relation GV lnoc   is in fact determined by the 

energy disorder exhibited by electron (acceptor) and holes (donor) states. Typical values 

for the energy disorder of the DOS (~100 meV)[20, 21] suffices to explain the observed 

slope values larger than qTk /B . Moreover we will next show how expressions like Eq. 

(1) are limiting cases only valid for weak (50 meV) disorder.  

We will also state that the  -parameter ( 1 ) in the relationship 

GqTkV ln/Boc   corresponds to the inverse of the diode ideality factor of the current 

density-voltage characteristics Vj  , dominated by the carrier recombination current as 

[22]  
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where 0j  stands for the reverse, dark current. As pointed out in previous works  , 

along with transport properties determining the series resistance, is one of the 

parameters determining the fill-factor of the Vj   characteristics which directly affects 

the power conversion efficiency   [23, 24]. 

 

II. Results and Discussion 

In terms of the experimental curves exhibited by bulk-heterojunction solar cells 

under illumination, the response can be well fitted by means of an expression as 

ph
B

0 1
/

exp j
qTk
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jj 


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
   (3) 

Very recently we have addressed the phenomenology of recombination expressed in Eq. 

(2) by looking at the recombination current derivative (so-called recombination 

resistance introduced below) using impedance spectroscopy measurements [25]. Eq. (3) 

describes well empirical responses when FVV   represents the splitting of the electron 

and hole Fermi levels.[22] We have observed that for poly(3-hexylthiophene) (P3HT) 

and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) solar cells recombination and 

photogeneration currents are separated terms, i.e. recombination current results 

independent of the illumination level, and photocurrent is voltage-independent [25].  

In this study polymer solar cells were fabricated using a standard sandwich structure 

of ITO/PEDOT:PSS/P3HT:PCBM/Ca, and 9 mm2 of active area. Pre-cleaned ITO 

coated glass substrates (10 /sq) were treated in a UV-O3 chamber for 5 minutes 

followed by the deposition of PEDOT:PSS by spin coating in air at 5500 rpm for 30 

seconds, film thickness of ~35 nm. The substrates were heated at 120 C for 10 min to 

remove traces of water and were transferred to a glove box equipped with a thermal 

evaporator. The P3HT:PCBM layer was deposited at speeds of 1200 rpm (thickness was 

about 110 nm) for 20 seconds followed by a slow drying process in a petry dish to 

provide a dry film. At this point, all samples were thermally annealed at 130 C for 10 

min to provide an adequate morphology and to promote oxygen desorption. Evaporation 

of the finished contact was carried out at a base pressure of 3×10-6 mbar with Ca/Ag 

(5/100 nm). Devices were encapsulated with a photoresin and a glass microscopy slide 

followed by exposure under UV light. Samples were then taken out of the glove box for 
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device characterization. 

The kinetics of the recombination current recj  is accessible by measuring the 

impedance response of the solar cell in open-circuit conditions [26]. Impedance 

spectroscopy is a small-amplitude electrical technique especially suited to extract ac 

parameters that complements common dc analysis as Vj   curves. In this study Vj   

characteristics and impedance spectroscopy measurements were carried out by varying 

irradiation intensity (1.5G illumination source 1000 W m-2) using an Abet Sun 2000 

Solar Simulator. The light intensity was adjusted with a calibrated Si solar cell. 

Impedance spectroscopy measurements were performed with Autolab PGSTAT-30 

equipped with a frequency analyzer module, and was recorded by applying a small 

voltage perturbation (20 mV rms). Measurements were carried out at different light 

intensity in open-circuit conditions sweeping frequencies from 1 MHz down to 100 Hz. 

The light intensity was measured using an optical power meter 70310 from Oriel 

Instruments where a Si photodiode was used to calibrate the system.  

The impedance spectra are characterized by a major RC arc plus additional minor 

features at high frequency. The low frequency arc is attributed to the processes of carrier 

recombination (resistance recR ) and charge storage (chemical capacitance C ) in the 

photoactive blend [27]. The measured recombination resistance is in fact the derivative 

of the recombination flux as  

1

oc

rec
rec d

d1












V

j

L
R   (4) 

being L  the active layer thickness. As an example of typical extracted parameters we 

show in Fig. 1 experimental results obtained for common P3HT:PCBM solar cells at 

room-temperature. From the capacitance dependence on ocV  it is feasible to estimate the 

charger carrier density by integration of )( ocVC  curve [26], which is a in fact 

representation of the carrier DOS as )( oc
2 VgqC  . We suggested that recombination 

losses restrict the electronic site occupancy to the tail of the DOS because surviving 

photogenerated carriers thermalize into deeper lying states. Gaussian [26] as well as 

exponential [28] DOS have been proposed accounting for the electron states 

distribution, although it is hard distinguishing between both in practical experiments 

because usual illumination intensities are only able to reach low-occupancy conditions 

(1015-1018 cm-3) [28]. Dependences of both resistance and capacitance on ocV  exhibit 

exponential laws as )/exp( Boc TkqVC   , and )/exp( Bocrec TkqVR   with 
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25.0 , and 70.0 , respectively [Fig. 1(a) ]. Since measurements are performed at 

room-temperature one can evaluate the characteristic energy of the DOS that results in 

100/B   qTk  meV, which gives an estimation for the energy broadening 

(disorder degree), in agreement with usually reported values [20, 21]. 

From Eq. (4) and the experimentally observed exponential dependence of the 

recombination resistance on ocV , one recovers Eq. (2). Since solar cells are kept in 

open-circuit conditions at which the kinetic balance between photogeneration and 

charge recombination holds, it is readily implied that 

GqTkjqTkV ln/ln/ BrecBoc   . This last proportionality relations occur because 

GjVj  phocrec )( , in accordance to the electronic reciprocity relationship (local 

carrier density and outer voltage determine each other) [25, 29]. For solar cells having a 

performance severely limited by carrier transport effects the electronic reciprocity might 

fails, but it has been demonstrated that this is not the case of P3HT:PCBM-based 

devices [23]. Consequently the parameter   in the recombination resistance-

dependence on ocV  equals the slope qTk /B  in the relation GV lnoc  . A direct 

measurement of ocV  dependence on illumination intensity shown in Fig. 1(b) allows 

corroborating such expectation. It is observed that the slope in the relation GV lnoc   is 

larger than qTk /B  with 68.0 . We highlight at this point that the deviation from the 

simpler Boltzmann regime can be observed either from impedance spectroscopy 

analysis or through the irradiation intensity variation of the photovoltage. 

In our previous papers energy disorder was identified as being the cause of the open-

circuit voltage offset with respect to the effective band gap [3, 30]. In those works basic 

phenomenology ( ocV  reduction with respect to the effective gap, temperature 

coefficient, and light-dependence of the photovotage) was addressed. gE  was 

interpreted as the energy distance between distribution centers ( 5.1gE  eV in this 

study). This yields an energy offset of 1.1  eV if the onset of fullerene reduction 

(polymer oxidation) peak from cyclic voltammetry is used to define the effective 

bandgap. We assumed Gaussian DOS distributions of donor HOMO and acceptor 

LUMO manifolds with width n  for the acceptor fullerene, and p  for the donor 

polymer [31].  

Recombination is described by a charge-transfer between an occupied electron state 

of the LUMO manifold and an unoccupied hole state of the HOMO distribution.[32] In 

our approach all carriers participate into the recombination process no matter where the 

occupied energy level is. We adopted the Marcus model approach [33], which involves 
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a reorganization energy  . In addition the simulation imposes GEER FpFn ),( , and 

the electroneutrality constraint given by )()( FpFn EpEn  . The Fermi level positions 

can be evaluated by requiring the system of equations to satisfy the previously 

mentioned conditions: first photogeneration rate must be balanced by the recombination 

rate, and the absorber layer should be space-charge free. Simulation also assumes 

perfectly selective ohmic contacts [3, 30]. 

Figure 2 shows calculations of the variation of ocV  with the logarithm of the light 

intensity for different degrees of disorder, using a representative set of simulation 

parameters [3, 30]. We note that the expected relation GV lnoc   is always observed 

regardless the temperature and the disorder degree. In Fig. 3 the slope is plotted as a 

function of the temperature in terms of the   parameter in qTk /B  that results within 

10   . One can observe that only for weak disorder ( 50  meV) 1  for 

temperatures in excess of 200 K. For more physically realistic disorder ( 50  meV) a 

clear transition is exhibited between a nearly Boltzmann regime at high temperatures 

( 250T  K), and a response with larger slope values 1 . Higher disorder degrees 

produce in all cases strong deviations from the ideal Boltzmann statistics. In order to 

explore whether the slope change (represented by the   parameter) is actually produced 

by the energy disorder, and not to the variations of the recombination rate on energy as 

implied by the Marcus rate approach [3, 30], another set of simulations are carried out 

which includes the energy-independent recombination rate as knpR   with a constant 

k . Similar trends are encountered (not shown) which reinforce the idea it is actually 

disorder that produces the observed deviations from the ideal Boltzmann behavior. 

The reason behind the variation of the slope qTk /B  in the relation GV lnoc   is 

connected with the concept of the charge carrier equilibration energy, usually employed 

in studies of carrier transport in disordered media [31]. One can alternatively understand 

it in terms of the so-called thermodynamic factor which allows calculating the deviation 

from the Boltzmann statistics [34, 35]. In steady-state conditions, low disorder, high-

temperature and low occupancy ( 2
LUMO 10/ Nn ), the photogenerated carriers, which 

are initially distributed along DOS shape, thermalize into the Gaussian tail with an 

average, equilibration energy Tkn B
2 /  below LUMOE . Such energy signals the mean 

energy level of the charge carriers and is located above the concentration-dependent 

Fermi level, i.e. TkE nFn B
2 /  (see Fig. 4) [31]. Similarly for holes one can define 

Tkp B
2 /  above HOMOE . Because of the lower location of the Fermi level in case of 

low occupancy, the equilibration energy TkB
2 /  establishes an upper limit to the 
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achievable photovoltage. Under these conditions carriers follow the Boltzmann statistics 

and a slope equal to qTk /B  is expected. In this particular case is even possible to give 

an analytical expression for ocV . A straightforward calculation allows determining the 

Fermi level positions [36] from which [30]  














np

NN
Tk

Tk
EqV

pn
g

HOMOLUMO
B

B

22

oc ln
2


. (5) 

This last expression contains the term related to the electron and hole equilibration 

energies as discussed above. Note here that the second summand is not present in the 

Fermi level splitting calculation given in Eq. (1), and it can be interpreted as a reduction 

of the effective bandgap TkEE pngg B
22 2/)(   . 

For larger disorder and low-temperature the equilibration energy is placed deep into 

the bandgap. For disorder values around 50 meV there exists a critical temperature 

250c T  K at which TkE nFn B
2 /  respect to the LUMO mean and 

TkE pFp B
2 /  respect to the HOMO mean. Above cT  occupancy obeys the 

Boltzmann approximation and consequently Eq. (5) could be applied. At lower 

temperatures ( cTT  ) the Fermi level is situated at energies higher than TkB
2 / , and 

coincides with the energy of maximum occupancy within the Gaussian DOS as depicted 

in Fig. 4. Under this regime the carrier no longer follows the Boltzmann approximation 

[Eq. (5)] and consequently the slope in GV lnoc   departs from qTk /B . Strong 

disorder ( 50  meV) produces deviations ( 1  as observed in Fig. 3) within the 

whole temperature range explored. This response appears as a distinctive feature of 

organic disordered compounds related to the Gaussian DOS occupancy. The two 

extreme regimes (Boltzmann for high-temperature and 50  meV, and non-ideal for 

larger disorder) are drawn in the energy scheme of Fig. 4.  

Because solar cells function around room-temperature it is shown in Fig. 5 the 

variation of   as a function of the disorder degree. As observed   is extremely 

sensitive to small changes of   within the range of 10050   meV, following a 

relationship as 1ln   . We remark that parameters extracted from the impedance 

analysis shown in Fig. 1 correlate well with the predicted relationship between energy 

disorder and  -recombination model in Eq. (2), as confirmed by the location of the 

experimental point in Fig. 5. This implies that the recombination flux, and consequently 

the solar cell fill factor are highly influenced by the energy disorder degree, reducing the 

overall power-conversion efficiency. It is important to note here that the solar cell fill 
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factor may have been also affected by deficient charge carrier transport, particularly for 

thicker active layer films. 

As pointed out in previous works the energy distribution of electronic states (DOS) 

of both fullerene acceptor and polymer donor has turned to be a fundamental piece of 

knowledge for understanding solar cell performance [26, 37]. Disorder was identified as 

a cause of reduction in ocV , and this has been confirmed by alternative theoretical 

approaches more recently [4, 35]. We highlight that reduction in ocV  follows exactly the 

same trend as that encountered for the variation of   with disorder (Fig. 5). One can 

infer therefore that ocV  as observed in the inset of Fig. 5. For low disorder ( 50  

meV) 1  at high temperature (300 K), a rough estimation of the total reduction in 

ocV  with respect to the effective bandgap can be calculating by using Eq. (5). The 

second summand amounts ~100 meV for 50  meV, and additional drop in ocV  

appears as a consequence of the partial DOS occupancy represented by the third 

summand in Eq. (5). Excess photogenerated charge carriers for usual illumination 

intensities around 1 sun, lies within n 1017-1018 cm-3 [28], so as to reduce further the 

Fermi level splitting in 350-250 meV, assuming  HOMOLUMO NN 1020 cm-3. These 

rough estimations are in good agreement with the results of our simulation in Fig. 5. 

When the Boltzmann approximation is no longer valid ( 1 ) a dramatic drop in 

ocV  is derived. The experimentally observed correlation between the onset in fullerene 

reduction and polymer oxidation potentials, and the achieved ocV  at 1 sun irradiation 

intensity,  )()( onset
HOMO

onset
LUMOoc DEAEqV [38] (with 3.0  eV) is then 

understood in terms of the DOS occupancy modulation. It is worth noting that for 

100  eV the usually reported value for photovoltage 6.0oc V  V for P3HT:PCBM-

based solar cells is predicted as illustrated in Fig. 5. 

 

III: Conclusions 

In summary we have presented new evidences on the detrimental effect on solar cell 

performance of inherent energy disorder exhibited by organic materials. A connection is 

established between the disorder degree and the reduction in fill-factor (through the  -

parameter entering the recombination current-dependence on voltage) on the one hand, 

and open-circuit voltage, on the other. A huge reduction in   and open-circuit voltage 

is predicted following a relationship as 1
oc ln  V . This implies that the 

recombination flux, and consequently the solar cell fill factor are highly influenced by 

the energy disorder degree, reducing the overall power-conversion efficiency. 
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Figure captions 

Fig. 1 

(a) Recombination resistance of a P3HT:PCBM-based solar cell extracted from 

impedance spectroscopy exhibiting an exponential dependence on ocV  as 

)/exp( Bocrec TkqVR  , with 70.0 , and chemical capacitance following 

)/exp( Boc TkqVC    with 25.0 . An estimation of the disorder degree results in 

in 100/B   qTk  meV. (b) Open-circuit voltage dependence on light intensity 

following GqTkV ln/Boc   with 68.0 . 

 

Fig. 2 

Open-circuit voltage resulting from model simulations as a function of light intensity, 

for different temperatures and disorder degrees. Parameters used in the simulation: 

5.1)()( HOMOLUMO  DEAEEg  eV, 20
HOMOLUMO 10 NN  cm-3, recombination 

coefficient 1310k  cm3 s-1, 1  eV, and LG /105.7 16  cm3 s-1 (layer thickness 

100L  nm) corresponds to I 100 mW cm-2. Other parameters marked in each curve, 

and pn   . A linear response is observed as GqTkV ln/Boc   

Fig. 3 

Variation of  -parameter calculated from the slopes qTk /B  in Fig. 2 as a function of 

temperature, for different disorder degree  .  

Fig. 4 

Diagram of electron Gaussian density-of-states (solid line) and occupancy (filled) at 

high- and low-temperature respect to cT . The position of electron Femi level and the 

equilibration energy Tkn B
2 /  respect to the LUMO mean is indicated. 

Fig. 5 

Dependence of  -parameter and open-circuit voltage on disorder degree pn   , 

at high-temperature (300 K) as derived from simulations in Fig. 2. A relationship of the 

type 1ln    is observed. Triangle indicates experimental values of   and   

extracted from impedance measurements in Fig. 1. In the inset: linear correlation as 

ocV . 
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