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Abstract
In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed
approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for
the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this
approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and
biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration
of the proposed algorithm.

Keywords Regime-switching diffusion · Fourier transformation · Fokker–Planck equation · Multifractal diffusion · Animal
motion

1 Introduction

Regime-switching diffusion processes have wide-ranging
applications in a variety of fields. One important area is
financial economics in which a long legacy of contributions
exists that study option pricing and other tasks in financial
engineering for assets whose market price follows Brownian
motion with two regimes (Naik 1993; di Masi et al. 1995;
Guo 2001; Liu et al. 2006; Godin et al. 2019; Ramponi
2011; Zhou et al. 2021, among others). Other applications
include diffusive media in material science (Aifantis and Hill
1980; Aggarwala and Nasim 1987; Polyanin 2008; Tsambali
2018) and movements of animals in biology (Yan et al. 2014;
Pozdnyakov et al. 2019, 2020). Two monographs (Mao and
Yuan 2006; Yin and Zhu 2010) provide summaries of extant
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knowledge on the existence of solutions, asymptotic prop-
erties and numerical approximation of switching diffusions.
These monographs do, however, not cover the problem of
parameter estimation for regime-switching diffusions. Over-
all, the literature on statistical inference for these processes
seems to be extremely sparse and still in its infancy.

To the best of my knowledge, the following should be
a nearly complete list of contributions that exist to date on
parameter estimation of regime-switching diffusions. These
contributions are almost exclusively confined to processes
with two states only and they draw on theoretical results
for the so-called telegraph process (Stadje and Zacks 2004;
Pogorui et al. 2021). The telegraph process describes the tra-
jectory of a particle on the real linewhosedirection changes at
random times according to a Poisson arrival process. Known
results on the occupation times of the two (positive and neg-
ative) regimes can be used to obtain analytical results for
regime-switching diffusions with two states. While some
earlier papers develop estimators for the parameters of the
telegraph process itself (Yao 1985; Iacus and Yoshida 2009),
the first attempt at estimating a two-state switching diffu-
sion appears to be Yan et al. (2014). However, these authors
consider the extreme case only in which the variance of one
of the regimes is zero, and develop a composite likelihood
approach for this case. Khasminskii and Kutoyants (2018)
propose a one-stepmaximum likelihood estimator based on a
moment estimator as starting point. Pozdnyakov et al. (2020)
take advantage of the observation that regime-switching dif-
fusions fall into the broad class of hidden Markov models,
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and that their conditional state probabilities in the two-state
case can be derived from the well-known analytical results
on the telegraph process, which allows them to formulate
a full maximum likelihood estimator for the two-state case
based on the analytical results for the telegraph process.
Pozdnyakov et al. (2020) generalize their moving–resting
model for animal motions by an intermediate state. With
restrictive assumptions on the intensity matrix of the hid-
den three-state transition matrix, the telegraph solutions can
be generalized for this special case and maximum likelihood
estimation becomes again feasible. Another example of an
analytical solution for a three-state regime-switching diffu-
sion can be found in Fuh et al. (2012) in the context of option
pricing (without estimation).

Higher-order switching diffusions of a very specific form
are considered in Lux (2022). He compares different algo-
rithms for sequential Monte Carlo estimation of so-called
multifractal models in continuous time. The particular fea-
ture of thesemodels is a hierarchical structure of the intensity
matrix that is predefined and only leaves few parameters to
be estimated. This design allows consideration of up to 215

regimes with only one parameter governing the hierarchical
structure of the transition rates, and a second parameter gov-
erning the similarly hierarchical structure of the variances
of the different regimes. This parsimonious structure even
allows conducting Monte Carlo simulations to assess the
quality of the estimators despite the fact that each estima-
tion already is based upon a large number of particles itself
in the sequential Monte Carlo scheme.

Our contribution in this paper will be the proposal of a
generally applicable algorithm for maximum likelihood esti-
mation of regime-switching diffusions beyond the case of
only two states. The proposed approach is relatively straight
forward although it seems not to have been proposed before
in extant literature: The conditional state densities of any
regime-switching diffusion are given by a system of linear
partial differential equations, with their numbers being equal
to the number of states (the so-called forward Kolmogorov
or Fokker–Planck equations). A system of partial differen-
tial equations can, of course, be solved in closed-form only
in rare cases (the two-state regime-switching diffusion being
one example). One way to obtain a handle on partial dif-
ferential equations that often proves useful is to perform a
Fourier or Laplace transformation of the system (this actu-
ally provides one avenue to obtain the analytical solution in
the two-state case). Because of the linear structure of the
system of partial differential equations in the case of switch-
ing diffusions, a Fourier transformation will lead to a system
of ordinary, linear differential equations. Solving these and
transforming back to the original space domain, we obtain
the summands of the log of themaximum likelihood function
in its factorized form. Applicability of this approach is only
constrained by the computational demands of solving the

system of ordinary differential equations resulting from the
Fourier transformation (i.e., computing its eigenvalues and
eigenvectors) and the inverse Fourier transformation after-
wards. This analytical approach provides an alternative to
the emerging literature on stochastic approximations for the
likelihood function of switching diffusions (Lux 2022, using
sequential Monte Carlo, and Hibbah et al. 2020 and Black-
well et al. 2016, using Markov Chain Monte Carlo) that can
be used in ‘plug-and-play’ form and formoderate numbers of
states can be implemented with very modest computational
costs.

The rest of this paper proceeds as follows: Sect. 2 presents
the numerical algorithm, illustrated for the case of the two-
state regime switching diffusion. Section3 compares its
performance with that of the well-known analytical solution
in this case. Section4 moves on to higher-order switch-
ing diffusions demonstrating the feasibility and efficiency
of the algorithm for a selection of interesting models. Sec-
tion5 provides an empirical application to the three-state
‘moving–handling–resting’ model of animal motion with
seven parameters. Section6 concludes. Two appendices pro-
vide additional technical material: Appendix A sketches the
analytical derivation of the solution for the two-state case
using purely probabilistic arguments. Appendix B shows,
how the present estimation algorithm can be adapted for
bivariate switching diffusions (or multivariate switching dif-
fusions in general).

2 The algorithm: illustration with two-state
case

To illustrate the proposed approach and its efficiency, we
first consider the case of a two-state switching diffusion. We
define by st , t ≥ 0, a continuous time Markov chain with
two states {0, 1}, with transition rates λ1 and λ2 between
states and by Wt a standard Brownian motion independent
of st . Assuming that the diffusion rate of Wt is governed
by the Markov chain st , the compound process is usually
denoted a regime-switching or hybrid diffusion, and can also
be interpreted as an instance of a hidden Markov model.

The so defined regime-switching process can then simply
be described by a diffusion with two states s = 0 and s = 1
with different variances σ 2

0 and σ 2
1 : The state variable xt of

this diffusion will obey:

dxt = σst dWt (1)

with the hidden state process st being characterised by the
intensity matrix:

Q =
(−λ1 λ1

λ2 −λ2

)
.

(2)
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The two state process defined in this way also constitutes
the main building block of the continuous-time multifrac-
tal model which we will consider below as an example for
switching diffusions with a high number of states. In typical
applications, xt might be an asset price, the location of an
animal, or the concentration of some liquid.

For elementary diffusion processes, the Feynman–Kac
formula establishes a link between such stochastic processes
and certain partial differential equations which can be used
to derive the law of motion of the transient density of the pro-
cess in the form of a forward Kolmogorov or Fokker–Planck
equation. For Markov-switching diffusions, this connection
is formally established by Baran et al. (2013).

Denoting the state-specific joint densities of xt and st by
u(x, t) = f (x, s = 0; t) and w(x, t) = f (x, s = 1; t),
application of the Feynman–Kac formula to switching dif-
fusions leads to the following system of partial differential
equations:

∂u

∂t
= 1

2σ
2
0

∂2u
∂x2

− λ1u + λ2w,

∂w

∂t
= 1

2σ
2
1

∂2w
∂x2

+ λ1u − λ2w. (3)

Note that this system of Fokker–Planck- or forward Kol-
mogorov equations already appears inmany of the references
quoted in Sect. 1 where they have been derived in various
more or less rigorous or heuristic ways. We now perform
a Fourier transformation for the system (3) in the ‘space’
dimension:

ũ(ξ, t) =
∫ ∞

−∞
u(x, t)e−iξ xdx,

w̃(ξ, t) =
∫ ∞

−∞
w(x, t)e−iξ xdx . (4)

One of the well-known properties of the Fourier trans-
formation is that derivatives of the original function become
powers of iξ in the transformed equation. Hence, we arrive
at the following system

∂ ũ

∂t
= − σ 2

0
2 ξ2ũ − λ1ũ + λ2w̃,

∂w̃

∂t
= − σ 2

1
2 ξ2w̃ + λ1ũ − λ2w̃. (5)

For every frequency ξ , system (5) can be easily solved
admitting a representation:

ũ(ξ, t) = A1(ξ)eΛ1(ξ)t + A2(ξ)eΛ2(ξ)t ,

w̃(ξ, t) = A1(ξ)ν1(ξ)eΛ1(ξ)t + A2(ξ)ν2(ξ)eΛ2(ξ)t (6)

where Λ1(ξ) and Λ2(ξ) are the eigenvalues of the system,
ν1(ξ) and ν2(ξ) are the second elements of the pertinent

eigenvectors (their first elements having been normalized to
unity) and A1(ξ) and A2(ξ) are the constants of integration
which need two boundary conditions to be identified.

In principle, with ũ(ξ, t) and w̃(ξ, t) being solved for all
values of ξ , we can use the inverse Fourier transformation to
arrive back at:

u(x, t) = 1

2π

∫ ∞

−∞
ũ(ξ, t)eiξ xdξ,

w(x, t) = 1

2π

∫ ∞

−∞
w̃(ξ, t)eiξ xdξ. (7)

Solving Eq. (7) for all frequencies is, of course, impos-
sible, so that it will be approximated by the inverse discrete
Fourier transform:

f (x, t) = W

2πN

N
2 +1∑

n=− N
2 +1

f̃

(
n
W

N
, t

)
eixn

W
N , (8)

for both u(x, t) and w(x, t). Because of the symmetry of
these functions in ξ , and the periodicity of Eq. (8) we set
W = 4π and can actually restrict the numerical evaluation
to the cosine terms in the Fourier series for n ∈ [0, N

2 + 1].
How is this solution entering the estimation algorithm?

Note that we can interpret our variables xt and st as the
observed and hidden state of a Hidden Markov Model
(HMM). It is well known that xt is not Markov, but the joint
process (xt , st ) obeys the Markov property. One can, then,
use the forward algorithm from the HMM literature that had
already been applied in a similar context by Pozdnyakov et al.
(2019). With a sample of equidistantly measured (in time)
observations {xt } t = 1, . . . , T , we define the so-called for-
ward variables as:

α(yt+1, st+1, θ) =
∑
st

f (yt+1, st+1|st , θ)α(yt , st , θ) (9)

with yt+1 = xt+1−xt the increments of the observed variable
and θ the vector of parameters we wish to estimate.

Normalized forward variables are defined as:

α̂(yt , st , θ) = α(yt , st , θ)

L(yt , θ)
(10)

with L(yt , θ) = ∑
st α(yt , st , θ).

If at time t = 1, no prior information is available, the
updating would start with the ergodic probabilities of the
hidden states, say P0(s0), and α(y1, s1, θ) would be formed
as:

α(y1, s1, θ) =
∑
s0

f (y1, s1|s0, θ)P0(s0) (11)
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Since the ergodic probabilities sum up to one, L(y0, θ) =
L0(θ) = 1 so that α̂(y1, s1, θ) = α(y1, s1, θ) holds.

Subsequent forward variables are determined following
the recursion:

α̂(yt+1, st+1, θ)

= L(yt , θ)

L(yt+1, θ)

∑
st

f (yt+1, st+1|st , θ)α̂(yt , st , θ)

=
∑

st f (yt+1, st+1|st , θ)α̂(yt , st , θ)∑
st+1

∑
st f (yt+1, st+1|st , θ)α̂(yt , st , θ)

(12)

Hence, we obtain a sequence of evaluations of the densi-
ties f (yt+1, st+1|st , θ) which are subsequently standardized
to be used as conditional probabilities for observing state
(yt+1, st+1). The denominator of Eq. (12), i.e.

l(yt+1, |yt , θ) = L(yt+1, θ)

L(yt , θ)

=
∑
st+1

∑
st

f (yt+1, st+1|st , θ)α̂(yt , st , θ)

(13)

actually provides us with the density of yt+1 conditional on
yt which we need to evaluate the likelihood function in its
factorized form. Pozdnyakov et al. (2019) derive the transi-
tion densities from the well-known results on the telegraph
process while here the system of partial differential Eq. (3)
and its Fourier transform is used for the same purpose. The
advantage of the latter approach is that it can be generalized
easily along various dimensions, i.e. for any number of states
as well as for multivariate switching processes.

With equidistant observations, the time step can be nor-
malized to unity, so that (7) would have to be evaluated at
each iteration at the values u(yt , 1) and w(yt , 1). Note that
the observation yt enters as a constant only in Eq. (7) or its
discrete implementation (namely, in place of x).

Lastly, the constants of integration of Eq. (6) are obtained
from the initial values of the densities at t = 0, i.e. u(x, 0)
and w(x, 0) which would be obtained from the iteration of
the forward variables, i.e. Eq. (12) which are used as the
initial values for the next iteration.

It is interesting to note that the eigenvalues of system
(5) as well as all eigenvalues of any such system obtained
from a switching diffusion with an arbitrary number of states
are necessarily negative. This follows immediately from its
property of a dominant negative diagonal (i.e. that the ele-
ments on the main diagonal are all negative and larger in
absolute values than the sum of the other entries in the
same row or column). Note also that the eigenvalues become
the ‘more negative’, the higher ξ which guarantees conver-
gence of the inverse Fourier transform. This is simply a
consequence of the fact that the Fourier transform of the

Gaussian also is an exponential function, and that the den-
sity of regime-switching diffusions is amixture ofGaussians.
This guarantees spectral convergence, i.e., exponential decay
of the coefficients of the spectral frequencies and pointwise
convergence of the discrete inverse Fourier transformation
of the densities u(x, t) and w(x, t) (cf. for example Epstein
2005).

As with time, we also normalize ‘space’ in the factorized
sequence of conditional densities by taking differences yt =
xt − xt−1 which leads to u0 = u(0, 0) = α̂(yt−1, st = 0, θ)

andw0 = w(0, 0) = α̂(yt−1, st = 1, θ) as initial conditions.
The Fourier transform of these initial conditions is that of a
Dirac delta function, e.g.,

ũ(ξ, 0) =
∫ ∞

−∞
δ(x)u(x, 0)e−iξ xdx = u(x, 0) at x = 0

(14)

and the same for w̃(ξ, 0). Hence, we obtain the constants of
integration A1 and A2 in Eq. (6) as

A1 = ν2u0 − w0

ν2 − ν1
, A2 = w0 − ν1u0

ν2 − ν1
.

To summarize, the above algorithm obtains numerical
solutions of the joint densities of (xt , st ) or equivalently
(yt , st ) that are needed to implement the standard factor-
ized likelihood function for state-space models within the
framework of a regime-switching diffusion process. These
conditional densities are obtained by solving the resulting
system of ordinary differential equations obtained from the
Fourier transformation of the ‘space’ variable and using the
inverse Fourier transform to express this result again as a
joint density of (yt+1, st+1). It should be obvious that what
has been presented for the sake of simplicity in a setting with
two states only, can be generalized to any number of states
without any conceptual changes to the algorithm. The scope
of applicability would only be constrained by the increas-
ing computational demands of multiple Fourier and inverse
Fourier transforms, and the computation of eigenvalues and
eigenvectors in higher-dimensional state spaces. One could
alternatively also apply a Laplace transformation of the time
dimension of Eq. (5). This would result in a linear system
of equations for the state densities which would be even
more straightforward to solve than the system of differen-
tial equations obtained from the Fourier transformation, but
would then require a sequence of inverse Laplace and Fourier
transformations to get back to the original space and time
coordinates. It remains to be exploredwhether this alternative
is computationally more efficient or not. Another variation
would be to use symbolic computation for the solutions of
Eq. (6) rather than evaluating this system numerically for
each frequency ξ .
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3 Comparison of algorithms for two-state
switching diffusion

While the numerical solution via Fourier and inverse Fourier
transformations is universally applicable, a closed-form solu-
tion to the conditional density of regime-switching diffusion
processes exists only in the simplest case of two states. This
solution has also been obtained by a sequence of Fourier and
Laplace transforms. It yields after some manipulations func-
tions that upon application of the inverse transforms lead to
the well-known form based on two modified Bessel func-
tions. Slightly different versions of this derivation can be
found in Pedler (1971), Aifantis and Hill (1980) and Aggar-
wala and Nasim (1987). It is, however, also possible to derive
this solution on the base of purely probabilistic arguments
without having to perform any transformation of the state
variables. This proof is sketched in the Appendix. This alter-
native derivation provides intuition to the somewhat abstract
representation of the transient densities by Bessel functions
and elucidates that these transient densities indeed represent
all possible trajectories between two time points.

To simplify, we assume that the transition rate λ = λ1 =
λ2 is the same between both states, denoted state 0 and state
1. Furthermore, the variances of both states are defined as
m0 and m1 = 2 − m0 so that the vector of parameters to be
estimated consists of θ = {λ,m0}. These restrictions can be
relaxed without any conceptual efforts, but they allow us to
conduct Monte Carlo experiments below for an estimation
problem with two parameters only before moving to more
complex settings.

Using the notation of the previous section, the analytical
solution to the transient densities u(x, t) and w(x, t) with
these assumptions reads:

u(x, t) = u0e
−λt h(x,m0t) + e−λt

∫ t

0
(u0

(
τ

t − τ

)1/2

λI1(η) + w0λI0(η))h(x, v(τ ))dτ,

w(x, t) = w0e
−λt h(x, (2 − m0)t) + e−λt

∫ t

0
(u0λI0(η)

+w0λ

(
t − τ

τ

)1/2

I1(η))h(x, v(τ ))dτ (15)

with η = 2λ(τ(t − τ))1/2, h(x, v(τ )) the density of the
Normal distribution with mean zero and variance v(τ) at x ,
v(τ) = m0τ +(2−m0)(t−τ), and In(z) themodified Bessel
functions:

In(z) =
∞∑
k=0

1

k!Γ (k + n + 1)

( z
2

)2k+n
. (16)

In Eq. (15) the right-hand side is obtained as the product
of the two densities of the regime-switching process times

their respective expected occupation timeswithin the interval
[0, t]. The first entries are discrete ‘atoms’ of the distribution
of the occupation times at t (i.e. no changes of the regime
occur within the interval). The integrals of the Bessel func-
tions identify expected occupation times for any number of
regime switches from 1 to infinity and are multiplied by the
resulting ‘averages’ of theNormal densities. It is curious how
often Eq. (15) seems to have been rediscovered in the liter-
ature: While the first version appeared apparently in Pedler
(1971), in the material sciences it has first been derived by
Aifantis andHill (1980) bywhich a long legacy of subsequent
literature and applications has been set off. In finance, the first
application of Eq. (15) for option pricing is Naik (1993). In
2001, Guo seemed to have rediscovered these results inde-
pendently as he neither has any references to Pedler, Naik
nor to Aifantis and Hill. Much of the subsequent literature
in finance indeed then quotes Guo (2001) as the seemingly
first contribution in this vein. Even more recently, Ratanov
(2007) and Kolesnik and Ratanov (2013) have again, appar-
ently independently, made the transition from the telegraph
process (with its known solutions for occupation times of the
two states) to the application of this result in option pricing.

Equations (15) can be used to compute directly the condi-
tional densities of the two-state regime-switchingprocess and
to implement the iterative version of the likelihood function.
The time 0 densities u0 and w0 are then set equal to the nor-
malized joint densities of (yt−1, st−1), i.e. u0(x = 0, 0) =
α̂(yt−1, st = 0, θ), and w0(x = 0, 0) = α̂(yt−1, st = 1, θ).

Table 1 compares the performance of maximum likeli-
hood estimation based on the telegraph solution of Eq. (15)
with the one using the computational ‘detour’ of the Fourier
and inverse Fourier transformations. In addition, to gauge
the computational demand imposed by the Bessel functions,
a functional approximation has been used in their place in
the integrals of Eq. (15), cf. Martin et al. (2017). Table 1
reports the mean and standard deviations of the parameter
estimates of m0 and λ for time series of length T = 1000,
T = 2000 and T = 5000 across 200 Monte Carlo replica-
tions in each case. The number of Fourier frequencies used
in the approximation developed in Sect. 2 was N = 100. The
computations have been coded in GAUSS21 on a worksta-
tion with 32 AMD EPYC 7281 processors running on 2.10
GHz. While no explicit parallelization has been used in the
code, GAUSS automatically runs many matrix operations in
a multi-threaded mode.

Upon inspection, the parameter estimates from all three
computational methods appear almost identical throughout.
The correlation matrices on the right-hand side of Table 1
indeed indicate, that with larger sample sizes, the numeri-
cal results tend to become even more uniform. This suggests
that slightly higher variation with smaller samples is more
due to small occasional deviations between methods in the
optimization algorithm (a standard BFGS algorithm has been
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used), than in the computation of the likelihood function
itself. The results show nicely the T 1/2 consistency of the
maximum likelihood estimates (as it would be expected).
The most interesting differences between the different meth-
ods are their computational demands: While the numerical
approximation of theBessel functions leads to a slight advan-
tage against the built-in Bessel functions in GAUSS the
detour through the frequency space comes at higher com-
putational cost ranging from 20s to about 1.5min of average
computing time for T = 1000 to T = 5000, roughly five
times more compared to the solution based on Bessel func-
tions.

However, this computational cost can be offset by out-
sourcing the Fourier approach to a tailor-made dynamic
library that is then used as a single command line in the likeli-
hood optimization loop inGAUSS. The fifth column of Table
1 shows that with a dynamic library in C the computational
demands of the Fourier approach are only slightly higher than
those of the closed-form solution based on Bessel functions
(this comparison is, of course, ‘unfair’ as we still encode
the latter approach fully in GAUSS). Note, however, that the
dynamic library can be practically designed as a ‘plug-and-
play’ module that could be applied to any regime-switching
process with an arbitrary number of states and parameters.

4 State spaces of higher order

The solution algorithm illustrated in Sect. 2 for the case of a
regime-switching diffusionwith two states is generally appli-
cable for any number of hidden states. The generalizations
of Eqs. (5) to (8) are straightforward: With n the number
of Markov states, the counterpart of Eq. (5) would consist
of a system of n equations for the Fourier transforms of the
regime-dependent densities. The counterpart ofEq. (6)would
consist of the solutions of the densitieswhichwould all haven
terms on their right-hand sidemade up of the eigenvalues and
eigenvectors of the system of ordinary differential equations
for the Fourier-transformed densities. Again, within themax-
imum likelihood loop, the initial conditions Ai (i = 1, . . . , n)

would be determined via the normalized densities obtained in
the previous step, and the inverse Fourier transformwould be
used to obtain the new state densities in the original ‘space’
domain. Obviously, with increasing n the computational bur-
den of these computations would become higher and higher.
It is, therefore, interesting to explore the practical applicabil-
ity of this algorithm by considering some selected examples
with n > 2.

4.1 A four-state multifractal switching diffusion

The continuous-time multifractal model allows for an arbi-
trary number of hierarchical components in the variances of

diffusion processes with a large number of states. In its Bino-
mial form, each of these components might either assume
a value of m0 or 2 − m0 as in the two-state example of
Sect. 2.1 With k such multipliers, this allows for a total of
2k Markov states. Since the hierarchical components enter
multiplicatively, for k = 2, for instance, the state dependent
variances would be: m0m0, (2 − m0)m0,m0(2 − m0) and
(2−m0)(2−m0). Obviously, two of the four states share the
same variance, but they need to be differentiated as they are
governed by different transition rates (generally, for k multi-
pliers, therewould only be k+1different variances among the
2k states).More generally, with a number k ofmultipliers, the
Binomial multifractal diffusion would be characterized by
dxt = ∏k

i=1 M
(i)
t (st )dWt with each Mi

t (st ) ∈ {m0, 2−m0}.
The second defining characteristic of the multifractal dif-

fusion is the hierarchy of transition rates with intensities
λi , i = 1, . . . k. In the simplest base-line model, the vectors
of transition rates would just be described by a geometric
degression, i.e. λi+1

λi
= β < 1. If switches at different hierar-

chical levels are independent, the intensity matrix becomes
more and more sparse for higher k.

For example, for k = 2 with four states, denoting the
states by st ∈ {00, 10, 01, 11} according to whether level
i = 1 or i = 2 assumes the realization m0 or m1 = 2 −
m0, we would obtain the following system of four partial
differential equations governing the joint densities ulm =
f (x, s = lm, t), l,m ∈ {0, 1}:
∂u00
∂t

= 1

2
m2

0
∂2u00
∂x

− (λ1 + λ2)u00 + λ1u10 + λ2u01

∂u10
∂t

= 1

2
m0(2 − m0)

∂2u10
∂x

+ λ1u00 − (λ1 + λ2)u10

+λ2u11
∂u01
∂t

= 1

2
m0(2 − m0)

∂2u01
∂x

+ λ2u00 − (λ1 + λ2)u01

+λ1u11
∂u11
∂t

= 1

2
(2 − m0)

2 ∂2u11
∂x

+ λ2u10 + λ1u01

−(λ1 + λ2)u11 (17)

Despite its higher complexity, a designated plug-and-play
code for the algorithm of Sect. 2 could also perform maxi-
mum likelihood estimation of the parameters m0, λ1, λ2 of
thismodelwithout the need for any conceptualmodifications.

Interestingly, due to the independence of the switches of
the multipliers of both hierarchical levels, this case also has

1 We could base the multifractal framework on any number of elemen-
tary multipliers. E.g., a trinomial multifractal model would be based on
three possible realizations of the multipliers: m1, m2 and 3−m1 −m2.
With k hierarchical levels, we would end up with 3k different Markov
states, i.e. regimes. In the financial literature, the Binomial cascade has
usually been found to possess already sufficient flexibility formodelling
the heteroscedasticity of asset price fluctuations. The construction of a
trinomial multifractal cascade is sketched in Mandelbrot (1999).
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a closed form solution which follows directly from the well-
known solution of the ‘telegraph’ diffusion above. Namely,
each of the two components is characterized by the occupa-
tion times of its two states as used in Eq. (15) and derived
in the Appendix. Since both levels are independent, the joint
expected occupation times are just the product of both indi-
vidual occupation times.

We can, therefore, express the densities ulm(x, t) as:

ul,m(x, t)

=
∫ t

0

∫ t

0
f (l)
1 (τ1, t) f

(m)
2 (τ2, t)h(x, v(τ1, τ2))dτ1dτ2

(18)

with l,m ∈ {0, 1} and f (l)
1 (·), f (m)

2 (·) the occupation times
of states l and m (0 and 1) at level i (1 or 2).

Just as in Eq. (15), the occupation times are:

f (0)
i = u0,i e

−λi tδ(t − τi ) + e−λi t {u0,iλi
(

τi

t − τi

)1/2

×I1(ηi ) + u1,iλi I0(ηi )}
f (1)
i = u1,i e

−λi tδ(t − τi ) + e−λi t {u0,iλi I0(ηi )

+u1,iλi

(
t − τi

τi

)1/2

I1(ηi )} (19)

Here, ηi = 2λi (τi (t − τi ))
1/2, u0,i = Prob(M (i)

t−1 = m0 |
yt−1, θ) and u1,i = Prob(M (i)

t−1 = m1 = 2 − m0 | yt−1, θ)

which can be obtained from the forward variables defined in
Sect. 2. Finally, h(x, v(τ1, τ2)) is the density of the Normal
distribution with mean zero and variance:

v(τ1, τ2) = τ1τ2m
2
0 + (τ1 + τ2 − 2τ1τ2)m0(2 − m0)

+(1 − τ1)(1 − τ2)(2 − m0)
2. (20)

We can now use either the Fourier transform algorithm
of Sect. 2 or the double integrals of Eq. (18) to compute the
state densities needed for maximum likelihood estimation.
Prior to conducting estimation experiments, one may want
to compare more directly the accuracy and computational
demand of both alternatives. While both are based on exact
solutions, the computational implementation involves nec-
essarily some approximations: the discrete inverse Fourier
transform in the first case, and the numerical approximation
of the integrals of Eq. (18) in the second case. To gauge the
influence of these factors, a series of evaluations of func-
tion values has been conducted. For all four densities ulm the
60 function values between -3 and 2.9 with increments 0.1
have been evaluated at t=1. This exercise has been repeated
for parameters m0 = 1.3, 1.5, 1.7 and λ1 = λ = 0.2 and
0.4 (with λ2 = 0.5λ1), and for different settings in terms of

the number of Fourier frequencies and the precision of the
numerical integration.

As it turned out, the Fourier method showed no change
in the function values at all for all numbers of frequencies
N beyond a minimal number. More pronounced were the
changes in the realizations of the integrals when varying the
required precision. The integrals have been evaluated with
an adaptive quadrature method which is available as a prede-
fined function in GAUSS and takes as input a required level
of absolute or relative accuracy.

Figure1 shows the sum of squared deviations between
both methods in dependency on the required precision
in the integration together with the computation time of
the evaluation of the integrals as a multiple of the time
needed to implement the Fourier algorithm (implemented
with N = 100). As one can see, one would need a pro-
hibitive computation time to reach the same precision with
the numerical evaluation of the integrals as with the Fourier
algorithm. Admittedly, it has not been proven rigorously that
the Fourier method gives a better approximation (since the
‘true’ numbers are not available) but the fact that the Fourier
approximation shows fast convergence, and that the direct
evaluation of the integrals also converges to the Fourier out-
put with higher precision, suggests that the results of the
Fourier approach should correspond closely to the ‘ground
truth’. The differences are, indeed, not negligible: As Table
2 shows, the ML estimation on the base of the Fourier algo-
rithm performs well in Monte Carlo simulations with clear
indication of T 1/2 consistency. In contrast, estimation based
on the numerical integration and limited precision (10−3)
turned out to lead to less efficient estimates in Monte Carlo
simulations (details not shown in the table). While this could
certainly be ameliorated by imposing higher accuracy, this
would come with an increase of computation time by two or
three orders of magnitude. It, thus, appears that the relative
advantage of what one might call a more ‘direct’ solution
against the indirect way of the Fourier and inverse Fourier
transform has turned into the opposite when moving from a
two-state to a four-state switching diffusion.

4.2 Higher-order multifractal diffusions

When increasing the number of multipliers k in the mul-
tifractal framework, the number of states will increase by
a factor 2. Hence, when moving from k = 2 to k = 3,
we are proceeding from a four-state to an eight-state diffu-
sion. The latter possesses only 4 distinct states (m3

0,m
2
0(2 −

m0),m0(2 − m0)
2, (2 − m0)

3) but the full set of arrange-
ments of M (1)

t M (2)
t M (3)

t , M (i)
t ∈ {m0, 2 − m0}, has to be

taken into account since different arrangements of the same
numbers of realizations m0 and 2 −m0 in the cascade come
with different transition rates to other states.
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Fig. 1 The upper panel shows the average squared differences between
density function evaluations based upon the Fourier transform and the
direct solution of the integrals of Eq. (18). The lower panel shows the

computation time of the evaluation of the integrals as a multiple of the
computation time of the Fourier method

How the system that results at increasing cascade levels
is related to previous stages can easily be illustrated by the
transition from k = 2 to k = 3: For k = 2 the counterpart of
Eq. (5) in matrix form reads:

⎛
⎜⎜⎜⎝

∂ ũ00
∂t

∂ ũ10
∂t

∂ ũ01
∂t

∂ ũ11
∂t

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

−0.5m2
0ξ

2 − λ1 − λ2 λ1 λ2 0
λ1 −0.5m0(2 − m0)ξ

2 − λ1 − λ2 0 λ2
λ2 0 −0.5m0(2 − m0)ξ

2 − λ1 − λ2 λ1
0 λ2 λ1 −0.5(2 − m0)

2ξ2 − λ1 − λ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
ũ00
ũ10
ũ01
ũ11

⎞
⎟⎟⎠

.

(21)

When adding a third hierarchical level, we might define
the joint densities asui jk or ũi jk (i, j, k = 0, 1)depending on
whether the pertinentmultiplier is in statem0 orm1 = 2−m0.
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Table 2 Monte Carlo results for
more than two states

T = 1000 2000 5000

k = 2

m0 1.510 (0.047) 1.513 (0.025) 1.513 (0.020)

λ 0.232 (0.095) 0.225 (0.057) 0.212 (0.031)

tsec(Gauss) 55.080 (17.253) 105.710 (27.971) 261.860 (70.728)

tsec(C) 10.550 (3.316) 20.210 (5.476) 48.900 (13.403)

k = 3

m0 1.513 (0.039) 1.521 (0.028) 1.522 (0.017)

λ 0.453 (0.163) 0.437 (0.106) 0.433 (0.060)

tsec(Gauss) 201.730 (49.996) 381.630 (118.451) 946.370 (232.606)

tsec(C) 28.910 (6.879) 55.140 (17.155) 135.240 (33.129)

k = 4

m0 1.537 (0.035) 1.537 (0.027) 1.540 (0.015)

λ 0.392 (0.116) 0.400 (0.088) 0.383 (0.047)

tsec(C) 109.260 (38.089) 212.530 (64.038) 507.500 (126.960)

The table shows the results of Monte Carlo simulations for maximum likelihood estimation of multifractal
diffusions with k = 2 to k = 4 hierarchical levels (i.e. four, eight and sixteen states). The table displays means
(standard deviations in brackets) of the parameter estimates and computation times across 100 Monte Carlo
runs for each scenario. The underlying parameters have been: m0 = 1.5 in both cases and λ = λ1 = 0.2
(0.4) for the case k = 2 (k = 3 and 4). The progression of transition rates follows λi+1 = 0.5λi in all cases
(i = 1, . . . , k)

Keeping the ordering of Eq. (21) and adding a third mul-
tiplier M (3)

t = m0 we obtain the first four entries to the 23

conditional densities at hierarchical level k = 3. Adding
M (3)

t = 2−m0 to the sequence of the 4 multipliers at level 2
the second subset of states 5 through 8 is obtained. Denoting
the vector of the eight densities by uk=3 or ũk=3, it is easy
to see that the system of ordinary differential equations after
Fourier transformation can be written as:

∂ũk=3

∂t
=

(
A0 B
B A1

)
ũk=3 (22)

where A0 and A1 are submatrices that both resemble
closely the right-hand side of equation (21), and B is simply
given by B = λ3 I4, I4 the identity matrix of size 4.

Furthermore, Ai (i = 0, 1) can also be decomposed as:

Ai =
(
Ai0 λ2 I2
λ2 I2 Ai1

)
with Ai j =

(
Ai j0 λ1
λ1 Ai j1

)
(23)

and

Ai jk = −0.5m3−i− j−k
0 (2 − m0)

i+ j+kξ2 −
3∑

m=1

λm . (24)

Hence, the systems of partial or ordinary differential equa-
tions governing the densities of a multifractal diffusion of
any order can be easily constructed by adding new blocks of
entries to those of previous stages.

One might wonder how our estimator performs for differ-
ent specifications of the multifractal model. Table 2 shows
results for k = 2 to k = 4 which can also be compared
to the results depicted in Table 1 for the case of k = 1.
To avoid very small transition rates, the highest rate λ1 has
been chosen to be λ1 = 0.2 for k = 2 and λ1 = 0.4 for
k = 3 and k = 4 keeping m0 = 1.5 throughout. The suc-
cession of transition rates is again geometric with a factor
of 0.5. As a consequence, higher numbers of cascade levels
allow for more variability of resulting time series but would
not necessarily come with additional parameters to be esti-
mated. While this parsimonious specification of multifractal
models is seen as an advantage in applications, it could, of
course, be modified if deemed useful: One could either dis-
pense with any systematic progression altogether estimating
allλi separately, or let the decay rateβ be an unknownparam-
eter.

Table 2 shows again satisfactory T 1/2 convergence in all
cases. As it transpires, the multipliers m0 can be estimated
with higher precision for higher k and higher λ1 while the
estimates of the transition rates show higher variability if this
parameter is increased. The latter observation seems plausi-
ble as with a higher transition rate the states change more
quickly and can be identified with less precision. Moving
from k = 1 to k = 2 and from k = 2 over k = 3 to k = 4 the
computational demands increase by a factor 3 to 4 at each
higher level.
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Table 3 Monte Carlo results for
three-state
‘moving–handling–resting’
process

True T = 1000 T = 2000 T = 5000

λ0 0.3 0.325 (0.082) 0.309 (0.046) 0.301 (0.029)

λ1 0.2 0.223 (0.087) 0.208 (0.050) 0.204 (0.026)

λ2 0.1 0.103 (0.031) 0.104 (0.015) 0.103 (0.034)

p 0.5 0.513 (0.150) 0.494 (0.095) 0.507 (0.056)

σ0 10.0 10.216 (0.540) 10.181 (0.417) 10.156 (0.287)

σ1 2.0 1.969 (0.288) 1.983 (0.147) 1.987 (0.131 )

σ2 1.0 1.003 (0.050) 0.996 (0.036) 0.996 (0.025)

tsec 141.800 (105.776) 234.290 (92.855) 545.920 (379.576)

The table shows the results of Monte Carlo simulations for maximum likelihood estimation of a three-state
switching diffusion of the ‘moving–handling–resting’ variety for animalmotions. The underlying values of the
seven parameters are given in the second column. The rest of the table shows the means (standard deviations
in brackets) of the parameter estimates across 100 Monte Carlo simulations with T = 1000, 2000 and 5000
observations

4.3 A three state moving–handling–restingmodel
of animal motion

Pozdnyakov et al. (2020) have expanded the moving–resting
model with two states of Yan et al. (2014) adding a third state
for the handling of a prey by a predator, a state that might
lead to smallermovements than the ‘moving’ state proper, but
that is still different from the calm behavior during the resting
phase. This model leads to a three-state diffusion with three
different standard deviations σ0, σ1 and σ2 and a transition
rate matrix between states

Q =
⎛
⎝−λ0 λ0 p λ0(1 − p)

λ1 −λ1 0
λ2 0 −λ2

⎞
⎠ (25)

where the order of the states is moving, handling, resting
implying σ0 > σ1 > σ2. The animal enters from the moving
state to either the handling or resting states with transition
rates λ0 p and λ0(1 − p), respectively, and from those back
to moving with rates λ1 and λ2. No direct transition happens
between the two latter states. In contrast to the multifractal
diffusion this model comes with a total of seven parameters,
θ = {λ0, λ1, λ2, p, σ0, σ1, σ2}which allows us to explore the
performance of the estimation in a more complex inferential
problem in terms of the number of parameters.

Table 3 again shows that all parameters in a series of
exemplary Monte Carlo simulations are well identified and
obey T 1/2 consistency with increasing sample size. Using
the plug-and-play dynamic library, computational demands
of this three-state model with several parameters are compa-
rable to that of the k = 3-multifractal model, i.e., a model
with sixteen states but only two parameters. While the com-
putational burden of the Fourier approach would be the same
for any specification of a three-state regime switching dif-
fusion, the higher number of parameters typically leads to a

higher number of iterations until convergence in the numer-
ical optimization of the likelihood function is reached.

5 An application: mountain lionmovements

We conclude with an application of the model introduced
in the previous subsection using sensor data of the move-
ments of a mountain lion that has been recorded in the Gros
Ventre Mountain Range in Wyoming, U.S.A, from 2009 to
2012. These data has also been used by Yan et al. (2014) and
Pozdnyakov et al. (2019, 2020) to estimate two-state and
three-state diffusion processes of the moving(–handling)–
resting type. The data consist of 3917 time stamped spatial
coordinates, and, thus, allows to compute the distance trav-
elled by the lion in north/south and east/west directions
during the time between adjacent recordings. The data can be
downloaded from cran.r-project.org where also the code of
the previous papers using this data is available. Since it had
been observed that the behavior of these lions differs between
seasons, I have followed previous authors in selecting only
observations during the summer months, from 1 June to 31
August of each year, a total of 1136 remaining observations.

Figure2 provides an impression of the movement in the
east/west direction in terms of differences between adjacent
recordings which clearly conveys the impression of switches
between periods with relatively largemovement in space (the
units are in 1000ms) and much more calm periods.

In contrast to Pozdnyakov et al. (2020) and Yan et al.
(2014) we allow for non-zero diffusion coefficients in all
three (or two) states. If locations are estimated precisely,
handling might go along with some movements over smaller
distances, and even resting might not lead to a completely
stationary location (in the data, only 11 observations in the
northward and 6 in the eastward direction show exactly zero
changes of position which, however, still includes a round-
ing of the coordinates). With this assumption, the empirical
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Fig. 2 The upper panel shows the last 200 observations of the eastward motion of the mountain lion in the year 2012 (with 8-hour intervals as the
unit time step), the bottom panel exhibits the posterior probabilities of the three states in cumulative fashion

application of the two-state and three-state models falls into
the general framework as presented in the last subsection and
no adjustment for off-states is needed.

In implementing the estimation algorithm of the previous
sections, the measured time differences between recordings
have been used instead of the uniform time step that has been
assumed in the simulations. This only requires to adjust the
counterpart of Eq. (6) in a way that the measured time that
has elapsed between recordings enters and, the value used for
t , thus, varies between observations. As the base time unit,
I have chosen 8h as this has been the targeted frequency for
the transmission by the sensor. Hence, all estimates reported
below have to be interpreted as transition rates and diffusion
coefficients per 8h interval.

For the estimationof the competingmodels, the north/south
and east/west movements have been interpreted as a bivari-
ate diffusion with three states, identical diffusion coefficients
in both directions in each state and uncorrelated increments.
AppendixBprovides details on how themaximum likelihood

estimation via Fourier transforms can be adapted to the case
of a bivariate regime-switching diffusion (or, more generally,
any multivariate regime-switching diffusion).

Table 4 displays the resulting parameter estimates together
with themaximized likelihood, AIC andBIC criteria for both
the three-state and the simpler two-state model. Both criteria
favour the three-state model over the simpler alternative. The
unconditional probabilities of the three (two) states on the
bottom of the table indicate that the two states of the simpler
model each absorb part of the probability of the intermediate
handling state of the richer one. The information criteria and
the significant parameter estimates, however, indicate that an
intermediate state adds explanatory power. One also notes
that the diffusion coefficient of the moving states in the two-
state model also lies between those of moving and handling
in the three-state scenario.

Although the estimation algorithm did not impose any
restrictions on the diffusion coefficients besides positivity,
the parameter for σ2 turned out to be extremely close to zero.
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Table 4 Parameter estimates for two-state and three-state ‘moving-
(handling-) resting’ process

3-state model 2-state model

λ0 0.589 (0.100) 0.710 (0.043)

λ1 0.339 (0.150)

λ2 0.214 (0.024) 0.291 (0.014)

p 0.197 (0.118)

σ0 1.926 (0.061) 1.885 (0.027)

σ1 0.345 (0.013)

σ2 2.220e−10(.) 2.589e−09 (0.012)

lkl 415.855 392.251

AIC −822.118 −776.501

BIC −768.857 −756.357

p(moving) 0.281 0.291

p(handling) 0.096

p(resting) 0.623 0.709

The table shows the results ofmaximum likelihood estimation of a three-
state switching diffusion of the ’moving–handling–resting’ variety for
the movement data of the mountain lion during the summers of 2009
to 2012 compared with the simpler two-state model without the ‘han-
dling’ component. The table presents the estimates of the seven (four)
parameters of both models (standard errors in brackets) together with
the maximized likelihood, the AIC and BIC criteria, and the stationary
probabilities of the three (two) states

The pertinent value for the two-state model is slightly higher
as it counts a number of the handling episodes among the
states of rest.

In comparison to the estimates reported in Pozdnyakov
et al. (2020), one striking difference is that their model
assigns 90 percent of the lion’s activity as ’handling’ while
in the present approach only 10 percent of the time is on
average spent in the intermediate state. Similarly, our mov-
ing state applies during roughly 28 percent of the time, while
Pozdnyakov et al. find ’movement’ proper in only 1.3 per-
cent of the time. Finally, ’resting’ comes with a stationary
probability of about 9 percent in their model, while here we
obtain 62 percent. It is, of course, possible that the present
model identifies a new regimewith slow speed rather than the
original ’handling’ regime. However, the estimated standard
deviation of 0.345 agrees well with the reported hovering
within a distance of about 250 m of a kill side which moti-
vated the introduction fo the handling regime. Besides that,
the samples are not the same: only summer of 2012 is used
by Pozdnyakov et al., while here also data of the summers
from 2009 to 2012 have been combined.

The lower panel of Fig. 2 shows the posterior probabilities
for the three states for the last 200 observations in the year
2012. The three probabilities are displayed in cumulative
fashion. One observes that the posterior identifies particu-
larly sharply whether the lion is resting or not (not difficult
actually given that the diffusion rate for the resting state is

minuscule), but it sometimes has problems distinguishing
between moving and handling. However, there are also peri-
ods (e.g., two times during the last four observations) when
a probability of close to 1 is assigned to the intermediate
‘handling’ state (e.g., around time step 90 in Fig. 2)

6 Conclusion

This paper has proposed a universally applicable algorithm
for implementation of the maximum likelihood estimator
for regime-switching diffusions with an arbitrary number of
states and parameters. While computational constraints will
eventually impose limitations on the applicability for very
large models, the selected examples have shown that vari-
ous interesting models with moderate numbers of states and
parameters can be effectively handled by this approach. As
illustrated in Sect. 5, the algorithm can also be easily adapted
to multivariate regime-switching diffusions. The proposed
algorithm also comes with the advantage that it can be
applied in any regime-switching model of interest in a ‘plug-
and-play’ mode without any specific adjustments. Further
efforts at parallelization of the main body of the algorithm
would also increase the possible range of models it can be
applied to. While this paper has concentrated on pure dif-
fusion processes, the proposed estimation methodology can
also be generalized to regime-switching processes with state-
dependent drift and state-dependent jump components (cf.
Lux 2023 for the details of the adapted algorithm).
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Appendix A: Appendix A: Probabilistic
derivation of occupation time
in two-state method

An alternative avenue for the computation of occupation
times in continuous Markov-switching models has first been
developed by Souza e Silva and Gail (1986) which has been
generalized by Sericola (2000). Their approach is based on
replacing the continuous-time process by a discrete pro-
cess (denoted as uniformisation) with a rate Λ that fulfills
Λ = maxλi with λi the transition rates of an arbitrary
Markov process in continuous time. The discretized switches
follow a Poisson distribution P(N (t) = n) = e−Λt (Λt)n

n! and
separate time intervals of occupation of a certain state from
those of occupation of other states.

Using this formalism, the sum of occupation times for the
state of interest is the sum of waiting times Yk spend in that
state prior to the next change away from it. For a givennumber
of transitions n and sojourn times at the state of interest, k,
during an interval [0, t], the distribution of the sum of these
waiting times is known to be:

P

⎡
⎣ k∑

j=1

Y j < τ

⎤
⎦ =

n∑
i=k

(
n

i

)(τ

t

)i (
1 − τ

t

)n−i
. (A1)

Denoting the probability of possible combinations of n and k
by Ω(n, k), and taking the derivative of the resulting expres-
sion with respect to τ , one obtains the density function of
occupation times:

f (τ ) =
∞∑
n=1

e−Λt (Λt)n

n!
n∑

k=1

Ω(n, k)k

(
n

k

)

(τ

t

)k−1 (
1 − τ

t

)n−k
. (A2)

Let us setΛ = λ and consider the I1-term in the first equation
of (15). This term stands for all those cases in which we have
s(t = 0) = 0 and s(t = 1) = 0 except for the case in which
no switch has happened at all during [0, 1] as the latter is
covered by eλt h(x,m0, t). We know collect those cases of
Ω(n, k) which allow the process to both start and end in the
same state s = 0. Obviously, in the two-state model this
implies that n needs to be an even number, so instead of n,
we let the sum of (A2) run over expressions depending on
2n. The state 0 sojourn times would then be exactly n + 1 of
the total of 2n time segments. Modifying (A2) accordingly,
we arrive at:

f0(τ ) = e−λt
∞∑
n=1

(λt)2n

2n! (n + 1)
(2n!)

(n + 1)!(n − 1)!
(τ

t

)n
(
1 − τ

t

)n−1

= e−λt
∞∑
n=1

(λt)2n
1

n!(n − 1)!
(τ

t

)n (
1 − τ

t

)n−1

= e−λt 1

t − τ

∞∑
n=1

λ2n

n!(n − 1)!τ
n(t − τ)n .

Shifting the sum so that it starts at n = 0 instead of n = 1
yields:

f0(τ ) = e−λt λ

t − τ

∞∑
n=0

λ2n+1

n!(n + 1)! τ
n+1(t − τ)n+1

= e−λt λ

t − τ

∞∑
n=0

λ2n+1

n!(n + 1)! (
√

τ(t − τ))2n+1
√

τ(t − τ)

= e−λtλ

√
τ

t − τ
I1(2λ

√
τ(t − τ)).

The other Bessel terms in Eq. (15) can be derived through
similar operations.

Appendix B: Appendix B: Bivariate
regime-switching diffusions

Regime-switching diffusions can also be considered for mul-
tivariate series. In the following, the estimation algorithm
of Sect. 2 is generalized to the case of a bivariate diffusion
switching between two regimes (which could be the moving
and resting states in the application of Sect. 5). Generaliza-
tions to multivariate processes of higher order should again
be obvious from the exposition below.

If we consider a bivariate diffusion process in a space
defined by coordinates xt and yt with diffusion coefficient
σ 2, the Fokker–Planck equation for the density p(x, y, t)
describing this process in the absence of regime switching
reads:

∂ p

∂t
= 1

2
σ 2

(
∂2 p

∂x2
+ ∂2 p

∂ y2

)
(B1)

A bivariate regime-switching diffusion with different dif-
fusion rates, σ 2

0 and σ 2
1 , and a uniform transition rate λ

between regimeswould be characterized by the state-specific
densities u(x, y, t) = p(x, y, s = 0; t) and w(x, y, t) =
p(x, y, s = 1; t) following the system of two partial differ-
ential equations:

∂u

∂t
= 1

2
σ 2
0

(
∂2u

∂x2
+ ∂2u

∂ y2

)
− λu + λw

∂w

∂t
= 1

2
σ 2
1

(
∂2w

∂x2
+ ∂21

∂ y2

)
+ λu − λw (B2)
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Applying the bi-variate Fourier transform

ũ(ξx , ξy, t) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y, t)e−i(ξx x+ξy y)dxdy,

w̃(ξx , ξy, t) =
∫ ∞

−∞

∫ ∞

−∞
w(x, y, t)e−i(ξx x+ξy y)dxdy (B3)

leads to the system of two ordinary differential equations:

∂ ũ

∂t
= −1

2
σ 2
0 (ξ2x + ξ2y )ũ − λũ + λw̃,

∂w̃

∂t
= −1

2
σ 2
1 (ξ2x + ξ2y )w̃ + λũ − λw̃. (B4)

For every realisation of ξ2x + ξ2y this system admits solu-
tions similar to Eq. (6) in the main text:

ũ(ξx , ξy, t) = A1(ξ
2
x + ξ2y )e

Λ1(ξ
2
x +ξ2y )t

+A2(ξ
2
x + ξ2y )e

Λ2(ξ
2
x +ξ2y )t ,

w̃(ξx , ξy, t) = A1(ξ
2
x + ξ2y )ν1(ξ

2
x + ξ2y )e

Λ1(ξ
2
x +ξ2y )t

+A2(ξ
2
x + ξ2y )ν2(ξ

2
x + ξ2y )e

Λ2(ξ
2
x +ξ2y )t (B5)

In Eq. (B5), the eigenvalues, eigenvectors and constants of
integration now all depend on the sum ξ2x + ξ2y . The original
densities u(x, y, t) andw(x, y, t) are obtained by the inverse
Fourier transform:

u(x, y, t) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ũ(ξx , ξy, t)e

i(ξx x+ξy y)dξxdξy,

w(x, y, t) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
w̃(ξx , ξy, t)e

i(ξx x+ξy y)dξxdξy .

(B6)

The solution of Eq. (B6) is, then, again used for selected
frequencies and (B6) is approximated by the inverse discrete
Fourier transform

f (x, y, t) = W
(2π)2NM

∑ 1
2 N+1

− 1
2 N+1

∑ 1
2 M+1

− 1
2 M+1

f̃

(
n W

N ,mW
M , t

)
e(i(xn W

N +ym W
M ))

(B7)

for both u(x, y, t) and w(x, y, t). Here again, because of
the symmetry of the solutions (B5), only the cosine terms
in the trigonometric expansion of (B7) make non-zero con-
tributions, and because of the symmetry of the cosine, the
numerical evaluation can be confined to pairs (n,m) from
n ∈ [0, N

2 + 1],m ∈ [0, M
2 + 1]. Besides animal movement,

potential applications include diffusion of liquid media in
two or three dimensions (Aifantis and Hill 1980) or multi-
variatemultifractal diffusions asmodels for the simultaneous
evolution of the prices of a portfolio of assets (Lux 2022).
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