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EIncidence of status epilepticus (SE) is higher in children than in adults and SE can be induced

in developing rats. The cerebellum can be affected after SE; however, consequences of
cerebellar amino acid transmission have been poorly studied. The goal of this study was
to determine amino acid tissue concentration and GABAA receptor binding in the
immature rat cerebellum after an episode of SE. Thirteen-day-old (P13) rat pups received in-
traperitoneal injections of lithium chloride (3 mEq/kg). Twenty hours later, on P14, SE was
induced by subcutaneous injection of pilocarpine hydrochloride (60 mg/kg). Control ani-
mals were given an equal volume of saline subcutaneously. Animals were killed 24 h after
SE induction, the cerebellum was quickly removed, and the vermis and hemispheres were
rapidly dissected out on ice. Amino acid tissue concentrations in the vermis and hemi-
spheres were evaluated by HPLC and fluorescent detection. GABAA receptor binding in the
medial vermis was analyzed by in vitro autoradiography. SE increased the tissue levels of
the inhibitory amino acids taurine (80%) and alanine (91%), as well as glutamine (168%) in
the cerebellar hemisphere; no changes were observed in the vermis. SE did not modify
GABAA receptor binding in any cerebellar lobule from the vermis. Our data demonstrate
that SE produces region-specific changes in amino acid concentrations in the developing
cerebellum.

© 2011 Published by Elsevier B.V.
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Developing rat
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GABAA receptor
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U1. Introduction

Status epilepticus (SE) is considered a non-self-limited type of
epileptic seizure (Engel, 2006) and is characterized by an en-
during epileptic state during which seizures are unremitting
and tend to be self-perpetuating (Chen et al., 2007). Epidemio-
logic studies indicate that SE is more common in young chil-
e Investigaciones, Universida
cruz, Mexico. Fax: +52 228
. López-Meraz).

hed by Elsevier B.V.

.-L., et al., Amino acid ti
Brain Res. (2012), doi:10
dren (DeLorenzo et al., 1995, 1996; Hauser, 1994). SE can be
induced experimentally in developing rats using the lithi-
um–pilocarpine model, which reproduces motor seizure man-
ifestations and causes extensive neuronal injury in several
brain areas (Lopez-Meraz et al., 2010; Sankar et al., 1992).

Participation of the cerebellum in seizures or epilepsy has
been under debate for several years. Some reports suggest
d Veracruzana, Av. Luis Castelazo s/n Carr. Xalapa-Veracruz, Km. 3.5
8418900x13611.

ssue levels and GABAA receptor binding in the developing rat
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that cerebellar outflow pathways are seizure inhibitory (Dow
et al., 1962; Miller et al., 1993; Rubio et al., 2011). Additionally,
data from humans and experimental animal models show
that SE can cause damage in the cerebellum (Crooks et al.,
2000; Dam et al., 1984; Fujikawa et al., 2000; Leifer et al.,
1991; Suga and Wasterlain, 1980); however, few studies have
investigated the consequences of SE on the developing cere-
bellum. In this respect, it is known that SE reduces cerebellar
weight and DNA synthesis in immature rats, effects that are
related to a delay in maturation of behavioral milestones
(Wasterlain, 1976). Recently, it has been reported that
pentylenetetrazol-induced seizures in 10-day-old (P10) rat
pups lead to loss of Purkinje cells and reduced cell prolifera-
tion in the cerebellum (Lomoio et al., 2011).

Amino acid transmitters are particularly abundant in the
cerebellum (Plaitakis, 1992). Most synaptic inhibition in the
cerebellum, beginning in the second week of life, is mediated
by GABAA receptors (Brickley et al., 1996), which are abundant
in the granule layer (Brickley et al., 1996; Fritschy and
Panzanelli, 2011). It has been reported that during lithium–pi-
locarpine-induced SE in adult rats, amino acid levels can be
modified, e.g., aspartate concentration in the whole cerebel-
lum decreases, whereas glutamine increases (Walton et al.,
1990). Additionally, 30 min of hyperthermic seizures induced
in P10 rats modifies tissue amino acid concentration in the
cerebellum 24 h following convulsions, changes that include
decreases in GABA, taurine, and alanine inhibitory amino
acid levels and an increase in the concentration of the excit-
atory amino acid aspartate (González Ramírez et al., 2010).
Thus, the purpose of this study was to determine amino acid
U
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O
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C

Fig. 1 – Amino acid tissue content (μg/mg protein) in hemispher
SE (white bars) or in age-matched controls (black bars). Abbrevia
glutamine; ASP, aspartate; ALA, alanine; GLY, glycine; TAU, taur
*p<0.05 vs. control; Student'st-test.

Please cite this article as: López-Meraz, M.-L., et al., Amino acid ti
cerebellum following status epilepticus, Brain Res. (2012), doi:10
concentrations and GABAA receptor binding in the cerebellar
vermis and hemispheres after lithium–pilocarpine-induced
SE in P14 rats.
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2. Results

All animals injected with pilocarpine developed generalized
motor seizures scored as stage 5 as well as SE. Latency to SE
was 17±0.7 min, and duration of behavioral SE was 4.7±0.4 h.

2.1. Tissue amino acid content

In hemispheres, taurine (TAU, 80%; t(8)=−2.886, p=0.02), ala-
nine (ALA, 91%; t(8)=−2.629, p=0.03), and glutamine (GLN,
168%; t(8)=−2.881, p=0.02) displayed significantly increased
levels following SE compared with control rats; no changes
between SE and control groups were observed in the tissue
concentration of glutamate (GLU, t(8)=−1.715; p=0.13), aspar-
tate (ASP, t(8)=−1.29; p=0.22), GABA (t(8)=−1.743; p=0.12),
and glycine (GLY, t(8)=−1.779; p=0.11). In the vermis, no dif-
ference was detected in the concentration of any amino acid
analyzed following seizures as compared with the control
group (Fig. 1).

2.2. GABAA receptor binding

Apparent 3H-muscimol binding was detected in the granule
layer of all lobules from the medial vermis. Low GABAA recep-
tor levels were also observed in the molecular layer (data not
es (upper panel) and the vermis (bottom panel) 24 h after
tions: GABA, γ-aminobutyric acid; GLU, glutamate; GLN,
ine. The graphs represent the mean±S.E.M. (n=5 per group)

ssue levels and GABAA receptor binding in the developing rat
.1016/j.brainres.2011.12.038
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Fig. 2 – Representative distribution of GABAA receptors labeled with 3H-muscimol in cerebellar sections at the medial vermis
from a control rat (left panel) and an SE rat (right panel) (A). High receptor binding appears as black or dark gray color, whereas
white color indicates low receptor binding. Cerebellar lobules are numbered from I to X. GABAA receptor levels (fmol/mg
protein) in cerebellar lobules from the medial vermis (B). Black bars represent control animals, and white bars correspond to
animals 24 h after SE. Data are represented as the median±interquartile range (n=4 per group). No statistical differences were
found between experimental groups when compared using the Mann–Whitney U test.
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Eshown here), but no obvious 3H-muscimol binding was

detected in the Purkinje layer (Fig. 2). SE did not significantly
modify the GABAA receptor levels in the granule layer of each
cerebellar lobule compared to those from control animals
(p>0.05; Fig. 2). Total cerebellar GABAA receptor binding was
similar in the vermis of control (5909±1173 fmol/mg protein)
and SE (6608±4234 fmol/mg protein) groups (U=9, p=0.886).
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3. Discussion

In this study, we observed enhanced concentrations of ALA,
TAU, and GLN, but not GLU, ASP, GABA, or GLY in the cerebel-
lar hemispheres 24 h after SE induction in P14 rats. We found
no changes in any amino acid level in the vermis. In addition,
our results show that GABAA receptor binding is not altered
in any lobule of the medial vermis one day after SE. These
data suggest that SE induces particular neurochemical
changes in the immature cerebellum and that these effects
are region-specific.

The amino acids TAU and ALA have inhibitory effects on
neuronal activity (Horikoshi et al., 1988; O'Byrne and Tipton,
2000). One explanation for their increase in our SE model
could be that they are part of postictal neurochemical
changes launched to avoid a new seizure. It is interesting
that TAU, which is important in Purkinje neurons (Terauchi
et al., 1998), may act as neuromodulator or transmitter to
Please cite this article as: López-Meraz, M.-L., et al., Amino acid ti
cerebellum following status epilepticus, Brain Res. (2012), doi:10
augment inhibitory outflow to decrease motor responses me-
diated by the cerebellum after SE, either alone or in coordina-
tion with GABA, similar to that observed in the hippocampus
after medial septal lesions (Rodriguez et al., 2005). The in-
creased postictal GLN concentration may be the result of
augmented GLU synthesis during SE onset as observed in
adult rats (Walton et al., 1990); however, additional quantifi-
cation of amino acids during developmental SE is necessary
to support this hypothesis.

A previous report showed that 30 min of hyperthermic sei-
zures in P10 rats increased GABAA and benzodiazepine recep-
tor binding (which is coupled to the GABAA complex) in cortex,
hippocampus, amygdala, thalamus, and other mesencephalic
structures 24 h following seizures (González Ramírez et al.,
2007). Similarly, Rocha et al. (2007) showed that one week fol-
lowing lithium–pilocarpine-induced SE in P12 rats, benzodiaz-
epine receptor levels increased in cortical structures and
amygdaloid nuclei; however, the cerebellum was not evaluat-
ed. Our study showed strong 3H-muscimol binding in the de-
veloping vermis, supporting previous investigations showing
the abundance of this receptor in the granule layer (Fritschy
and Panzanelli, 2011). However, SE did not modify GABAA

binding in any lobule of the cerebellar cortex. This effect
may result from the elevated concentration of GABAA recep-
tors in the cerebellum of two-week-old rats, such that SE no
longer modifies this variable or the high plasticity of the
GABAergic system (including GABAA receptor subunits) in
ssue levels and GABAA receptor binding in the developing rat
.1016/j.brainres.2011.12.038
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the developing cerebellum (Takayama, 2005; Thompson and
Stephenson, 1994). Differences between our study and other
reports about amino acid biochemistry and GABAA receptor
radiolabeling in the cerebellum could be due to the age of
the rat, the duration of seizures (considering that in our
study we tried to mimic severe SE that was not stopped with
any drug), the model employed to induce SE (hyperthermic
seizures are not the same as SE), the time post-seizures at
which amino acids were evaluated (ictal vs. postictal), and
the fact that we did not evaluate the whole cerebellum but
separated the vermis from hemispheres.

Differences between the cerebellar vermis and hemi-
spheres observed in this study may be explained by consider-
ing that these regions have different efferent and afferent
pathways (Voogd, 2004). Of note, cortical projections to the cer-
ebellum and vice versa involve mainly the hemispheres (Baker
et al., 2001; Ramnani, 2006). This fact is important because the
neocortex is involved in seizure generation or is affected by SE
in the developing rat (Cavalheiro et al., 1997; Suchomelova et
al., 2006). In conclusion, this study supports our hypothesis
that SE affects the developing cerebellum, modifying TAU,
ALA, and GLN amino acid concentrations in hemispheres but
not in the vermis. GABAA receptors, at least in the medial ver-
mis, are not modified under these conditions.
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4. Experimental procedures

4.1. Animals

Wistar rat pups of both sexes (Instituto de Neuroetología, Uni-
versidad Veracruzana, Mexico) were used. The day of birth
was considered day 0. Pups were housed with their dams
with 12 h light–dark cycles (7 am-7 pm) and had free access
to food and water. Experiments were approved by a Commit-
tee of Graduate Program in Neuroethology, Instituto de Neu-
roetología, Universidad Veracruzana to minimize the
number of animals used and their suffering. Studies were con-
ducted in accordance with Mexican guidelines on the care and
use of laboratory animals (NOM-062-ZOO-1999).

4.2. Induction of SE

P13 rat pups were given intraperitoneal injections of lithium
chloride (3 mEq/kg; #L-0505 Sigma), and 20 h later, SE was in-
duced with subcutaneous injection of pilocarpine hydrochlo-
ride (60 mg/kg; #P6503 Sigma) as described previously
(Sankar et al., 1992). Control rats were given an equal volume
of lithium chloride and saline instead of the convulsant. Be-
havioral motor seizures were carefully monitored by an expe-
rienced analyst and scored according to a slightly modified
Racine scale (1972): (0 = behavioral arrest; 1 = face clonus; 2 =
head nodding; 3 = forelimb clonus; 4 = forelimb clonus and
rearing; 5 = forelimb clonus with rearing and falling). Only an-
imals reaching SE, defined as near continuous seizure activity
lasting over 30 min (Wasterlain and Chen, 2006), were includ-
ed in the study. After SE, pups received 1 ml isotonic 5% dex-
trose in saline solution subcutaneously to avoid dehydration
without stressing the cardiovascular system. After the cessa-
tion of seizures, pups were placed back with their mothers
Please cite this article as: López-Meraz, M.-L., et al., Amino acid ti
cerebellum following status epilepticus, Brain Res. (2012), doi:10
E
D
 P

R
O

O
F

(approximately 6 h to avoid cannibalism); time of separation
from the mother was strictly controlled and was similar in
control and SE groups. There was no mortality in this study.

4.3. Tissue processing

For analysis of amino acid concentrations, rats were anesthe-
tized with pentobarbital 24 h after SE or saline injection (n=5
per group), and cerebella were quickly removed and divided
into the vermis and hemispheres (left and right). For autoradi-
ography experiments, all rats (n=4 per group) were rapidly
killed by decapitation (following previously reported protocols
and considering that anesthesia may affect receptor binding)
24 h post-SE or saline, cerebella were quickly removed, and
the vermis was obtained. GABAA receptor binding studies
were carried out exclusively at the medial vermis. Tissues
were frozen in liquid nitrogen and stored at −86 °C for posteri-
or autoradiography and chromatography experiments.

4.4. Determination of amino acid tissue levels with
High-Performance Liquid Chromatography (HPLC)

Cerebellar tissue was homogenized in 0.1 M perchloric acid
containing 4 mM sodium metabisulfite solution (30 μl per
10 mg of tissue; Peat and Gibb, 1983). The resulting homoge-
nate was centrifuged at 10,000 rpm at 4 °C for 20 min, and
the residual pellet was separated from the supernatant,
which was also filtered through a syringe Millex®-HN filter
(0.45 μm pore). Pellet and filtered supernatant were stored
separately in Eppendorf tubes at −86 °C until protein and
amino acid analyses, respectively. Concentration of amino
acids was measured using precolumn derivatization with o-
phthaldehyde (OPA) and fluorescence detection as described
by Kendrich et al. (1988). Derivatization was performed by
mixing 20 μl filtered supernatant with 6 μl OPA and injecting
this mixture into the solvent stream of the HPLC system
2min later. Separation of OPA-amino acids was carried out
on a reversed-phase 3.9×150-mm column (Nova-Pack, 4 μm,
C18, Waters®) at 35 °C using a binary gradient system [mobile
phase A: 38.74 mM sodium acetate dissolved in 90% milli-Q
water and 10% methanol, pH 5.75; and mobile phase B: buffer
containing 20% solution A and 80% methanol, pH 6.75] at a
flow rate of 0.5 ml/min. Fluorometric detectionwas performed
with aWaters®model 474 detector at excitation and emission
wavelengths of 360 and 450 nm, respectively. This procedure
allowed the quantification of GABA, GLU, GLN, ASP, ALA,
GLY, and TAU levels by linear regression using external stan-
dards (Sigma). Protein determination was carried out using
the residual pellet according to a modified version of Brad-
ford's method (Bradford, 1976). Amino acid tissue content
was expressed as μg/mg protein.

4.5. GABAA receptor binding by in vitro autoradiography

Frozen sagittal sections of 20 μm at the level of the medial ver-
mis were cut on a cryostat, thaw-mounted onto gelatin-coated
slides, and stored at −86 °C until the day of incubation. In vitro
autoradiography was performed as described previously
(González Ramírez et al., 2007) on parallel sections to label
GABAA receptors. Briefly, cerebellar sections were pre-washed
ssue levels and GABAA receptor binding in the developing rat
.1016/j.brainres.2011.12.038
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for 30min at room temperature in 50mMTrisHCl-citrate buffer
pH 7.4 (both from Sigma) to remove endogenous ligands. Then,
they were incubated in a solution containing 10 nMmuscimol-
[methylene-3H(N)] (NET, S.A. 20 Ci/mmol), a competitive
GABAA receptor agonist, in the presence or absence of 10 μM
GABA (a saturating concentration, Sigma) for 45min at 4 °C. In-
cubation was completed with two consecutive buffer washes
(1 min each at 4 °C). Finally, the slides were rinsed (3 s) in dis-
tilled water at 4 °C, and the sections were quickly dried under
a gentle stream of cold air. The slides were arranged in X-ray
cassettes together with tritium standards (Amersham) and ex-
posed to radioactivity-sensitive film (Biomax-MR, Kodak) at
roomtemperature for 10 weeks. Filmswere developed using de-
veloperD19 (Kodak) and fixer at room temperature. Optical den-
sities of the autoradiograms were determined using a video-
computer enhancement program (JAVA Jandel Video Analysis
Software). The optical density of the standards was used to de-
termine tissue radioactivity values for the accompanying tissue
sections and to convert them to fmol/mg protein. Cerebella lob-
ules at the medial vermal level were identified according to the
stereotaxic atlas of the developing rat brain (Sherwood and
Timiras, 1970). GABAA binding was analyzed at the granular
layer and carried out in lobules I–X. For each lobule, 10 optical
density readings were taken from three sections and averaged.
Receptor binding was expressed as fmol/mg protein.

4.6. Statistical analysis

Data for each amino acid tissue concentration from the ver-
mis and hemispheres were analyzed with a Student'st-test.
Results from GABAA receptor binding for each vermis lobule
as well as for the whole cerebellum were analyzed with a
Mann–Whitney U test. Sigma Stat version 3.5 (Systat Sofware
Inc.) was used for the statistical analysis, and p<0.05 was con-
sidered significant. Data are presented as the mean±S.E.M.
(seizure behavior and amino acids) or median±interquartile
range (GABAA receptor binding).
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