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Abstract. Satellite hyperspectral imaging deals with heterogenous images con-
taining different texture areas. Filter banks are frequently used to characterize
textures in the image performing pixel classification. This filters are designed us-
ing different scales and orientations in order to cover all areas in the frequential
domain. This work is aimed at studying the influence of the different scales used
in the analysis, comparing texture analysis theory with hyperspectral imaging ne-
cessities. To pursue this, Gabor filters over complex planes and opponent features
are taken into account and also compared in the feature extraction process.

1 Introduction

Nowadays imaging spectrometers are significantly increasing their spatial resolution.
As their resolution increases, smaller areas are represented by each pixel in the im-
ages, encouraging the study of the relations of adjacent pixels (texture analysis) [9] [6].
However, not only the spatial resolution increases but alsothe spectral resolution. This
entails dealing with a large number of spectral bands with highly correlated data [7].

Both dimensionality and texture analysis in hyperspectralimaginary have been tack-
led from different points of view in literature. Several solutions to the dimensionality
problem can be found, such as selection methods based on mathematical dimensional-
ity reduction [10] or methods based on information theory which try to maximize the
information provided by different sets of spectral bands [7].

Moving to texture analysis, literature survey provides us with a wide variety of
well known texture analysis methods based on filtering [8] [4]. It is well known that,
when dealing with microtextures, the most discriminant information falls in medium
and high frequencies [1] [9]. It has been recently proposed that spatial/texture analysis
may significantly improve the results in pixel classification tasks for satellite images
using a very reduced number of spectral bands [11]. Therefore, it may be convenient to
identify the influence of each frequency band separately in order to compare the textural
information with the specific necessities of hyperspectralsatellite imaging.

Besides, color opponent features were first introduced in color texture character-
ization with fairly good performance [3] and later extendedto deal with multi-band
texture images [4]. However, they have never been used to perform pixel classification
tasks in satellite images. In this paper, we study several Gabor filter banks as well as
multi-band opponent features for pixel classification tasks.



2 Filter banks and feature extraction

Applying a filter over an image band provides a response for each pixel. If a filter bank
is applied, a pixel can be characterized by means of the responses generated by all
filters. It is possible to apply a filter in the space domain by aconvolution or in the
frequency domain by a product. In both cases, the response isthe corresponding part of
the original pixel value which responds to the filter applied[12].

When using filter banks, they are generally designed considering a dyadic tessella-
tion of the frequency domain, that is, each frequency band (scale) considered is double
the size of the previous one. It should not be ignored that this tessellation of the fre-
quency domain thoroughly analyzes low frequencies giving less importance to medium
and higher frequencies. Because the purpose of this work is to study the importance
of texture in the pixel classification task, an alternative constant tessellation (given the
same width to all frequency bands) is proposed in order to ensure an equal analysis of
all frequencies.

2.1 Gabor filters

Gabor filters consist essentially of sine and cosine functions modulated by a Gaussian
envelope that achieve optimal joint localization in space and frequency. They can be
defined by eq. (1) and (2) wherem is the index for the scale,n for the orientation and
um is the central frequency of the scale.
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If symmetrical filters are considered only the real part mustbe taken into account.

2.2 Gabor filters over complex planes

Texture analysis in multi-channel images has been generally faced as a multi-dimensional
extension of techniques designed for mono-channel images.In this way, images are de-
composed into separated channels and the same feature extraction process is performed
over each channel. This fails in capturing the interchannelproperties of a multi-channel
image.

To describe the inter-channel properties of textures we propose features obtained
using Gabor filters over complex planes. This means that instead of using each spectral
band individually, we take advantage of the complex definition and introduce the data
of two spectral bands into one complex band, one as the real part and the other one
as the imaginary part. In this way we involve pairs of bands ineach characterization
process, as it happens for the opponent features. As a result, for a cluster of spectral



bands, we will consider all possible complex bands (pairs ofbands). The Gabor filter
bank will be applied over all complex bands as shown in eq. 3, whereIi(x, y) is theith

spectral band.

hij
mn(x, y) = (Ii(x, y) + Ij(x, y)i) ∗ fmn(x, y) (3)

The feature vector for each pixel in the image is composed of the response for that
pixel to all filters in the filter bank, that is:

ψx,y = {hij
mn(x, y)}∀i,j/i 6=j,∀m,n (4)

The size of the feature vector varies with the number of complex bands. For each
complex band, one feature is obtained for each filter appliedwhat means that there will
be as many features as filters for each complex band and as manycomplex bands as
combinations without order nor repetition may be done with two bands in the cluster
B. The total number of features is given by eq. 5 whereM stands for the number of
scales andN for the number of orientations.
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2.3 Opponent features

Opponent features combine spatial information across spectral bands at different scales
and are related to processes in human vision [3]. They are computed from Gabor filters
as the difference of outputs of two different filters. The combination among filters are
made for all pair of spectral bandsi, j with i 6= j and|m−m′| ≤ 1:

d
ij
mm′n(x, y) = hi
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j
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In this case, the feature vector for a pixel is the set of all opponent features for all
spectral bands.

ϕx,y = {dij
mm′n(x, y)}∀i,j/i 6=j,∀m,m′/|m−m′|≤1,∀n (7)

Hence, the size of the opponent feature vector also depends on the number of bands,
scales, and orientations:
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Note that, in this case, the number of features is considerably increased.



3 Experimental setup

The hyperspectral image database 92AV3C image has been usedin the pixel classifica-
tion experiments. It was provided by the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) [13]. The 20-m GSD data was acquired over the Indian Pine Test Site in
Northwestern Indiana in 1992. From the original 220 AVIRIS spectral bands our band
selection method provides us with ten clusters of bands which are sets of bands that are
intended to maximize the information provided [7]. The firstcluster contains just one
bands, the second contains two bands, and so on.

The experimental activity was held using two filter banks. For the first one, six
dyadic scales (the maximum starting from width one and covering all the image) and
four orientations were used. For the second one, eight constant frequency bands and
four orientations were considered. It has been introduced certain degree of overlapping
as recommended in [2]. Gaussian distributions are designedto overlap each other when
achieving a value of 0.5.

For each of the scales a classification experiment was held using only the features
provided for that scale. In addition, an analysis of the combination of adjacent scales
have been performed. In order to study the importance of low frequencies an ascendent
joining was performed, characterizing pixels with the dataprovided by joined ascendent
scales. Similarly, the study of the high frequencies was carried out by a descendant join-
ing. Also for medium frequencies, central scales are considered initially and adjacent
lower and higher scales are joined gradually.

The pixels in the image database are divided in twenty non overlapping sets keeping
the a priori probability of each class. Therefore, no redundancies are introduced and
each set is a representative set of the bigger original one. Ten classification attempts
were carried out for each experiment with the k-nearest neighbor algorithm withk = 3
and the mean of the error rates of these attempts was taken as the final performance of
the classifier. Each classification attempt uses one of thesesets for training and another
as test set. Therefore, each set was never used twice in the same experiment.

4 Evaluation of the results

Figure 1 shows the percentages of correct pixel classification obtained for the experi-
ments that used the dyadic filter bank. Figure 2 shows similarresults when the constant
filter bank was used.

As it can be observed from both figures, when the characterization processes in-
cluded all scales, the filter bank using the dyadic tessellation outperforms the constant
one. It seems clear that the better the low frequencies are analyzed the better the pix-
els are characterized. This means that, for this sort of images, the texture information,
although still helps in the characterization process, is significantly lower than the infor-
mation contained in the low frequencies. It can be seen that no scale can ever outper-
form the classification rates achieved by scale one which achieve up to 81% by itself.
In general, the more detail is obtained from low frequenciesthe best the image is char-
acterized.

For the dyadic tessellation, although scales two and three do not outperform scale
one when characterizing independently (Fig. 1a-b), their performance is considerably
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Fig. 1. Pixel classification rates using the filter bank with dyadic tessellation. (a,c,e,g) Gabor
features over complex planes (b,d,f,h) Opponent features (a,b)Individual scales (c,d) Ascendent
join (e,f) Descendent join (g,h) Central join. Note the different ranges over the Y-axis in each
graph.
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Fig. 2. Pixel classification rates using the filter bank with constant tessellation. (a,c,e,g) Gabor
features over complex planes (b,d,f,h) Opponent features (a,b)Individual scales (c,d) Ascendent
join (e,f) Descendent join (g,h) Central join. Note the different ranges over the Y-axis in each
graph.



high. Because the first scales cover a very small part of the frequency domain, the
characterization joining scales 1, 2 and 3 improve the pixelclassification rates (Fig. 1c-
d). In a nutshell, when all (six) scales are used, the classification rates are better than the
ones obtained using just the first scale. However, it is worsethan the results obtained
for the first three scales although having a double number of features. The descendent
and central joinings (Figs. 1e-f and 1g-h) clearly show thatthe performance increases
significantly as features derived from lower frequencies are considered.

Regarding the filter bank, using a constant tessellation (Fig. 2), the first scale is
the only one containing discriminant information. This first scale is wide enough in
this case to include the information of several scales of thedyadic tessellation. It is
very clear from the graphs that the features derived from other scales do not help the
characterization processes as the classification rates always decrease. It can be noticed
that the best classification rates obtained for the dyadic tessellation is over 84% but is
only about 77% for the constant tessellation.

Last but not least, the comparison between the feature extraction methods suggest
that opponent features perform similarly to Gabor filters over complex planes. It seems
that Gabor features provide better results when using a verysmall number of spectral
bands whereas opponent features provide slightly higher classification rates when more
spectral bands are used. Nevertheless, on the whole, the characterization with opponent
features requires a larger number of features than Gabor filters, which may worsen
performance if a large number of spectral bands is to be considered.

Briefly, spatial analysis between pixels improves hyperspectral satellite images char-
acterization [11] but the nature of this kind of images, which are heterogeneous due
to being composed of different homogeneous areas, made low frequencies very impor-
tant for the characterization task, while texture information may help the process, but
not significantly. Furthermore, including much more information but the provided by
the low frequency analysis may even decrease the performance because of the so call
Hughes phenomenon [5].

5 Conclusions

An analysis of the contribution of each scale to the characterization of hyperspectral
images has been performed. As it is known in the texture analysis field, medium and
high frequencies play an essential role in texture characterization. However, satellite
images cannot be considered as pure texture images since thehomogeneity of the dif-
ferent areas in the image is more important than the texture these areas may content. A
thoroughly analysis of the contribution of each independent scale and the group com-
posed by low, medium or high frequencies has been carried out. It has been shown that a
detailed analysis of low frequencies helps the characterization improving performance.
Also a few scales could be considered in the feature extraction process providing by
themselves very high classification rates with a few number of features. The compar-
ison between Gabor filters over complex plains and opponent features has shown that
the classification rates obtained are almost identical in both cases. The main difference
is the number of features required in each case, being much larger for the opponent
features.
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