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Robotic Intelligence Lab
Universitat Jaume I, Castellón, Spain

{antonell,grzyb,castellv,pobil}@uji.es

Abstract. Reaching a target object requires accurate estimation of the
object spatial position and its further transformation into a suitable arm-
motor command. In this paper, we propose a framework that provides
a robot with a capacity to represent its reachable space in an adaptive
way. The location of the target is represented implicitly by both the
gaze direction and the angles of arm joints. Two paired neural networks
are used to compute the direct and inverse transformations between the
arm position and the head position. These networks allow reaching the
target either through a ballistic movement or through visually-guided
actions. Thanks to the latter skill, the robot can adapt its sensorimotor
transformations so as to reflect changes in its body configuration. The
proposed framework was implemented on the NAO humanoid robot, and
our experimental results provide evidences for its adaptative capabilities.

1 Introduction

Humans live surrounded by objects. Reaching for an object is one of the most
common tasks in everyday life. As robots are expected to be active participants
in humans’ daily life, they also need to have good reaching skills. Moreover,
the robots need to be able to constantly learn and autonomously improve their
reaching abilities so as to act on unknown objects in new environments or adapt
to the changes in their body configurations.

Reaching a target, however, is not an easy task. It requires estimation of
the spatial position of the target and its transformation into an apropriate arm
motor command. Estimation of the object position is problematic on its own as
a three dimensional object is projected into two dimensional surface of camera
sensor, which in turn causes the distance to the target to be lost. The common
solution is to employ stereopsis to reconstruct the depth of the scene. Human
beings, however, are clearly able to perform reaching actions even with a single
functioning eye and we are interested in replicating this phenomenon.

Another challenge here is the transformation of the object’s spatial location
into the arm position that allows reaching the target. These transformations are
typically computed analytically by using the known geometric properties of the
robotic system provided by the robot’s manufacturer or estimated empirically.
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This approach to reaching permits to achieve good performance, but only un-
der the assumption that the parameters of the system are time invariant. In
practice, it is not always the case, and the system needs to be re-calibrated
periodically in order to keep working correctly. Therefore, it is convenient to
develop a framework that continuously adapt the sensorimotor mapping to the
constantly changing robot parameters.

In previous works, we proposed a framework for the implicit sensorimotor
mapping of the peripersonal space that was implemented on a humanoid torso
endowed with a pan-tilt vergence stereo head and two multi-joint arms [3, 1].
Instead of using the classical cartesian space, the spatial position of the tar-
get was encoded by the gaze direction and by the angular position of the arm
joints. Indeed, these variables were implicit because they were directly provided
by proprioceptive cues (encoders). This paper presents our reaching framework
extended and adapted to work on a monocular robotic setup.

As our previous framework was based only on the depth information provided
by stereo cameras, the first objective of this work is to modify the network so as it
makes use of distance estimation provided by a monocular camera. Thus, in the
proposed adaptation, the target position is represented by the gaze direction that
allows bringing the target into the fovea together with the distance to the target.
The same position is expressed in terms of the arm posture that allows reaching
the target. The direct and inverse transformations between the two frames of
reference are learned autonomously by the robot during the exploration of the
environment. The results of our computer simulations and robot experiments
show that the robot is able to reach correctly the target both by using direct
transformation and by visually-guided approach.

Moreover, in this paper we investigate the ability of the system to adapt
to the changes in the robot kinematics. Once the robot had been trained to
reach the target, its body configuration was changed, that is the position of its
elbow joint was rotated about 20 degrees. As this position was assumed to be
an invariant configuration of the system, the robot had to autonomously update
its sensorimotor maps to reach correctly the target object. The results obtained
from our experiments with the robot, showed that the system is able to instantly
update its sensorimotor maps to reflect the changes of its body configuration.

The paper is structured as follows. The next section briefly presents the
neuroscientific findings that inspired our work and compares our approach to
the existing works. The subsequent section describes how the target can be
implicitly encoded by the robot sensorimotor maps, which is then followed by
the description of the computational model and learning strategies. The next
section shows our experimental setup and results obtained from both computer
simulations and real robot experiments. We close the paper with the discussion
of the results and future work.
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2 Background

Our approach to the sensorimotor transformation problem is inspired by neu-
roscientific findings, mainly concerned with human and primates’ brain. Two
types of visual processing exist in the brain, that is visual processing to obtain
information about the features of objects such as color, size, shape (“vision for
perception”) in the ventral stream of visual cortex, and visual processing needed
to guide movements such as reaching and grasping (“vision for action”) in the
dorsal stream of visual cortex [9, 4]. The main cortical areas related to reaching
actions are V6A and MIP [8, 5, 2], both located in the parietal lobe. Findings in
V6A neurons showed neurons that encoded the gaze directions and the distance
of the target [6, 15]. Moreover, some neurons seemed to be involved in the exe-
cution of reaching movements [8]. These findings indicate that V6A is in charge
of performing the sensorimotor transformations required for reaching a given
target in 3D space.

The radial basis function networks are suitable to model the parietal cor-
tex neurons as they are able to naturally reproduce the gain-field effects often
observed in parietal neurons [20]. Moreover, it was suggested that locations of
objects in the peripersonal space are coded through the activity of parietal neu-
rons that act as basis functions, and any coordinate frame can be read out from
such population coding according to the task requirements [19]. Because of their
biological plausibility, and their ability to approximate any kind of non-linear
function [17], the direct and inverse transformations in our framework are en-
coded by two radial basis function networks (RBFNs).

In robotics, even though extensive literature describes the problem of learn-
ing eye-hand coordination [10, 7, 16, 14, 21], to the best of our knowledge only
few papers describes the use of RBF networks [14, 21]. Our model differes from
these works in various points. For example, Marjanovic et al. learned the trans-
formation only on a surface of the space, in such a way that the target distance
was not explicitly taken into account [14]. Sun at al. used a stereo system to
compute the cartesian position of the target, while our system employes implicit
variables [21]. Moreover, our model allows to learn directly both the inverse and
direct transformations between the arm position and the gaze direction. Finally,
neither of the cited works show how to update on-line the sensorimotor trans-
formations in a goal-directed behavior.

3 Representation of the peripersonal space

In the proposed framework, the spatial position of the target object was main-
tained by two global frames of reference (f.o.r.). One f.o.r. is head-centered and
it consists of a spherical-like coordinate system in which the azimuth and the
inclination angles are replaced by the gaze direction, while the radius is the
estimated distance of the target.

One important remark should be given about the use of the distance in
the RBFN framework. Indeed, the distance is not directly observable by the
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Fig. 1. Computational framework of the sensorimotor integration model. Two transfor-
mations allow for converting the head position into arm-motor position and vice-versa.

robot, that is, it is not an implicit variable. However, primates have access to
several cues that can be used to estimate the distance, such as stereopsis, familiar
size, motion parallax and so on [13]. These cues are implicit and related to
the distance, and could be used in our framework in place of the distance. For
example, our previous work, used vergence alone [3]; however, when multiple
cues are available, it seems more reliable to integrate the cues before calculating
the arm position. Such a computation can be performed by a three layer neural
network with reward-mediated learning similarly to what is done in [11]. Thus,
in our framework, it is possible to replace the distance with the output of another
computation as long as it provides neural activation which is correlated with the
distance of the target. In this way, the framework becomes more general and can
be used independently from the cues available to estimate the distance.

The arm position also provides the spatial position of the target when the
robot is touching the object. In this case, the position is described by the joint an-
gle of the arm, provided by the proprioceptive signals. Usually the arm-centered
f.o.r. is redundant in the representation of the position, because many joint con-
figurations can bring the hand to the same spatial position. The implication is
that the direct mapping (A→H) between the arm-centered f.o.r. and the head-
centered f.o.r. is a single-valued function whereas the inverse one (H→A) is not.

As the main focus of this work is learning the sensorimotor transformations
for a humanoid robot, the redundancy problem here was bypassed by simplifying
our experimental setup. Therefore, only three joints of the arm, two for the shoul-
der and one for the elbow were used. In this way, also the inverse transformation
became a single-valued function.

4 Encoding the sensorimotor associations

As introduced in Section 2 , the sensorimotor associations between the A→H
and H→A transformations are maintained by two RBFNs (see Fig. 1).

RBFNs are three-layer feed-forward neural networks whose hidden units(h)
perform a non-linear transformation of the input data(x), whereas the output(y)
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is computed as a linear combination of the hidden units:

y = h(x) ·W (1)

where W is the matrix of the weights.
In this work, the hidden units performs a Gaussian activation which is char-

acterized by their centers ci and their spread Σ:

hi(x) = h(||x− ci||) = e−(x−ci)
TΣ−1(x−ci) (2)

Once the activation of the hidden units is fixed, the learning process can
be stated as finding the weights that best approximate the sensorimotor trans-
formation. Given a set of m input-output samples of the target function, the
weights of the j-th component of the output can be calculated by minimizing
the sum of the square error. In this work we use the recursive least square (RLS)
algorithm, as proposed in [12].

A new training sample for both maps is obtained when the hand position
and the gaze direction are pointing to the same spatial location. The robot
autonomously verifies such a condition by checking whether the visual position
of the hand is in the center of the visual field (see Fig. 2). If the hand is visible
but it is not in the fovea, the robot can gaze the hand to reinforce the head-arm
association.

The mapping between the distinct sensorimotor modalities is learned during
the interaction with the environment, through gazing and reaching movements.
After each performed movement, visual feedback is used to verify the coordina-
tion of gaze and arm. At the beginning, the system does not have any previous
knowledge of the sensorimotor transformation so random movements are used
to begin the exploration of the environment.

Successively, these random movements are suppressed and the system keeps
adapting during the goal-directed exploration. In this phase, when the robot
fails to reach the target with a ballistic movement (H→A), it starts to use vi-
sion to guide the arm movements. This can be done by locally inverting the
transformation A→H (for the details please refer to [21]) to calculate the incre-
ment of the arm position that is necessary to approximate the target. While the
robot is reaching for the target, it tracts its own hand to update its sensorimotor
transformations.

5 Experimental Framework

5.1 Robotic Setup

Aldebaran’s commercially available humanoid robot NAO was used as platform
for testing the proposed framework. The robot is provided with 25 degrees of
freedom (d.o.f.s) among which two are placed in the head (pan and tilt) and five
in each arm. In this work, we have used three d.o.f.s for the arm and just the
upper camera for the vision system.
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Fig. 2. Association between the oculomotor and arm-motor signals.

5.2 Exploration-based learning

Learning of the sensorimotor transformations is essentially approximating the
function through training samples of the form (d, θhead, θarm)i = 1, 2, ..., n, where
d is the distance from the camera to the robot’s hand, θhead, θarm are the joint
angles of the head and arm, respectively, and n is the size of the training set. Such
a training set was generated by random movements of the arm, while the robot
was gazing at the hand. Herein, a visual marker (a ball) was used to facilitate
the recognition of the hand in a visual field of view. Subsequently, the visual
position of the hand was converted into a head movement in order to foveate the
hand. The distance to the hand was computed using the familiar size of the ball.
That is, knowing the physical size of an object (Sphysical), its absolute depth
(d) was calculated by using the following equation: d = f × Sphysical/Sobserved

where Sobserved is the size of the object observed in the image, while f is the
focal length. Both Sobserved and f are expressed in terms of pixels.

The structure and parameters of the radial basis function networks were cho-
sen using a heuristic search on a simulated model of the robot. We decided to
employ fixed centers, uniformly distributed on a lattice in the input space. We
employed Gaussian receptive fields, where the matrix Σ was a diagonal matrix
σI. The input space of A→H was the shoulder(1,2)-elbow space normalized be-
tween 0 and 1, the lattice was composed of 7x7x7 neurons and σ was set to 0.3.
The input space of H→A was the pan-tilt-distance space normalized between
0 and 1, the lattice was composed of 7x7x7 neurons and σ was set to 0.28. In
this work weights of each network were learned using the recursive least square
algorithm on the training samples.

After the exploration process, the networks were tested on the acquired sam-
ple points using K-Fold cross validation with K set to 5. The error was calculated
as Euclidean distance in the cartesian space between sampled and computed val-
ues. This was done using the kinematic model of the robot, which was built using
the parameters provided by the manufacturer. The performances of the networks
are reported in Table 1.

The transformation of the head-centered to the arm-centered f.o.r. performed
worse than the other transformation and, in general, seemed more difficult to
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Table 1. Performances of the RBFNs using the K-Fold cross validation (K=5). Mean
error and standard deviation (µ± σ) are expressed in mm in the cartesian space.

Transf. N. points
K=1 K=2 K=3 K=4 K=5
µ± σ µ± σ µ± σ µ± σ µ± σ

A→H 1458 3.8± 2.4 3.9± 2.6 4.2± 3.2 3.9± 2.8 4.2± 3.2
H→A 1458 5.0± 3.5 5.0± 3.2 5.3± 3.9 5.0± 4.3 5.4± 4.3

approximate. Nevertheless, in each case, the magnitude of the error was small
enough to allow the robot to grasp the target in most cases (see next session).

5.3 Grasping task

The performance of the system was tested on a grasping task. The robot had
to localize and to grasp a red ball. The ball was placed on two lattices of 3
by 3 points that covered a region of 5 cm by 8 cm (x,y) on the left side of
the robot (see Fig. 3). The two lattices were placed at different altitudes. Each
movement of the arm was initiated from a safe position that allowed reaching
the ball with a ballistic movement without any collision. During training of the
H↔A transformations, the robot was gazing at the hand, so we expected that a
correct arm movement would bring the center of the hand near the target. For
each location of the ball, the robot had to gaze at it and to calculate the arm
position by means of the H→A transformation. After the training, the robot
grasped correctly the ball for every position on both lattices.

5.4 Goal-directed learning

Until now we have demonstrated the capability of the system to encode the
sensorimotor transformations. The next step is to demonstrate the plasticity of
the system for updating its internal representation to the changes of the body
parameters. For this purpose, we changed the body configuration by modifying
the position of the elbow roll motor some 20◦. The position of the motor is not
accesible for the RBFNs, thus the networks require to be adapted to the new
configuration of the joint. Indeed, with this new configuration the robot failed
to grasp the ball in every position, with a mean error of about 3.2cm (see Fig.3).

However, when the robot try to grasp the ball, it can recognize the failure
through its vision, by checking if the hand position and the ball position are the
same. If it is not the case, the system can thus multiply the distance between
the hand and the ball (expressed in the head centered f.o.r.) by the pseudo-
inverse of the jacobian of A→H to obtain an increment of the arm position.
In this way, the robot produces a sequence of visually-guided arm movements
until the target is grasped. At each arm movement, the robot looks at its hand
(using visual feed-back) and updates both the A→H and H→A transformations.
After, three visually-guided executions of the grasping task, the robot was able
to correct its sensorimotor transformations and to perform correctly the ballistic
grasping (see Fig. 3).
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Fig. 3. Experimental setup. After changing the elbow roll position of 20 degrees the
robot was tested in a ballistic grasping task (A→H). The target ball was put on two
lattices at different hight. The figure shows the grasping error without the on-line
adaptation and after one, two and three goal-directed training sessions.

6 Discussion and Future Work

This work was focused on the encoding of the visuomotor transformations for a
reaching behavior. The RBFNs were trained with the real data collected while
the robot was gazing its hand. The real data, however, are usually quite noisy,
which has an impact on the learning process of the neural networks and its
performance afterwards. The overall error of the direct transformation (A→H),
that is a transformation from arm to eye position was much smaller that the
error of the inverse transformation (H→A), that was the transformation from
eye to arm position. This can result from the uniform distribution of the centers
that, for the H→A transformations, is not so efficient as for the A→H ones.
Thus, regularization algorithms [18] that adjust the centers and the spread of
the neural activation can improve the performances of the algorithm.

Experimetal results showed that the robot is able to update its performance
in the goal-directed behavior by explointing visual feedback to correct the tra-
jectory of the arm. It is done by inverting the forward model that converts the
arm position into head position [21].

In the currently implemented framework, the distance was calculated using
the familiar size of the object. Such a distance, however, can be estimated by
other cues, e.g. motion parallax, kinetic depth effect and so on, which can be
combined in the spirit of the Bayesian theorem in order to obtain a reliable
distance estimation. Moreover, more implicit distance observations can be used
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directly as input to our RBFNs. Thus, our future work will focus on the integra-
tion of the proposed sensorimotor framework with another model that implicitly
encodes the perceived distance.

This work is part of a larger framework that is inspired by infant develop-
ment. The final goal is to provide the robot with a coherent near and far space
representation. The visuomotor knowledge of the peripersonal and extrapersonal
space should be built in a dynamical way, through the active interaction with
the environment, in a similar fashion as infants do. Following this approach, the
robot has to be able to keep learning during its normal behavior, by interact-
ing with the world and continually update its representation of the world itself.
Moreover, the learning process should be self-supervised in order to avoid the
need of an external teacher. That is, the robot should be able to improve its
capabilities by observing the outcome of its actions.

7 Conclusions

This paper presented a framework for sensorimotor transformations that is in-
spired by neuroscientific findings. The plausibility of our framework was tested
with the NAO humanoid robot. The proposed representations of the space are
plastic, indeed the robot was able to update and to improve its performance dur-
ing interaction with the environment. Moreover, the adaptation of our framework
on the NAO robot provides further support for the extendability and generality
of our approach.
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