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ABSTRACT: The objective of this study was to elaborate a series of 

mathematical models with the aim of short-term prediction of TSP, PM10, As, 

Cd, Ni and Pb in air ambient. These pollutants depend on some known variables 

(meteorological variables). The goal is to provide a useful instrument to alert the 

population facing possible episodes of high concentrations of atmospheric 

pollutants. The study was carried out in a highly industrialized area in the ceramic 

cluster of Castellón during five years (2001-2005). The origin of the 

contamination in this area is both natural and anthropogenic. The natural origin is 

due to the resuspension of mineral materials from the surrounding mountains and 

from the long-range transport of materials from North Africa. The anthropogenic 

contamination sources that stand out include the non-metallic mineral material 

industries (ceramic production), chemical industries (color, frit and enamel 

manufacturing) as well as vehicular traffic. Once the particle samples were 
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collected in quartz fiber filters, the concentration levels of TSP and PM10 were 

determined gravimetrically. The chemical analysis of the filters was carried out by 

ICP-MS. Predictive models have been constructed by using Multiple Regression 

Analysis together with Time Series Models (ARIMA). The SPSS 14.0 statistical 

software has been employed to analyse the obtained experimental data. 

 

KEYWORDS: air pollution, ambient air, prediction models, public health, TSP, 

PM10, heavy metals. 

INTRODUCTION 

The high development reached by our society, due to a constant increase in the 

demand of consumer goods and from the requirements of technological advances, 

brings as a consequence the use of raw materials and their subsequent industrial 

transformation. All this introduces large quantities of chemical substances into the 

atmosphere, whose behavior in the natural environment and the effects upon 

living organisms and material goods are unknown in some cases (Boix et al. 2001; 

Jordan et al. 2005). Furthermore, they influence increasing global problems 

affecting the climate (Kelessis 2001), such as global warming, environmental 

acidification, photochemical smog and ozone layer depletion (Sivakumar 2006, 

McMicahel et al. 2006, Kantarci et al. 2001). 

 

The requirement for clean and pure air comes from treating it as a limited and 

common good, indispensable for life. The Earth’s atmosphere is finite and its self-

cleansing capacity has limits. As such its utilization must be subjected to practices 
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that prevent the deterioration of its quality, from either use or abuse, in such a way 

that its purity is preserved for a guaranteed normal development of living beings 

(Vicente et al. 2007).  

 

In the present study an assessment of atmospheric air quality was conducted, 

keeping in mind the atmospheric particulate, TSP (total suspended particles) and 

PM10 (particles less than 10 µm) in a Spanish coastal area (municipality of Vila-

real, Fig. 1), for 5 years (2001-2005). The objective was to elaborate a series of 

mathematical models with the aim of short-term prediction of these pollutants that 

depend on some meteorological variables. The goal is to provide a useful 

instrument to alert the population facing possible episodes of high concentrations 

of atmospheric pollutants. 

 

DESCRIPTION OF THE STUDY AREA 

The study area is located in an important ceramic industrial zone in the province 

of Castellón, East Spain (Fig. 1). This area produces approximately 93% of the 

Spanish ceramic tiles and 95 % of its frits, enamels and colors. It is at the E-SE 

part of the province, and covers approximately 1000 Km
2
. Given the density of 

industries in Vila-real, this municipality was chosen from the ceramic industrial 

cluster. This city, with approximately 49,000 inhabitants, is located at 39º 56’ 

North, 0º 56’ West, and is 46 meters above sea level. The population nucleus 

resides between two fluvial basins, the River Millars to the North and the Riu Sec 

to the South. 
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The origin of pollutants in this area is both natural and anthropogenic. The natural 

origin is due to the resuspension of mineral materials from the surrounding 

mountains (Gómez et al. 2004) and from the long-range transport of materials 

from North Africa (Rodríguez et al. 2004, Pérez et al. 2006) The anthropogenic 

pollution sources (Fig. 2) are the traffic (mobile sources), and also originate from 

the manufacturers of ceramic tiles and raw material as frits, enamel and ceramic 

colours (fixed sources) (Sanfeliu et al. 2002, Vicente et al. 2007). 

 

SAMPLING CONDITIONS 

The sampling station was set up, conforming to the guideline of the implantation 

of European Council Directive 1999/30/EC, in the south-western part of the city 

(UTM: X 746.543 Y 4.424.906). In order to avoid measuring microclimates, it 

was located in an open area covering al least 500 m
2
. There were no restrictions to 

the airflow around the sampling entrance point, established approximately 3 

meters above ground level on a special metallic platform. There were no local 

emission sources nearby, thus avoiding a distortion of the sample due to the 

influence of smoke plums from specific pollutants. 

 

The technology of the equipment used consists in blowing air through an inlet 

with a vacuum pump. According to the characteristics of the inlet, different types 

of atmospheric particles were collected, TSP or PM10 (Vicente et al. 2007). 

Particles were trapped on a permeable support, being a 47mm diameter filter. 

Quartz fiber filters were used in the sampling. They are made of a pure SiO2 base, 
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with a totally free of additives. Polystyrene cassettes were used to protect the 

filters during transport and storage. 

 

A PM10 medium volume sampler was used, model IND-LVS3, manufactured by 

Kleinfiltergerät. This device is considered as a reference according to European 

regulations (European Council Directive 1999/30/EC; UNE-EN 12341:1999) for 

the sampling of PM10 particles. The particulate matter was blown in through the 

opening circumference between the frame and round cover mounted on top. 

Within the sampler inlet the airflow was accelerated by eight impactor nozzles 

and then directed toward the impacting surface. The device contains a temperature 

sensor, with a radiation protector that eliminates deviations in the reading due to 

solar radiation. It also has a pressure sensor. The sampling volume of flow was 

2.3m
3
/h during 24-h periods. A total of 887 PM10 samples were collected. 

 

The captor for TSP sampling used was a high-volume MCV-8D sampler, to fulfill 

European Council Directive 80/779/EEC. The flow volume was 1.5m
3
/h during 

24-h periods. A total of 1003 TSP samples were collected. 

 

Meteorological dates were also obtained from an automatic meteorological station 

(Weather Monitoring II-DAVIS). Daily dates were used to build a matrix for each 

sampling period with the following parameters: daily mean temperature, daily 

mean atmospheric pressure, daily mean humidity, wind direction, wind speed and 

daily total precipitation. 
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METHODOLOGY 

Gravimetrical analysis 

Particle concentration levels were determined gravimetrically. This method 

consists in weighing the empty filters and with sample. The filters must be kept 

for at least 48-h in a special chamber (Fig. 3 and 4). The conditions inside the 

chamber are 50% relative humidity and 20ºC temperature, according to normative 

UNE–EN 12341:1999. 

 

Filters were weighed on an analytical scale with a precision of 0.1 mg (Fig. 5). 

The PM concentration levels are determined from the sample quantities obtained 

and the volume of air pumped using the expression:  

CPM= (Pm-Pv) 10
6
/Vair 

Being:  

- CPM: particle concentration in µg/m
3
 

- Pm: Weight of the sampled filter in gr 

- Pv: Empty weight of the filter in gr 

- Vair: Volume of air pumped in m
3
 

Analytical analysis 

The As, Cd, Ni and Pb levels in the PM10 samples were determined by ICP-MS. 

The equipment utilized is a PerkinElmer model Elan-6000, with a 3600 lines/mm 

holographic network, 1 meter focal distance, 0.26nm/mm linear dispersion, 27.12 

MHz frequency and 1.60 kw maximum power. The instrumental technique allows 

a rapid way to determinate As, Cd, Ni and Pb concentration after dissolution of 

the sample. The dissolution is obtained by acid digestion in hermetic Teflon 
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recipients. This methodology has been used by many authors (Kubilay et al. 1995 

and Querol et al. 2000).  

 

In order to determine the possible traces of As, Cd, Ni and Pb that the reagents 

and quartz filter fibers might contain, which give rise to sample contamination, 

digestions with only reagents (blank reagents) and filters without a sample (blank 

filters) are performed. The SRM 1648 “urban particulate matter” pattern was used 

to validate the results, whose composition is particulate matter of anthropogenic 

origin which was collected in an industrialized urban atmosphere and was 

adequate for use as a reference standard. 

 

With the values obtained in ppb from the aforementioned technique described, the 

As, Cd, Ni and Pb concentration levels were determined, keeping in mind the 

possible traces that the reagents and quartz fiber filters utilized in the collection of 

samples may contain. The values are expressed in micrograms of As, Cd, Ni and 

Pb in PM10 per cubic meter of air. 

 

Statistical analysis 

As available data is time dependent, predictive models have been constructed by 

using Multiple Regression Analysis (Rencher 2000) together with Time Series 

Models (Wei 1990). We recall that one of the standard hypotheses in Multiple 

Regression Analysis is the independence of the residual errors. However if 

variables are periodically observed over time, a lack of independence occurs and 
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therefore straightforward linear regression predictions are inefficient. To avoid 

this difficulty, Time Series analysis, and more concretely ARIMA models, were 

used for modeling the behavior of residual errors. The SPSS 14.0 statistical 

software has been employed to analyze the experimental data obtained. 

ATMOSPHERIC POLLUTING AGENTS PREDICTION MODELS 

The objective of this study is to construct a model to obtain predictions of a 

dependent variable based on several independent variables with information over 

time. The dependent variables are: TSP and PM10 in µg/m
3
, As, Cd, Ni, and Pb in 

ng/m
3
. Independent variables are the following meteorological variables: average 

wind speed (Vav, m/s), maximum wind speed (Vmax, m/s), predominant wind 

direction (DirDomi, degrees), average temperature (Tav, degrees Celsius), relative 

humidity (RH in %) and pressure (P, milibares). All the independent variables 

were initially considered in the model, but only those that were significant ones 

are finally used to obtain predictions. The values of the different variables used 

were daily averages. 

The models obtained are the following, where ε(t) is the prediction error, and is 

estimated as the difference between the observed value and the predicted value in 

the model. a(t) is white noise with standard normal distribution. 

TSP model 

 
TSP(t) = -1256.970 + 2.545 Tav(t) – 0.055 DirDom(t) + 1.282 P(t) + ε(t) 

ε(t) - ε(-t-1)= -0.549 ε(t-1) – 0.316 ε(t-2)+ a(t)  

ε(t) = 0.451 ε(t-1)- 0.316 ε(t-2) + a(t) 

 

TSP(t) = -1256.970+2.545Tav(t)–0.055DirDom(t)+1.282P(t)+0.451+ε(t-1)–0.316ε(t-2)+ a(t) 
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The correlation coefficient obtained as a result of the primary multiple regression 

fitting is R
2
=0.55. The residuals obtained do not follow a normal distribution after 

being tested with the corresponding goodness-of-fit test in this case. With regard 

to fitting residuals with the ARIMA model, the autocorrelation and partial 

autocorrelation functions of the residuals are presented in the figure 6, after 

analysing several ARIMA models, modelling with an AR(2) model was decided, 

which is also a totally valid model for making predictions. In this case, we note 

how the stationary conditions are fulfilled as far as the estimations of the 

calculated model parameters are concerned. In table 1, we may also observe how 

the coefficients significantly differ from zero. 

 

TSP are solid or liquid particles with high sedimentation velocities and relatively 

short residence periods in the atmosphere. Their size range is between 0.1 and 

32µm. 

 

TSP presents a direct relationship with de temperature and atmospheric pressure. 

In the case of the temperature, this is due to increase that cause the dryness of the 

substrate in the area and which favors resuspension of the particles from this 

substrate (Colombo et al. 1999). This fact causes an increase of TSP concentration 

levels in the atmosphere. On the other hand, when the pressure increases there is 

less expansion in the lowest layers of the atmosphere, which carry less dispersion 

of the pollutants with it, and their concentration increase (Wark et al. 2000). 
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The relationship between TSP and predominant direction is inverse. The 

concentration of TSP increases under low degree directions, for example NE (45º) 

winds, and decreases if the predominant wind is W (270º) or NW (315º). This 

behavior is logical if we bear in mind that the greatest sources of TSP are the 

ceramic sector businesses located between the SW (225º) and NW (315º) in 

relation to the sampling point (Fig.2). 

 

PM10 model 

PM10(t)  = -1110.954 + 1.168 Tav(t)  – 0.024 DirDom(t  + 0.257 RH(t)  + 1.112 P(t) + ε(t) 

ε(t) - ε(-t-1)= -0.552 ε(t-1) – 0.342 ε(t-2)+ a(t)  

ε(t) = 0.448 ε(t-1)- 0.342 ε(t-2) + a(t) 

 

PM10(t)=-1110.954+1.168Tav(t)–0.024DirDom(t)+0.257RH(t)+1.112P(t)+0.448ε(t)–0.342ε(t-2)+ 

a(t) 

The correlation coefficient obtained as a result of the primary multiple regression 

fitting is R
2
=0.45. The residuals obtained do not follow a normal distribution after 

being tested with the corresponding goodness-of-fit test in this case too. With 

regard to fitting residuals with the ARIMA model, the autocorrelation and partial 

autocorrelation functions of the residuals are presented in the figure 7, after 

analysing several ARIMA models, modelling with an AR(2) model was decided, 

which is also a totally valid model for making predictions. In this case, we note 

how the stationary conditions are fulfilled as far as the estimations of the 

calculated model parameters are concerned. In table 2, we may also observe how 

the coefficients significantly differ from zero. 
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Like in the TSP model, PM10 (particles between 0.1-10µm) depend in the same 

way upon the meteorological variables of average temperature, predominant wind 

direction and atmospheric pressure. The explanation is the same for TSP. 

 

Unlike the TSP model however, the PM10 model reveals a direct relationship 

between this pollutant and the relative humidity (RH). This new variable 

introduces the influence of traffic on the PM10. The particles from traffic that 

contribute to PM10 present a small particle size, that is, those within the PM10 

range are in the smallest region, of around 1-2µm. These particles are influenced 

by condensation processes which, at the same time, are governed by 

environmental humidity. More humidity leads to greater condensation (McGregor 

1999), and to increase concentrations of these particles.  

 

Arsenic model 

As(t)  = 13.104 + 0.064 PM10(t)  – 0.333 Tav(t)  + ε(t) 

ε(t) - ε(-t-1)= -0.576 ε(t-1) – 0.239 ε(t-2)+ a(t)  

ε(t) = 0.424 ε(t-1)- 0.239 ε(t-2) + a(t) 

 

As(t) = 13.104 + 0.064 PM10(t) – 0.333 Tav(t) + 0.448 ε(t-1) – 0.34.2 ε(t-2) + a(t) 

For arsenic, the correlation coefficient obtained as a result of the primary multiple 

regression fitting is R
2
=0.52, and the residuals obtained do not follow a normal 

distribution after being tested with the corresponding goodness-of-fit test. The 

autocorrelation and partial autocorrelation functions of the residuals (Fig. 8) show 

that the ARIMA AR(2) model is the best option. We note how the stationary 

conditions are fulfilled as far as the estimations of the calculated model 
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parameters are concerned. In the table 3, we may also observe how the 

coefficients significantly differ from zero. 

 

Arsenic is a very volatile element that is presented in the lowest grain size 

fractions of PM10, 74.8% of arsenic is found in the fraction <0.6µm (Fernández et 

al. 2001). It inversely depends on temperature. Arsenic oxides, from different 

local sources, condense upon contact with the atmosphere; the aerosol-vapor 

equilibrium depends on the temperature. At low temperatures the aerosol phase is 

favored and at high temperatures the vapor phase (Pallarés et al. 2007). Because 

of this, the arsenic concentration increases at low temperatures just as the model 

demonstrates. Arsenic is shed by several of aforementioned sources, it must be 

noted that it stems from the combustion of combustible fossils, which are used in 

many fields. From here on it does not depend upon meteorological factors other 

than wind direction. 

 

Cadmium model 

Cd(t) = 1.541 + 0.034 Vmax(t) + ε(t) 

The correlation coefficient obtained as a result of the primary multiple regression 

fitting is R
2
=0.6, the residuals obtained follow a normal distribution after being 

tested with the corresponding goodness-of-fit test. In this case, and given the 

autocorrelation functions of the residuals (Fig. 9), the use of the former regression 

model to make predictions was decided rather than any type of ARIMA model. 
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Cadmium, according to the proposed model, is related with the maximum wind 

velocity. This element is the chemical element studied that appears in lesser 

concentrations in PM10. Cadmium is found in 61.3% of that associated with the 

fraction <0.6µm (Fernández et al. 2001), from which it has long residence times 

in the atmosphere (Röösli et al. 2001). By being the element with the lowest 

concentration, the variations it can undergo are influenced by external 

contributions when suitable atmospheric conditions take place with the arrival of 

pollutants from locations at considerable distance from the sampling point. Thus, 

there the only significant variable that appears in the proposed model is maximum 

wind velocity. Therefore, cadmium concentration levels increase with the 

velocity, disperse a large amount of particles and arrive at the sampling point from 

external sources in large numbers (Fig. 2). 

 

Nickel model 

Ni(t)  = -2.682 + 0.045 PM10(t)  + 0.083 Tav(t) + 0.009 DirDom(t) + 0.0 44 RH(t) + ε(t) 

ε(t) - ε(-t-1)= -0.540 ε(t-1) – 0.256 ε(t-2)+ a(t)  

ε(t) = 0.460 ε(t-1)- 0.256 ε(t-2) + a(t) 

 

Ni(t)=-2.682+0.045PM10(t)+0.083Tav(t)+0.009DirDom(t)+0.044RH(t)+0.46ε(t-1)–0.256ε(t-2)+ 

a(t) 

The correlation coefficient obtained as a result of the primary multiple regression 

fitting is R
2
=0.40, and the residuals obtained do not follow a normal distribution 

after being tested with the corresponding goodness-of-fit test. Once again, 

modelling with an AR(2) model was done as it was considered to be the best 

option for making predictions (Fig. 10). In this case, we note how the stationary 
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conditions are fulfilled as far as the estimations of the calculated model 

parameters are concerned. In the table 4, we may also observe how the 

coefficients significantly differ from zero. 

 

Nickel, like the previous chemical elements, is found in a high percentage, 57.5% 

in the fraction <0.6µm (Fernández et al. 2001). The main origin of nickel is the 

combustion of combustible fossils, as it is found in petroleum in traces. The main 

sources of this pollutant are the power station and the petrochemical plant in the 

“Grao de Castellón”, located to the SE of the sampling point (Fig. 2). For this 

reason the model presents a direct relationship with the dominant wind direction. 

At wind directions between SW (225º) and NW (315º), the arrival of pollutants 

from the “Grao de Castellón” is favored and the nickel concentration levels 

increase at the sampling point. Nickel also presents a direct relationship with the 

temperature. The main emission sources of nickel, the power station and 

petrochemical plant, emit this pollutant in the form of airborne ashes and not in a 

gaseous state (Boix et al. 2001). These airborne ashes have a very fine grain size 

and the temperature influences their dispersion. A greater atmospheric turbulence 

is noted at high temperatures(Wark et al. 2000), and this is due to a greater 

dispersion, which make that these ashes arrive from greater distance, and increase 

the nickel concentration levels increase at the sampling point, just as the model 

presents. Relative humidity is another significant variable in this model; it 

presents a direct relationship with the nickel. A higher relative humidity means 

greater condensation (McGregor 1999), and increases concentration levels of this 

pollutant. 
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Lead model 

Pb(t)  = -5072.687 + 1.474 Vmax(t)  – 0.175 DirDom(t)  + 1.651 RH(t)  + 5.105 P(t)  + ε(t) 

ε(t) - ε(-t-1)= -0.555 ε(t-1) – 0.297 ε(t-2)+ a(t)  

ε(t) = 0.445 ε(t-1)- 0.297 ε(t-2) + a(t) 

 

Pb(t)=-5072.687+1.474Vmax(t)–0.175DirDom(t)+1.651RH(t)+5.105P(t)+0.445ε(t-1)–0.297ε(t-2) 

+ a(t) 

 

The correlation coefficient obtained as a result of the primary multiple regression 

fitting is R
2
=0.58, and the residuals obtained do not follow a normal distribution 

after being tested with the corresponding goodness-of-fit test. Once again, 

modelling was done an AR(2) model as it was considered to be the best option for 

making predictions (Fig. 11).In this case, we note how the stationary conditions 

are fulfilled as far as the estimations of the calculated model parameters are 

concerned. In table 5, we may also observe how the coefficients significantly 

differ from zero. 

 

Lead has the highest concentration levels in PM10 than the other studied 

elements. Notwithstanding, the variation of its concentration levels with the PM10 

variation is not sufficiently significant for this variable to appear in the proposed 

model. Like the other chemical elements, it is associated with the finest PM10 

fraction, 69.0% is found in the fraction < 0.6µm (Fernández et al. 2001). The 

main emission sources of lead are the ceramic industries located between the NW 

(315º) and SW (225º) from the sampling point (Fig.2). This pollutant presents an 

inverse relationship with the dominant wind direction and a direct relationship 
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with the maximum wind velocity. We must be in main that this element is heavier 

than those previous ones and presents a greater concentration. Although its 

emission source is closer than the previous elements, greater wind velocities are 

needed to displace it. This model also presents a direct relationship between the 

lead and the relative humidity and the atmospheric pressure. As explained in 

previous models, higher relative humidity favors condensation (McGregor 1999), 

and increases the concentration levels of this pollutant. Likewise an increase in 

pressure reduces the expansion of the lowest atmospheric layers, and pollutant 

dispersion decreases (Wark et al. 2000), leads to increase concentration increases 

of lead. 

 

CONCLUSIONS 

Some easy applied prediction models of the studied atmospheric pollutants have 

been developed and are presented as a useful to alert the population for possible 

episodes of high contamination.  

 

The independent variables, considered to be significant in the final prediction 

models, mark the importance of the types of anthropogenic emissions that occur 

in the study area, and the influence they exercise upon the concentration levels of 

the different atmospheric pollutants. Therefore, the variables of predominant 

direction and maximum wind velocity indicate from which industrial park the 

contamination comes; the average temperature indicates the relationship with the 

types of industrial processes developed in the area, and this variable along with 
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the atmospheric pressure and relative humidity mark the convective dynamic of 

the atmosphere that carries a greater or lesser dispersion of the pollutants. 
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