
Informe Técnico ICC 01-01-2008

Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors

Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Ortı́

Enero de 2008

Departamento de Ingenierı́a y Ciencia de Computadores

Correo electrónico: {barrachi, castillo, figual, mayo, quintana}@icc.uji.es

Universidad Jaime I
Campus de Riu Sec, s/n

12.071 - Castellón
España

Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors

Sergio Barrachina1,
Maribel Castillo2,

Francisco D. Igual3,
Rafael Mayo4,

Enrique S. Quintana-Ortı́5,

Abstract:

The increase in performance of the last generations of graphics processors (GPUs) has made this class of platform a
coprocessing tool with remarkable success in certain types of operations. In this paper we evaluate the performance of the
Level 3 operations in CUBLAS, the implementation of BLAS for NVIDIA R© GPUs with unified architecture. From this
study, we gain insights on the quality of the kernels in the library and we propose several alternative implementations that are
competitive with those in CUBLAS. Experimental results on a GeForce 8800 Ultra compare the performance of CUBLAS
and the new variants.

Keywords:
Graphics processors (GPUs), general purpose computing on GPU, linear algebra, BLAS, high performance.

1Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: barrachi@icc.uji.es.

2Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: castillo@icc.uji.es.

3Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

4Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

5Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.

Evaluación y Optimización de rutinas BLAS de nivel 3 para
Procesadores Gráficos

Sergio Barrachina6,
Maribel Castillo7,

Francisco D. Igual8,
Rafael Mayo9,

Enrique S. Quintana-Ortı́10,

Resumen:

El incremento en las prestaciones de las últimas generaciones de procesadores gráficos (GPUs), ha convertido a este tipo
de plataformas en herramientas de coprocesamiento con notable éxito frente a cierto tipo de aplicaciones.

En el presente artı́culo, se evalua el rendimiento de las operaciones de Nivel 3 de CUBLAS, la implementación de BLAS
desarrollada por NVIDIA R© para sus procesadores gráficos con arquitectura unificada.

A partir del estudio, se extraen conclusiones acerca de la calidad de las implementaciones de la biblioteca, y se proponen
implementaciones alternativas que mejoran el rendimiento de las implementaciones originales. Los resultados experimentales
sobre una GeForce 8800 Ultra comparaen el rendimiento de CUBLAS y las nuevas variantes propuestas.

Palabras clave:
Procesadores gráficos (GPUs), procesamiento de carácter general sobre GPUs, álgebra lineal, BLAS, altas prestaciones.

6Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: barrachi@icc.uji.es.

7Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: castillo@icc.uji.es.

8Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

9Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

10Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.

Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors

Sergio Barrachina Maribel Castillo Francisco D. Igual Rafael Mayo
Enrique S. Quintana-Ortı́

Depto. de Ingenierı́a y Ciencia de Computadores
Universidad Jaume I

12.071–Castellón, Spain
{barrachi,castillo,figual,mayo,quintana}@icc.uji.es

Abstract

The increase in performance of the last generations of
graphics processors (GPUs) has made this class of plat-
form a coprocessing tool with remarkable success in certain
types of operations. In this paper we evaluate the perfor-
mance of the Level 3 operations in CUBLAS, the implemen-
tation of BLAS for NVIDIA R© GPUs with unified architec-
ture. From this study, we gain insights on the quality of the
kernels in the library and we propose several alternative im-
plementations that are competitive with those in CUBLAS.
Experimental results on a GeForce 8800 Ultra compare the
performance of CUBLAS and the new variants.

Keywords: Graphics processors, linear algebra, BLAS, high
performance.

1. Introduction

Dense linear algebra operations lie at the heart of many
scientific and engineering applications. The interest of the
scientific community to solve larger or more complex nu-
merical problems, where the computation time is often the
limiting factor, naturally leads to the need of attaining high
performance on whatever architectures are the state-of-the-
art.

In this paper we evaluate the implementation of the Basic
Linear Algebra Subroutines (BLAS) provided in CUBLAS 1.0 [9].
This is a library implemented on top of the NVIDIA R©CUDATM

(compute unified device architecture) [10]. Our evaluation
is focused on the kernels of the Level 3 BLAS, which are of-
ten used to perform large numbers of arithmetic operations,
and are thus natural candidates for execution on graphics
processors. The target architecture is the GeForce 8800
Ultra. Several previous studies have evaluated the perfor-
mance of tuned implementations of the Level 3 BLAS con-
structed using graphics application programming interfaces

(APIs) [8, 3, 7]. However, the recent development of CUBLAS
and the fast evolution of graphics hardware renews the in-
terest in evaluating the performance of these operations on
new generation hardware.

The results of the evaluation demonstrate that not all ker-
nels in CUBLAS are equally tuned. Therefore, as part of
our work we also propose several variants of the kernels
that improve the performance of the basic implementations
in CUBLAS. In addition, we propose a hybrid parallel algo-
rithm that splits the computation between the CPU and the
GPU, achieving good performance results.

The rest of the paper is structured as follows: Section 2
introduces the unified architecture of current GPUs and the
CUDA API. Section 3 explains the importance of the per-
formance of BLAS implementations, and introduces CUBLAS.
Section 4 evaluates the implementation of the Level 3 BLAS
kernels in CUBLAS. In Section 5, we propose several im-
provements over CUBLAS and report the performance gains.
Finally, Section 6 summarizes the conclusions and outlines
future work.

2. GPUs with unified architecture

In 2006 a generation of GPUs with a completely differ-
ent architectural design appeared which solved many of the
restrictions related with general purpose computation that
were present in previous generations of graphics proces-
sors. These new GPUs feature a unified architecture, with
one processing unit or unified shader that is able to work
with any type of graphical data, transforming the sequential
pipeline of previous GPUs into a cyclic pipeline.

In particular, there are several characteristics in the new
generation of GPUs which favour its use as a general-purpose
coprocessor:

1. In general, the clock frequency of the unified shader
is much higher than that of the fragment processors

present in previous GPUs (though still much lower
than the clock frequency of current CPUs).

2. The shader consists of a large collection of computa-
tion units (up to 128, depending on the GPU version),
called Streaming Processors (SP), which operate in
clusters of 16 processors in SIMD mode on the input
data stream.

3. The memory hierarchy is much more sophisticated,
and includes a L2 cache and small fast memories shared
by all the SP in the same cluster.

Altogether with these unified architecture, the CUDA
general-purpose API [10] has been developed to exploit the
potential computational power that this hardware offers. In
fact, CUDA has been proposed as a standard (although only
compatible with NVIDIA hardware so far) to program the
new generation of GPUs, without the requirement of learn-
ing more complex graphics-oriented languages.

3. BLAS and CUBLAS

The BLAS are a collection of kernels that provide stan-
dard building blocks for performing basic vector and ma-
trix operations. Level 1 BLAS perform scalar, vector and
vector-vector operations; Level 2 BLAS perform matrix-
vector operations; and Level 3 BLAS perform matrix-matrix
operations. Highly efficient implementations of BLAS ex-
ist for most current computer architectures and the speci-
fication of BLAS is widely adopted in the development of
high quality linear algebra software, such as LAPACK and
FLAME [1, 2].

The Level 3 BLAS are specially important as the perfor-
mance of more complex routines that employ them directly
depends on that of the underlying BLAS implementation.
Level 3 BLAS is basically formed by five kernels: GEMM
(matrix multiplication), SYMM (symmetric matrix multipli-
cation), SYRK (symmetric rank-k update), TRSM (triangu-
lar system solve with multiple right-hand sides), and TRMM
(triangular matrix multiplication). Among these, in our eval-
uation we select GEMM, SYRK, and TRSM. The two other
kernels are quite similar to SYRK, and therefore we expect
the result of our analysis to apply to SYMM and TRMM as
well.

CUBLAS [9] is an implementation of BLAS developed
by NVIDIA on top of the CUDA driver. CUBLAS provides
functions for creating/destroying matrix and vector objects
in GPU memory space, filling them with data, executing
BLAS on the GPU, and transferring data back to main mem-
ory. Thus, CUBLAS offers basic BLAS functions as well
as helper functions for writing data to and retrieving data
from the GPU memory. As current GPUs only support sin-
gle precision arithmetics, no double precision version of the
kernels has been implemented in CUBLAS.

The following code illustrates how easy it is to use CUBLAS
from a C/C++ program to scale a vector:

1 int main(void){
2 ...
3 float* host_vector = 0;
4 float* device_vector;
5
6 host_vector = (float*) malloc(M*sizeof(float));
7 ... // Initialize vector of M floats
8 cublasInit();
9

10 cublasAlloc(M, sizeof(float),
11 (void**) &device_vector);
12
13 cublasSetVector(M, sizeof(float), host_vector,
14 device_vector, 1);
15 cublasSscal(M, ALPHA, device_vector, 1);
16 cublasGetVector(M, sizeof(float), device_vector,
17 host_vector, 1);
18
19 cublasFree(device_vector);
20
21 cublasShutdown();
22 }

Lines 8 and 21 initialize and terminate the CUBLAS en-
vironment much in the style of packages like MPI. Lines
10-11 and 19 allocate and free space for the vector in the
GPU memory. Lines 13-14 and 16-17 move the data from
the main memory to the GPU memory and retrieve the re-
sults. Finally, the call in line 15 scales the contents of the
vector using the GPU hardware.

CUBLAS also provides wrappers to help writing Fortran
programs that use the library.

4 Evaluation of the Level 3 CUBLAS

We first evaluate the performance of the Level 3 BLAS
implementation of CUBLAS on a GPU with unified archi-
tecture. Detailed specifications of the hardware of the sys-
tem can be found in Table 1.

CPU GPU
Processor Intel Core 2 Duo NVIDIA 8800 Ultra
Codename Crusoe E6320 G80
Clock frequency 1.86 GHz 575 MHz
Memory speed 2 × 333 MHz 2 × 900 MHz
Bus width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory 1024 MB DDR2 768 MB GDDR3
Bus PCI Express x16 (4 GB/s)

Table 1. Description of the hardware used in
our experimental study.

The Linux implementations of CUDA and CUBLAS ver-
sion 1.0 were used in the evaluation of the GPU together

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=n=k)

SGEMM

A*B

AT*B

A*BT

AT*BT

Figure 1. Performance evaluation for the im-
plementation of SGEMM in CUBLAS

with the compiler nvcc release 1.0, version 0.2.1221. The
implementation of BLAS in GotoBLAS [4] version 1.19
was used on the CPU and code in this platform was com-
piled using gcc version 4.1.2.

All the results on the GPU hereafter include the time re-
quired to transfer the data from the main memory to the
GPU memory and retrieve the results back. The kernels
all operate on single-precision real data and results are re-
ported in terms of GFLOPS (109 floating-point arithmetic
operations per second). A single core of the Intel processor
was employed in the experiments.

4.1 Evaluation of SGEMM

The SGEMM kernel in BLAS can be used to compute any
of the following four matrix multiplications

C := β · C + α · A · B,
C := β · C + α · AT · B,
C := β · C + α · A · BT ,
C := β · C + α · AT · BT ,

where C is m × n, A is m × k, B is k × n, and α, β are
both scalars.

Our first experiment evaluates the performance of the im-
plementation of the SGEMM kernel in CUBLAS for square
matrices A, B, and C (i.e., m = n = k), and all trans-
pose combinations of the operands. The results in Figure 1
shows that the layout in memory of the matrices has little
effect in the performance of the kernel. It is also interest-
ing to note the much higher performance of the kernel when
m = 4000. Further experiments revelated that all Level 3
CUBLAS kernels share this behaviour on the GeForce 8800
Ultra when the dimensions of the matrices are a multiple of
32. These particular values are likely to allow the kernel

to present an optimal memory access pattern by correctly
aligning data in memory, as suggested in [9]. “Optimal” di-
mensions will probably vary with the specific GPU model.
This insight leads to our proposal to improve the perfor-
mance of the SGEMM kernel, as well as other kernels such
as SSYRK or STRSM, described in subsection 5.1.

Following the characterization of the matrix multiplica-
tion in [5], we next analyze the performance of this oper-
ation when one of the matrix dimensions (m, n, or k) is
small with respect to the other two. This gives us three dif-
ferent kernels: SGEPM (m is small), SGEMP (n is small),
and SGEPP (k is small). Figure 2 shows that the difference
in performance among the three kernels is not significative.
(Strictly speaking, in the experiment two of the dimensions
are fixed and the other one varies, outgrowing the other two;
this does not correspond exactly to the definition of the pre-
vious kernels). We note again the performance boost in all
three kernels when operating with matrices of dimensions
that are a multiple of 32.

4.2 Evaluation of SSYRK

The SSYRK kernel computes

C := β · C + α · A · AT , or
C := β · C + α · AT · A,

where C is an m×m symmetric matrix, A is m×k (k×m
if transposed in the operation), and α, β are scalars. Given
the symmetry of the result, only the lower or upper triangu-
lar part of C is computed. The performance of this kernel
is specially relevant due to its impact on other procedures,
such as Cholesky factorization.

Figure 3 reports the results for the CUBLAS implemen-
tation of SSYRK when used to update the lower or upper
triangular part of C adding A ·AT or AT ·A to it, and with
m = k. As was the case for SGEMM, differences between
the different variants are negligible. Note the much lower
performance of the SSYRK implementation when compared
to that of SGEMM (at most, 40 GFLOPS for SSYRK com-
pared with 120 GFLOPS for SGEMM). In subsection 5.3,
we improve this performance by building SSYRK on top of
SGEMM.

Figure 4 illustrates the performance of SSYRK for vari-
ous dimensions of m and varying values for k. Again, there
is a significant increase in performance for matrix dimen-
sions that are a multiple of 32 (m=4000).

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
FL

O
PS

m

SGEPM

n=k=1000
n=k=2000
n=k=3000
n=k=4000
n=k=5000

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
FL

O
PS

n

SGEMP

m=k=1000
m=k=2000
m=k=3000
m=k=4000
m=k=5000

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
FL

O
PS

k

SGEPP

m=n=1000
m=n=2000
m=n=3000
m=n=4000
m=n=5000

Figure 2. Performance evaluation for the “im-
plementations” of SGEPM (top), SGEMP (mid-
dle), and SGEPP (bottom) in CUBLAS, used
to compute the matrix multiplication C :=
C + AB; two dimensions fixed

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=k)

SSYRK

AT*A - Upper
A*AT - Upper
AT*A - Lower
A*AT - Lower

Figure 3. Performance evaluation for the im-
plementation of SSYRK in CUBLAS

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
FL

O
PS

k

SSYRK

m=1000
m=2000
m=3000
m=4000
m=5000

Figure 4. Performance evaluation for the im-
plementation of SSYRK in CUBLAS, used to
compute the upper triangular part of the re-
sults of the symmetric rank-k update, C :=
C + AAT ; m fixed

4.3 Evaluation of STRSM

The last kernel that is included in this study, STRSM, can
be used to solve the triangular linear systems:

A · X = α · B,
X · A = α · B,

AT · X = α · B, or
X · AT = α · B,

where the unknown matrix X and B are m × n, and the
(upper/lower) triangular matrix A is m × m or n × n de-
pending, respectively, on whether it appears to the left or the
right of the unkwown matrix. On completion, the solution
X overwrites B.

Figure 5 shows the performance of the CUBLAS imple-
mentation of the kernel when solving the equations with
the two possible combinations of memory layouts of matrix
A (transpose/no transpose), shapes (upper/lower triangular)
and m = n. The results are very similar for the majority of
the combinations, with the exception of the case in which A
is a lower triangular matrix and it is not transposed. In this
case, performance is significantly lower.

5 Tuning of CUBLAS

This section introduces some improvements to the ker-
nels in CUBLAS. We can distinguish three types of opti-
mizations: application of padding, implementation of Level
3 BLAS kernels on top of SGEMM, and hybrid approaches
that split computations between the CPU and GPU.

5.1 Padding for SGEMM and SSYRK

One of the observations from the initial evaluation of the
kernels in CUBLAS was the superior performance when
these operate on matrices that are a multiple of 32. Ac-
cording to this, the first improvement introduced is padding.
Thus, our proposal for SGEMM and SSYRK is to pad with
zeros the input matrices, transforming their dimensions into
the next multiple of 32. With this transformation, we intro-
duce a very small overhead in the computation of the kernel,
negligible for large matrices, as the dimensions are most in-
creased in 31 columns/rows.

The implementation creates and sets to zeros a padded
matrix in GPU memory for each operand matrix, and then
transfers the data from main memory to the correct position
in GPU memory.

In Figure 6 we compare the performances of the origi-
nal CUBLAS SGEMM kernel and the modified kernel with
padding applied on matrices. Results are reported for ma-
trices of dimension m = n = k = 2i and 2i − 1, i =
7, 8, . . . , 12. As a result of the application of padding, the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=n)

STRSM; A on the Left-hand side

Upper - No transpose
Upper - Transpose

Lower - No transpose
Lower - Transpose

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=n)

STRSM; A on the right-hand side

Upper - No transpose
Upper - Transpose

Lower - No transpose
Lower - Transpose

Figure 5. Performance evaluation for the im-
plementation of STRSM in CUBLAS with A to
the left-hand (top) or right-hand (bottom) side
of the unknown matrix

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

G
FL

O
PS

Matrix dimension (m=n=k)

SGEMM

W/out padding
With padding

Figure 6. Performance evaluation for the im-
plementation of SGEMM in CUBLAS with and
without padding

performance attained by the kernel with padding is uni-
form for all matrix sizes, hiding the irregular performance
of original CUBLAS implementation. There is some over-
head associated with the cost of the padding process and the
non-contiguous store of the data in GPU memory during the
transference of the matrices; however, its impact over the
whole process is small, and the improvement when operat-
ing with non-multiple of 32 dimensions is important.

5.2 Partitioning for larger matrices

Transfer times between GPU memory and main mem-
ory is one of the bottlenecks of current GPUs. Therefore,
overlapping computation and transfers could imply better
performance. We have implemented a blocked version of
SGEMM that allows to overlap the computation of the partial
multiplication Ap ·Bp (with Ap and Bp being, respectively,
a block of columns of A and a block of rows of B) and the
transference of the next pair of blocks Ap+1 and Bp+1.

Unfortunately, the current version of CUDA is unable to
overlap computation and communication. The benefits of
the algorithm, however, will be exploited with future ver-
sions of CUDA that allow simultaneous transfers and com-
putation on the GPU.

An orthogonal benefit of this approach is that the amount
of GPU memory needed to compute the matrix multiplica-
tion is more reduced (mn + mb + bn numbers, with b the
column/row size of blocks Ap/Bp, compared with mn +
mk + kn). This enables the computation with larger matri-
ces that do not fit in GPU memory.

5.3 SSYRK built on top of SGEMM

The evaluation of the SSYRK kernel in CUBLAS in sub-
section 4.2 shows a poor performance compared with that of
the SGEMM implementation. Following the idea from [6], it
is possible to transform part of the computations performed
by SSYRK into SGEMM calls, as we describe next. Consider,
e.g., the partitioning of the matrices in Figure 7, where C 11

is b × b and A1 consists of b rows. Assuming that the first
block of columns of C has already been computed, in the
column-oriented version of the algorithm, we proceed by
computing the following operations in the current iteration:

C11 := β · C11 + α · A1 · AT
1 SSYRK

C21 := β · C21 + α · A2 · AT
1 SGEMM

or, in the row-oriented version, considering updated the first
block of rows of C:

C11 := β · C11 + α · A1 · AT
1 SSYRK

C10 := β · C10 + α · A1 · AT
0 SGEMM

After these operations, the computation proceeds by updat-
ing the next block of columns (or rows) of C. By computing

 00C

10C

C20 21C

11C

22C

 00C

10C

C20 21C

11C

22C 2A

1A

0A T
0A 2A T

1A T

+:= *

Figure 7. Decomposition of the SSYRK opera-
tion to build it on top of SGEMM

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=k)

SSYRK

CUBLAS
Blocked w/out padding
Blocked with padding

Figure 8. Performance evaluation for the im-
plementation of SSYRK built on top of SGEMM

C by blocks of b columns (or rows), where at each step the
diagonal b × b block is computed using the SSYRK kernel
and the off-diagonal block is computed using the SGEMM
kernel, it is possible to exploit the higher performance of the
CUBLAS kernel for the matrix multiplication, and speed up
the computation of the SSYRK operation.

Figure 8 shows a comparison between the SSYRK im-
plementation in CUBLAS and our column-oriented blocked
implementation built on top of SGEMM, with and without
padding. The row-oriented implementation presents simi-
lar behavior, so it is not shown in the figure. The perfor-
mance of the blocked implementation is still limited by the
CUBLAS SSYRK implementation that is employed to com-
pute the diagonal blocks, but results are closer to those of
SGEMM.

5.4 STRSM built on top of SGEMM

A blocked algorithm can also be derived for the solution
of A ·X = α ·B, with A lower triangular, as follows. Con-
sider the partitioning of the operation in Figure 9, where
A11 is b × b and both X1 and B1 consist of b rows, and as-
sume that X0 has already been computed. Then, during the
current iteration, in the column-oriented version of forward-

substitution we proceed by computing:

A11 · X1 = α · B1 STRSM

B2 := B2 − A21 · X1 SGEMM

while, in the row-oriented version we need to compute:

B1 := B1 − A10 · X0 SGEMM

A11 · X1 = α · B1 STRSM

After these operations, the computation proceeds with the
next b× b diagonal block in A and block of b rows in X/B.

A 00

A10 A11

A22A21A20

X0

X1

X2

B0

B1

B2

* =

Figure 9. Decomposition of the STRSM opera-
tion to build it on top of SGEMM

We have implemented both versions of the STRSM kernel
built on top of SGEMM. Figure 10 shows the performance
observed for our column-oriented blocked implementation.
The row-oriented implementation presents a similar behav-
ior. The figure also includes the results attained by applying
padding to the SGEMM suboperations. Again there is a re-
markable increase in performance by utilizing the SGEMM
to compute the STRSM operation.

5.5 Hybrid implementation for SGEMM

It is possible to design an implementation in which CPU
and GPU collaborate to obtain a common result. To as-
sess the benefits of this, we have implemented a hybrid im-
plementation to compute the matrix multiplication C :=
αA·B, but the technique is easily ported to other variants of
the matrix multiplication or other kernels like, e.g., SSYRK
or TRSM.

Consider the partitioning in Figure 11. There, matrix B
is splitted into two column blocks, B1 and B2. Block B1,
together with matrix A, is transferred to GPU memory and
the GPU performs the operation C1 := α · A · B1, while
CPU performs the operation C2 := α · A · B2. When GPU
finishes, submatrix C1 is transferred back to main memory,
and the operation is complete.

Our implementation executes in parallel these two op-
erations, improving the performance of the overall SGEMM
kernel. Values for N ′ and N ′′ must be selected carefully in
order to balance the load in a proper way between the GPU
and CPU.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=n)

STRSM; column-oriented version

CUBLAS
Blocked w/out padding
Blocked with padding

Figure 10. Performance evaluation of the
column-oriented implementation of STRSM
built on top of SGEMM

CPU GPU CPU

A

M

N’ N’’

+= *

C1

GPU

C2
B1 B2

Figure 11. Decomposition of matrix multipli-
cation for a hybrid CPU-GPU approach

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=n=k)

Hybrid SGEMM. Factor analysis

Factor 2
Factor 4
Factor 6
Factor 7
Factor 8

Factor 10

Figure 12. Impact of the partition sizes over
the performance of the hybrid SGEMM

For our hardware configuration, experimental results de-
termine that N ′ should be 7 times larger than N ′′. This fac-
tor has a direct impact on the performance that is possible
to achieve. As illustrated in Figure 12, the results improve
when the factor is increased, until it reaches the factor 7.
For smaller factors, the CPU takes too long to perform its
calculation, and the load is not well balanced. For larger
factors, the performance obtained is also suboptimal, as the
CPU stays idle while the GPU is still working. However,
the decrease in performance in this case is not as important,
since the CPU is less powerful, and its impact is less impor-
tant over the whole process.

The use of GPU as a coprocessor with a hybrid approach
leads to a significant improvement in performance. Fig-
ure 13 compares the performance of the hybrid implemen-
tation (including padding), the original CUBLAS SGEMM
kernel, and the CUBLAS SGEMM kernel with padding. The
figure summarizes the results which can be achieved with
relatively simple transformations over default CUBLAS im-
plementations.

5.5.1 Variants of the hybrid algorithm

We have implemented two variants of the hybrid algorithm.
The first option creates a thread before the transfer of ma-
trices A and B1 begins. Thus, CPU computation overlaps
not only with GPU computation, but also with transfers be-
tween GPU memory and main memory. The second option
is slightly different: in the first place, there is an initial trans-
fer of matrices A and B1; after finishing the transfer, a new
thread is created, and GPU and CPU perform their part of
the matrix multiplication. Only when both processors have
finished, the transfer of C1 back to main memory can take
place. Figure 14 illustrates both algorithms.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
FL

O
PS

Matrix dimension (m=n=k)

SGEMM

Hybrid SGEMM with padding
CUBLAS with padding

CUBLAS w/out padding

Figure 13. Performance evaluation for the im-
plementation of SGEMM in CUBLAS, the imple-
mentation of SGEMMwith padding, and the hy-
brid implementation of SGEMM (with padding)

However, the current version of CUDA does not allow
to overlap transfers and computation in both CPU or GPU.
This limitation yields the second variant the most suitable
one in order to attain the best performance. The above re-
sults for the hybrid algorithm are thus based on this variant.

6. Conclusions

Graphics processors are becoming a cheap and efficient
alternative to solve general-purpose compute-intensive ap-
plications. The appeal of these platforms is considerably in-
creased by the development of high-level APIs for their use.
In this paper we have evaluate one of these APIs, CUBLAS,
which faciliates the computation of dense linear algebra op-
erations on NVIDIA GPUs. Our study reveals that not all
kernels in the Level 3 CUBLAS are equally optimized, and
that a much higher performance can be extracted from the
hardware by using a simple technique such as padding or
building the kernels around the GEMM operations. Our ex-
periments also demonstrate that hybrid algorithms, which
split the computation between these the CPU and the GPU,
can increase the performance of an implementation based
only on the GPU. This is of special interest in current sys-
tems, which often include a CPU and a GPU. Two major
drawbacks still remain for GPUs: the lack of support for
double-precision arithmetic and the subtle differences be-
tween GPU and IEEE arithmetics.

Acknowledgments

This research was partially sponsored by the CICYT project
TIN2005-09037-C02-02and FEDER, and project No. P1B2007-

1C = A * B1 2C = A * B2 1C = A * B1 2C = A * B2

Th. 0 Th. 1 Th. 0 Th. 1

TX. C1 TX. C1

1

GEMM GEMM GEMM GEMM

1TX. A , B1 TX. A, B1

Figure 14. Two thread schemes implemented
for hybrid SGEMM

32 of the Fundación Caixa-Castellón/Bancaixa and UJI.
Francisco D. Igual is supported as well by a research fel-
lowship from the Universidad Jaume I of Castellón (PRE-
DOC/2006/02).

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-
mel, J. J. Dongarra, J. D. Croz, S. Hammarling, A. Green-
baum, A. McKenney, and D. Sorensen. LAPACK Users’
guide (third ed.). Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1999.

[2] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-
Ortı́, and R. A. van de Geijn. The science of deriving dense
linear algebra algorithms. ACM Transactions on Mathemat-
ical Software, 31(1):1–26, Mar. 2005.

[3] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding
the efficiency of GPU algorithms for matrix-matrix multipli-
cation. Graphics Hardware, 2004.

[4] K. Goto. Goto BLAS implementation, 2005.
www.tacc.utexas.edu/resources/software.

[5] K. Goto and R. A. Van de Geijn. Anatomy of high-
performance matrix multiplication. ACM Transactions on
Mathematical Software, 2006.

[6] B. Kågström, P. Ling, and C. V. Loan. GEMM-based level 3
BLAS: high-performance model implementations and per-
formance evaluation benchmark. ACM Transactions on
Mathematical Software, 24(3):268–302, Sept. 1998.

[7] E. Larsen and D. McAllister. Fast matrix multiplies using
graphics hardware. In Supercomputing, ACM/IEEE 2001
Conference, pages 43 – 43, Nov. 2001.

[8] A. Moravánszky. Dense matrix algebra on the GPU. 2003.
[9] NVIDIA. CUBLAS Library. 2007.

[10] NVIDIA. Nvidia CUDA Compute Unified Device Architec-
ture. Programming Guide. 2007.

