
Informe Técnico ICC 02-01-2008

Attaining High Performance in General-Purpose
Computations on

Current Graphics Processors

Francisco Igual-Peña, Rafael Mayo-Gual, Enrique S. Quintana-Ort́ı

Enero de 2008

Departamento de Ingenieŕıa y Ciencia de Computadores

Correo electrónico: {figual, mayo, quintana}@icc.uji.es

Universidad Jaime I
Campus de Riu Sec, s/n

12.071 - Castellón
España





Attaining High Performance in General-Purpose
Computations on

Current Graphics Processors

Francisco Igual-Peña1,
Rafael Mayo-Gual2,

Enrique S. Quintana-Ort́ı3,

Abstract:

The increase in performance of the last generations of graphics processors
(GPUs) has made this class of hardware a coprocessing platform of remarkable
success in certain types of operations. In this paper we evaluate the performance
of linear algebra and image processing routines, both on classical and unified
GPU architectures and traditional processors (CPUs). From this study, we gain
insights on the properties that make an algorithm likely to deliver high perfor-
mance on a GPU.

Keywords:
Graphics processors (GPUs), general purpose computing on GPU, linear

algebra, image processing, high performance.

1 Departamento de Ingenieŕıa y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

2 Departamento de Ingenieŕıa y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

3 Departamento de Ingenieŕıa y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.





Obtención de Altas Prestaciones en
Computación de Carácter General sobre

Procesadores Gráficos

Francisco Igual-Peña4,
Rafael Mayo-Gual5,

Enrique S. Quintana-Ort́ı6,

Resumen:

El aumento de prestaciones de las últimas generaciones de procesadores
gráficos (GPUs) ha convertido a este tipo de hardware en una plataforma de
coprocesamiento de considerable éxito para cierto tipo de aplicaciones.

En el presente art́ıculo, se evalua el rendimiento de rutinas de álgebra lineal
y procesamiento de imágenes, tanto en arquitecuturas gráficas clásicas como
unificadas, aśı como sobre procesadores de carácter general (CPUs).

A partir de dicho estudio, se extraen las propiedades que hacen de un algo-
ritmo candidato a obtener elevado rendimiento al ser ejecutado sobre una GPU.

Palabras clave:
Procesadores gráficos (GPUs), procesamiento de carácter general sobre GPUs,

álgebra lineal, procesamiento de imágenes, altas prestaciones.

4 Departamento de Ingenieŕıa y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

5 Departamento de Ingenieŕıa y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

6 Departamento de Ingenieŕıa y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.





Attaining High Performance
in General-Purpose Computations
on Current Graphics Processors

Francisco Igual-Peña, Rafael Mayo-Gual, and Enrique S. Quintana-Ort́ı

Depto. Ingenieŕıa y Ciencia de los Computadores, Universidad Jaume I,
12.071–Castellón, Spain, {figual,mayo,quintana}@icc.uji.es

Abstract. The increase in performance of the last generations of graph-
ics processors (GPUs) has made this class of hardware a coprocessing
platform of remarkable success in certain types of operations. In this pa-
per we evaluate the performance of linear algebra and image processing
routines, both on classical and unified GPU architectures and traditional
processors (CPUs). From this study, we gain insights on the properties
that make an algorithm likely to deliver high performance on a GPU.

Key words: Graphics processors (GPUs), general purpose computing on
GPU, linear algebra, image processing, high performance.

1 Introduction

During the last years, since the emergence of the first generation of programmable
graphics processors (GPUs), many studies have evaluated the performance of
these architectures on a large number of applications. Thus, linear algebra op-
erations [11, 6], medical image processing [10, 15], or database querying [8] are
just a few examples of different arenas in which GPU computation has been
successfully applied. Also, [13] presents an extensive survey of the non-graphical
applications where the use of GPU delivers good results.

Recently, the design of GPUs with unified architecture and the development
of general-purpose languages which enable the use of the GPU as a general-
purpose coprocessor has renewed and increased the interest in this class of pro-
cessors. Unfortunately, the rapid evolution of both the hardware and software
(programming languages) of GPUs has outdated most of the performance studies
available to date.

In this paper, we design and implement a reduced collection of “benchmark”
routines, composed of four linear algebra operations (matrix-matrix product,
matrix-vector product, saxpy, and scaling of a vector) and an image processing
kernel (convolution filter). These routines are employed to evaluate the impact
of the improvements introduced in the new generation of GPUs (Nvidia G80),
comparing the results with those obtained on a GPU from a previous generation
(Nvidia NV44) and current general-purpose processors (AMD Athlon XP 2400+



and Intel Core 2 Duo). The ultimate purpose of this evaluation is to characterize
the properties that need to be present in an algorithm so that it can be correctly
and efficiently adapted into the GPU execution model.

The rest of the paper is organized as follows. Section 2 describes the basic
architecture and execution model of both the old and new generations of GPUs,
illustrates the main differences between them, and points out the improvements
introduced in the latter. Section 3 characterizes the routines in the benchmark
collection. Section 4 evaluates the performance of the benchmark routines on the
Nvidia NV44, compares the results with those obtained on a CPU, and identifies
a set of properties that must be present in an algorithm to deliver high perfor-
mance on that GPUs. In Section 5 we repeat the study using now the Nvidia
G80 as the execution platform. In particular, in that section we evaluate the
impact of the improvements introduced in the memory hierarchy, interconnec-
tion buses, etc., in the performance of the benchmark routines. Finally, Section 6
summarizes the conclusions that can be extracted from our analysis.

2 GPU Architecture and Execution Model

2.1 GPU graphics pipeline

The graphics pipeline consists of a set of sequential stages, each one with a
specific functionality and operating on an specific type of data. The process
transforms original graphical information (vertices) into data suitable for being
shown on display (pixels). Figure 1 illustrates the usual stages (or phases) that
form the graphics pipeline.

Fig. 1. Graphics pipeline process with its main stages.

Current GPUs implement this pipeline depending on the generation they be-
long to. Thus, classical GPUs have specific hardware units, known as shaders
(or processors), for each one of the stages of the graphics pipeline. On the other
hand, GPUs from the latest generation have a unified shader (or unified proces-
sor), with the ability to both execute any of the stages of the pipeline and work
with any type of graphical data.



2.2 Classical architecture

Until 2006 GPUs were based on a design where each pipeline stage was exe-
cuted on a specific hardware unit or processor inside the pipeline. Thus, e.g.,
vertices are processed by vertex processors while pixels (also called fragments)
are transformed by fragment processors. In practice, general-purpose algorithms
implemented on these classical architectures exploit fragment processors only,
due to their larger number and broader functionality. Fragment processors op-
erate in SIMD mode, taking a fragment as input, and processing its attributes;
they can also process vectorial data types, working simultaneously on the four
components of a fragment (R, G, B, and A). This class of hardware is able to
read from random memory locations (commonly known as a gather operation in
graphics algorithms), but can only modify one memory position per processed
fragment, the one associated with the position of the fragment. This lack of
support for scatter is one of the main restrictions of the classical GPU.

In the latter generations of this “classical architecture”, programming capa-
bilities were added to vertex and fragment processors. Altogether, the previous
characteristics enable the use of fragment processors as a hardware platform
to process non-graphical data. Unfortunately, the graphical-oriented design of
this class of hardware, its SIMD execution model, and the lack of a sophisti-
cated memory hierarchy are problems for an efficient implementation of general-
purpose applications on the GPU.

In particular, one of the major obstacles when adapting general-purpose al-
gorithms to this class of processors lies in the implementation. Usually, specific
languages as Cg or GLSL are used [4, 14], together with graphical libraries like
OpenGL or DirectX [16, 9]. However, these programming tools require a deep
knowledge of the target language as well as the underlying architecture in order
to obtain correct results and high performance.

2.3 Unified architecture

In 2006 a new generation of GPUs was introduced, with a completely different
architectural design. These new platforms feature a unified architecture, with one
processing unit or unified shader that is able to work with any kind of graphical
data, transforming the sequential pipeline in Figure 1 into a cyclic one, in which
the behavior of the unified shader varies depending on the stage of the pipeline
that it is being executed at each moment.

There are several characteristics in the new generation of GPUs which specif-
ically favor their use as a general-purpose coprocessor: in general, the clock fre-
quency of the unified shader is much higher than that of a fragment processor
(even though it is still much lower than the clock frequency of current CPUs);
the shader consists of a large collection of computation units (up to 128, de-
pending on the GPU version), called Streaming Processors (SPs), which operate
in clusters of 16 processors in SIMD mode on the input data stream; and the
architecture includes a sophisticated memory hierarchy, which comprises a L2
cache and small fast memories shared by all the SP in the same cluster.



These hardware advances are complemented with the CUDA [2] general-
purpose programming library, which eases the programming effort on these plat-
forms. In fact, CUDA has been proposed as a standard (although only compati-
ble with Nvidia hardware) to program the new generation of GPUs, without the
requirement of learning more complex graphics-oriented languages.

3 Benchmark Collection

In order to identify the algorithmic properties that yield correct and efficient
codes for the GPU execution model, we have studied three major computational
aspects of algorithms:

Data parallelism. The replication of functional units inside the GPU (frag-
ment processors in the non-unified architectures, SPs in the unified architec-
tures) makes this class of architectures specially appropriate for applications
which exhibit a high degree of data parallelism.

Input data reutilization. The simple memory hierarchy in non-unified GPUs
makes it difficult to exploit the locality of reference; in these architectures,
high memory latency and limited bus bandwidth imply a penalty cost much
higher than in a CPU; for this reason, input data reutilization is one of the
biggest issues when trying to attain high performance on graphics processors.

Computational intensity per stream element. Due to the previous restric-
tion, to achieve high performance the expensive cost of memory references
should be masked with a high number of operations per memory access.

Our benchmark collection is composed of four Basic Linear Algebra Sub-
programs or BLAS [5]: the matrix-matrix product (SGEMM), the matrix-vector
product (SGEMV), the “saxpy” (SAXPY), and the scaling of a vector (SSCAL); and
a convolution filter, common in image processing. From the computational view-
point, the routines in the benchmark present the following properties:

SGEMM features some properties that make it a good candidate to achieve
good results when mapped into graphics hardware. It exhibits a regular
memory access pattern, a high degree of data parallelism, and a very high
computational load. On the other side, it is interesting to study the impor-
tance of the high input data reutilization in this type of algorithm.

SGEMV exhibits a smaller input data reutilization than SGEMM. Thus, while
each input element for the SGEMM routine is used O(n) times to compute the
result, SGEMV only reutilizes O(n) times the data of the input matrix but
O(1) times the data of the vector. This behavior makes the matrix-vector
product routine a more streaming-oriented code, and so it is theoretically
possible to achieve better results on a GPU.

SAXPY and SSCAL are specially interesting for graphics processors, as they
do not reutilize input data at all. This type of algorithms are fully stream-
oriented, and so they are ideal to be executed on a GPU.



The main difference between these two operations, from the performance
viewpoint, is the amount of computational load per stream element. Thus,
SAXPY performs twice as many operations as SSCAL per element. This differ-
ence offers some information on the importance of the computational load
in the performance of the processor.

Convolution. These filters exhibit some properties which favor GPU hardware.
First, the high degree of data parallelism will take advantage of fragment
processors (or SP) replication of modern GPUs. Second, input data reuti-
lization is very low (proportional to the size of the applied filter, usually
small). Third, the computational load per calculated element is high, and
based on multiply-and-add (MAD) operations, for which the GPU is spe-
cially appropriate.

Table 1 summarizes the computational aspects of the routines in the benchmark.

Routine BLAS Properties

SGEMM BLAS-3
High data parallelism
High computational load per element
High input data reutilization O(n)

SGEMV BLAS-2
High data parallelism
High computational load per element
Low input data reutilization O(n)/O(1)

SAXPY BLAS-1
High data parallelism
Low computational load per element
No input data reutilization

SSCAL BLAS-1
High data parallelism
Very low computational load per element
No input data reutilization

Convolution –
High data parallelism
High computational load per element
Low input data reutilization

Table 1. Summary of the computational aspects of the routines in the benchmark.

All implementations of these routines operate on single-precision floating-
point data in our experiments. Only square matrices of the same dimension were
employed in the evaluation. The performance of the routines was measured in
terms of MFLOPs, or millions of floating-point arithmetic operations per second.

4 Previous Generation GPU-CPU Comparison

4.1 Experimental setup

In this first experiment, we have chosen two experimental platforms of the same
generation, an AMD AthlonXP 2400+ CPU and a Nvidia NV44 GPU processor



(both from year 2004), so that we can do a fair comparison between general-
purpose and graphics processors. Details on these architectures are given in
Table 2. The GNU gcc 4.1.2 compiler is employed in the evaluation.

CPU GPU
Processor AMD AthlonXP 2400+ Nvidia GeForce 6200
Codename Thoroughbred A NV44A
Clock frequency 2 GHz 350 MHz
Memory speed 2× 133 MHz 2× 250 MHz
Peak performance 8 GFLOPS 11.2 GFLOPS
Bus width 64 bits 64 bits
Max. bandwidth 2.1 GB/s 4 GB/s
Memory 512 MB DDR 128 MB DDR
Bus Type AGP 8x (2 GB/s transfer rate)
Year 2004 2004

Table 2. Description of the hardware used in our first experimental study.

4.2 Implementation details

The highly tuned implementation of linear algebra kernels in Goto BLAS 1.15 [7]
was used to evaluate the performance of the CPU. No special effort was made to
optimize the convolution filter implementation on the CPU other than feeding
the appropriate optimization flags to the compiler.

On the other hand, the GPU was programmed using OpenGL and the Cg
language (version 1.5). The routines were adapted to the architecture of the
Nvidia NV44 in order to optimize performance, as is briefly described next.

For routine SGEMM, we start from a simple implementation, applying succes-
sive refinements in pursue of high performance. First, we adapt the original al-
gorithm using the vectorial capabilities of the fragment processors, as proposed
in [3]. This type of optimization usually yields a four-fold increase in perfor-
mance, and is frequently applied to all types of GPU codes. In addition, we
try to exploit the simple cache hierarchy of the Nvidia NV44 by implementing
a multipass algorithm, following the ideas in [12]. The goal here is analogous
to blocking techniques for CPUs; however, this technique often delivers poorer
results on GPUs as the multiple memory writes after each rendering pass pe-
nalize the global performance. In general, an SIMD architecture attains higher
performance when the instructions are executed only once on the data stream.

We have also implemented simple versions of routines SGEMV, SAXPY, and
SSCAL (translated directly from the corresponding CPU algorithms), and op-
timized ones which exploit the vectorial capabilities of the GPU by applying
analogous optimizations to those described above for routine SGEMM.

Convolution filters allow us to introduce simple but powerful optimizations
starting from a basic implementation. Our proposal to achieve high performance



when executing this operation on a GPU is to divide the original N ×N image
into four N/2 × N/2 quadrants. (For simplicity, we assume here that N is a
multiple of 2.) We then map the (i, j) elements of the four quadrants onto the
four channels (R, G, B, and A) of an N/2×N/2 data structure. Since a GPU can
process four-channel tuples as a scalar element, we can get up to four times higher
performance with this type of optimization. Figure 2 illustrates the process.
Although this strategy is quite simple, it illustrates the type of optimizations
that can be easily applied when implementing general-purpose algorithms on a
GPU.

Fig. 2. Optimization applied to the computation of a convolution filters on a GPU
with a classical architecture.

4.3 Experimental results

We next report the results from our experimental evaluation. By analyzing these,
the goal to determine which algorithmic properties (computational aspects in Ta-
ble 1) favor the execution of an algorithm on a GPU with a classical architecture.

Figure 3 shows the results for routines SGEMM and SGEMV on the CPU and
GPU. On the latter architecture, we report two different MFLOPs rates, labeled
as “GPU”/“GPU w. TX”, obtained respectively by measuring only the execution
time on the GPU or timing also the period required to transfer data and re-
sults between RAM and video memory. The high input data reutilization of
the matrix-matrix product (see left-hand side plot) explains why the routine
in Goto BLAS, which exploits the sophisticated cache hierarchy of the AMD
CPU, outperforms the GPU implementation by a factor up to 4. The right-
hand side plot illustrates how, when the data reutilization is lower as, e.g., in
the matrix-vector product, the difference in performance between the CPU and
GPU routines decreases, though still favors the CPU (between two and three
times higher MFLOPs rate on this architecture).

The figure also reports that the impact of the data transference, however, is
less important for routine SGEMM, which carries out a higher computational load
per element that is transferred through the bus.

From the previous results, it is possible to conclude that the amount of data
reutilization is an important factor in order to achieve high performance on a
GPU. Therefore, one could expect that BLAS-1 operations (SAXPY and SSCAL)



Fig. 3. Performance of routines SGEMM (left-hand side) and SGEMV (right-hand side) on
the AMD AthlonXP 2400+ CPU and the Nvidia NV44 GPU.

will deliver a high MFLOPs rate on this class of hardware. Surprisingly, as shown
in Figure 4, we get a poor performance for our implementations of SAXPY and
SSCAL, much lower than those of the corresponding CPU implementations.

This behaviour can be explained as follows: the scarce amount of computa-
tional load per memory access in BLAS-1 operations limits their performance.
This is partially due to the lower efficiency of the memory system of the Nvidia
NV44 GPU, with a poor use of cache memories. The elaborated cache memory
of the CPU, and its efficient use by the optimized routines in Goto BLAS, are
the reasons for such a notable difference in efficiency. Furthermore, results on
the GPU are slightly better for SAXPY when compared with the corresponding
implementation on CPU than for SSCAL, as the computational load per stream
element calculated in the former operation is twice as high as that of SSCAL.

In conclusion, high computational load per stream element is one of the basic
conditions for an algorithm to deliver high performance when executed on GPU.
Once more, the data transfer stage is very relevant for this type of algorithm, as
shown in Figure 4.

Convolution filters combine in the same operation a set of very favorable
properties for GPUs: high data parallelism, low input data reutilization, and
high computational load per stream element. Figure 5 shows the results of the
implementations of the convolution filer on the CPU and GPU. For the latter,
we include a simple implementation and a tuned one, with the optimization
described at the end of Section 4.

The basic implementation (labeled as GPU) can already improve the perfor-
mance of the same implementations on the CPU. The optimized implementation
(labeled as GPU4) employs the four channels of each element of the input stream
in order to store data, attaining a speed-up factor close to 4x with respect to
the basic implementation.

Convolution filters are the type of algorithms that better fit into the exe-
cution model of GPUs with classical architecture. These operations exhibit all



Fig. 4. Performance of routines SAXPY (left-hand side) and SSCAL (right-hand side) on
the AMD AthlonXP 2400+ CPU and the Nvidia NV44 GPU.

Fig. 5. Performance of the implementations of the convolution filter on the AMD
AthlonXP 2400+ CPU and the Nvidia NV44 GPU.



the properties that make good use of GPUs computational power and, at the
same time, hide those aspects in which CPUs are better than graphics processors
(basically at memory access).

5 New Generation GPU-CPU Comparison

5.1 Comparison goals

Although the study of the non-unified generation of GPUs has identified some
of the characteristics desirable in algorithms that target GPUs with classical
architecture, it is also interesting to carry over this study to new generation
GPUs with unified architecture. The goal of this study is to verify if our previous
insights also hold for these new architectures, and to evaluate how the hardware
and software improvements (at computational power, memory hierarchies and
interconnection buses level) affect the performance of the implemented routines.

5.2 Experimental setup

In this second experiment, we again chose two experimental platforms from
the same generation, an Intel Core 2 Duo CPU and a Nvidia GeForce 8800
Ultra (with a Nvidia G80 processor) GPU (year 2007); see Table 3 for details.
The GNU gcc 4.1.2 compiler is employed in the evaluation. The multithreading
capabilities of Goto BLAS were enabled so that the two cores in the Intel CPU
cooperate in solving the linear algebra operations.

The implementations of the linear algebra routines in the the CUBLAS li-
brary ([1]) were used in the evaluation. This is a library developed by Nvidia,
implemented on top of CUDA, and optimized for unified graphics architectures
as the Nvidia G80. The experimental evaluation showed that the implementa-
tions in CUBLAS outperformed our implementations using Cg.

CPU GPU
Processor Intel Core 2 Duo Nvidia GeForce 8800 Ultra
Codename Crusoe E6320 G80
Clock frequency 1.86 GHz 575 MHz
Peak performance 14.9 GFLOPS 520 GFLOPS
Memory speed 2× 333 MHz 2× 900 MHz
Bus width 64 bits 384 bits
Max. bandwidth 5.3 GB/s 86.4 GB/s
Memory 1024 MB DDR 768 MB DDR
Bus PCI Express x16 (4 GB/s transfer rate)
Year 2007 2007

Table 3. Description of the hardware used in our second experimental study.



For the convolution filter, we implemented a tuned version using CUDA, with
intensive use of the fast shared memory per group of SP in order to optimize
performance. We also applied other optimizations proposed in [2].

5.3 Experimental results

The goal of the following experiments is to determine the algorithmic properties
which favor the execution of an algorithm on a GPU with a unified architecture.

Figure 6 shows the performance of routine SGEMM on both platforms. Al-
though this is not the most appropriate algorithm for the GPU (indeed, it only
delivers about 20% of the peak power of the GPU), the performance on that
platform is roughly 10 times higher than that obtained on the CPU.

The impact of the transfer time is larger for the unified architecture compared
with non-unified architecture, with less powerful interconnection buses. In fact,
the peak performance of the Nvidia G80 is about 20 times higher than that of the
Nvidia NV44, but the speed of the interconnection bus in the unified platform
is only twice as fast as the one in the non-unified platform. This is a major
bottleneck in current graphics platforms, and determines that GPU algorithms
must be redesigned to reduce the communications so that data in video mamory
is reused as much as possible before sending them back to RAM.

Fig. 6. Performance of routines SGEMM (left-hand side) and SGEMV (right-hand side) on
the Intel Core 2 Duo CPU and the Nvidia G80 GPU.

The impact of this bottleneck in the performance of a routine is higher when
its computational load decreases. For example, Figure 6 illustrates the perfor-
mance of routine SGEMV. The decrease in the GFLOPS rate is higher in this
case when the transmission time is included. This difference is so important for
this routine that, in case the transfer time is considered in the evaluation, the
performance is lower on the GPU than on the CPU. When transfer times are
not considered, the implementation on the CPU outperforms the CUBLAS im-



plementation for large stream dimensions. For small streams, the cache memory
plays a very important role, , and results are better on the CPU.

Comparing routines SGEMM and SGEMV, the introduction of a sophisticated
memory hierarchy in the Nvidia G80 diminishes the impact of the data reuti-
lization. The results for routine SGEMM are better when we compare them with
CPU implementation than the results we obtain for routine SGEMV. The introduc-
tion of cache memories is one of the main differences between both generations
of GPU and, from the previous results, we can conclude it has an important in-
fluence in the performance of general-purpose algorithms on GPUs with unified
architectures.

The amount of computational load per stream element is also critical in
this class of architectures. Figure 7 reports the results for routines SAXPY and
SSCAL. The behaviors are similar to those obtained for a GPU with a classical
pipeline. Despite being stream-oriented algorithms, without any type of input
data reutilization, the results are not comparable with those obtained by the
tuned implementations in CUBLAS. The transfer time is more relevant in this
case, as the computational load of the algorithms is quite low.

Fig. 7. Performance of routines SAXPY (left-hand side) and SSCAL (right-hand side) on
the Intel Core 2 Duo CPU and the Nvidia G80 GPU.

Figure 8 shows the results obtained for the application of a convolution filter
on a 512 × 512 image and variable filter size. This application again presents
the most favorable properties for its execution on current GPU architectures,
attaining results up to 20 times better than those achieved for the same routines
on a CPU.

6 Conclusions

We have presented an study of the properties which favor efficient execution of
general-purpose algorithms on a graphics processor, considering both classical
and unified architectures.



Fig. 8. Performance of the implementations of the convolution filter on the Intel Core 2
Duo CPU and the Nvidia G80 GPU.

GPUs from previous generations, with classical architecture, are suitable for
certain types of general-purpose algorithms with three basic characteristics: low
input data reutilization, high data level parallelism, and high computational
load per stream element. Despite their high computational power, the graphics-
oriented nature of this class of hardware carries a set of limitations at the ar-
chitecture level which ultimately limit the performance of certain types of algo-
rithms like, e.g., routines from BLAS. On the other hand, GPUs of this nature
obtain remarkable results for general-purpose algorithms which exhibit the three
properties specified above, outperforming in this case the CPU.

The improvements introduced in the new generation of GPU (unified archi-
tecture, higher processing units replication, more sophisticated memory hier-
archies, etc.) have increased the efficiency of this hardware to execute also for
general-purpose algorithms. In fact, current GPUs deliver higher performance
than that of timely CPUs in many applications.

Therefore, the last generation of GPUs appears as a high performance and low
cost co-processing platform for a larger variety of applications. The emergence
of general-purpose languages that facilitate their programming makes them even
more interesting hardware from general-purpose computations. Nevertheless,
GPUs still present some limitations in general-purpose computing such as nu-
merical precision, data transfer stages, memory hierarchies not as sophisticated
as CPU ones, etc. All this makes necessary to evaluate carefully the suitability
of GPU as an accelerator for calculations.

Acknowledgments

This work has been supported by the CICYT project TIN2005-09037-C02-02
and FEDER. Francisco Igual-Peña is supported as well by a research fellowship
from the Universidad Jaume I of Castellón (PREDOC/2006/02).



References

1. NVIDIA Corp. NVIDIA CUBLAS Library. 2007.
2. NVIDIA Corp. NVIDIA CUDA Compute Unified Device Architecture. Program-

ming Guide. 2007.
3. K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of

GPU algorithms for matrix-matrix multiplication. Graphics Hardware, 2004.
4. R. Fernando. The Cg Tutorial: The Definitive Guide to Programmable Real-Time

Graphics. 2004.
5. Basic Linear Algebra Subprograms Technical (BLAST) Forum. Basic Linear Al-

gebra Subprograms Technical (BLAST) Forum Standard. 2001.
6. N. Galoppo, N. Govindaraju, M. Henson, and D. Monocha. LU-GPU: Efficient

algorithms for solving dense linear systems on graphics hardware. In ACM/IEEE
SC—05 Conference, 2005.

7. K. Goto and R. Van de Geijn. High-performance implementation of the level-3
BLAS. ACM Transactions on Mathematical Software.

8. N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast computation
of database operations using graphics processors. Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages 215–226, June
2004.

9. K. Gray. Microsoft DirectX 9 Programmable Graphics Pipeline. 2005.
10. J.Y. Hong and M.D. Wang. High speed processing of biomedical images using

programmable GPU. In Image Processing, 2004. ICIP ’04. 2004 International
Conference on, volume 4, pages 2455 – 2458 Vol. 4, 24-27 Oct. 2004.

11. E.S. Larsen and D. McAllister. Fast matrix multiplies using graphics hardware. In
Supercomputing, ACM/IEEE 2001 Conference, pages 43 – 43, Nov. 2001.

12. A. Moravánszky. Dense matrix algebra on the GPU. 2003.
13. J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, and

T.J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 2007.

14. R.J. Rost, J. Kessenich, and B. Lichtenbelt. OpenGL Shading Language. 2004.
15. A. Ruiz, O. Sertel, M. Ujaldon, U. Catalyurek, J. Saltz, and M. Gurcan. Patho-

logical image analysis using the GPU: Stroma classification for neuroblastoma.
Proceedings IEEE Intl. Conference on BioInformation and BioMedicine, 2007.

16. M. Segal and K. Akeley. The OpenGL Graphics System: A Specification. 2006.


