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The importance of testing residual autocorrelation in longitudinal studies 1 

Abstract  2 

While the theory of longitudinal data analysis (LDA) has a solid foundation, 3 

there are instances where the assumptions of the analytical model remain unverified. 4 

Failure to examine autocorrelation in residuals (ACR) can elevate the risk of 5 

committing a Type I error, leading to the rejection of a true null hypothesis. This study 6 

compares two distinct analytical models within LDA: the polynomial (straight line, 7 

quadratic…) model and the autoregressive (AR) model. Three separate studies were 8 

conducted to investigate this comparison. 9 

In Study 1, a real dataset was analyzed using a polynomial model, during which 10 

ACR was checked. In Study 2, the same dataset was reexamined using an AR model, 11 

followed by an ACR analysis. Study 3 involved contrasting the results of Studies 1 and 12 

2 through a confounding test. Notably, the conclusions derived from Studies 1 and 2 13 

diverged considerably. While Study 1 yielded significant inferences concerning the 14 

variable Gender, this significance was not replicated in Studies 2 and 3, likely 15 

attributable to a Type I error in Study 1. 16 

In Study 3, the core independent variables (IVs) from Study 1, specifically Day 17 

of the week and Day of the week squared failed to garner support. Simultaneously, the 18 

AR IVs from Study 2 were validated. Consequently, this study underscores the 19 

advantages of the AR model, confirming its statistical and conceptual adequacy in the 20 

realm of LDA. The implications extend to considerations of enhancing data analysis in 21 

longitudinal studies. 22 
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Introduction 27 

In any field of psychology, more and more longitudinal studies are performed, 28 

with a variety of ways in which authors analyse the data (Asparouhov & Muthén, 2020, 29 

2023; Box et al, 1970, 2016; Lee & Yu, 2015). However, not all analysis methods used 30 

are equally suitable, depending on the type of data analysed and the procedure used for 31 

its analysis. This research reviews the main longitudinal design systems: (a) 32 

contemplating longitudinal data analysis (LDA) encompassing single case designs 33 

(SCD) and data from multiple participants over time, known as intensive longitudinal 34 

designs (ILD); (b) discussing the challenge of autocorrelation and serial dependence in 35 

analyzing these data types; (c) explaining the consequences of not addressing 36 

autocorrelation in the original data; (d) conducting analyses in Study 1 (polynomial 37 

model) and Study 2 (AR, or autoregressive, model) on real longitudinal data to observe 38 

the effects of disregarding serial dependence and autocorrelation of raw data, as well as 39 

the absence of autocorrelation of residuals (ACR); (e) presenting a corrective data 40 

analysis procedure in Study 2, AR model, to address ACR in the same dataset analyzed 41 

in Study 1; (f) contrasting the outcomes of Studies 1 and 2 in Study 3, using a 42 

confounding test to determine the best fit for the model, confirming the presence of 43 

serial dependence in the original data and the 'white noise' nature of residuals in the 44 

polynomial model, Study 1; finally, (g) revealing how Study 1's analysis led to 45 

potentially mistaken inferences about the IVs, likely due to a Type I error. 46 

Single subject designs and intensive longitudinal data analysis 47 

The emergence of single subject designs and statistical analyses involving SCD in 48 

psychology stemmed from two key trends, firstly, it arose from the development of 49 

behavioral research (Skinner, 1963), secondly, it evolved from the development of LDA 50 

in engineering (Box et al., 1970, 2016).  51 
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The introduction of SCD designs raised questions regarding the most appropriate 52 

analysis for this data. Initially, analyses using mean contrasts with t or F tests were 53 

conducted (Gentile et al., 1972; Shine & Bower, 1971). Criticisms arose due to 54 

inappropriate analyses, particularly with the escalation of t or F values, potentially 55 

increasing the likelihood of committing a Type I error when autocorrelation (ACR) was 56 

present (Hartmann, 1974). This problem was initially pointed out by various authors 57 

(Aitken, 1934; Cochrane & Orcutt, 1949), who suggested utilizing Box-Jenkins ARIMA 58 

models (1970) to remove ACR in the data. 59 

ILD systems, an extension of SCD (Walls & Schafer, 2006), involve recording data 60 

from multiple individuals at various times, measuring one or more variables 61 

simultaneously with regular periodicity (hours, days, weeks, etc.). Publications labeled 62 

as ILD encompass longitudinal data, intensive data, daily diary, experience sampling, 63 

ambulatory assessment, ecological momentary assessment, panel data, etc., depending 64 

on the field under investigation. The analysis of ILD has seen increased frequency in 65 

biology, psychology, and medicine due to technological advancements in record 66 

systems (Stinson, Liu & Dallery, 2022).  67 

Autocorrelation in longitudinal data  68 

Autocorrelation within longitudinal data presents persisting challenges in SCD 69 

designs and continues to persist in ILD. Specifically, this relates to the autocorrelation 70 

of original variable data, or serial dependence, and ACR (Arnau & Bono, 2003; Jones et 71 

al., 1977; Tong & Dubé, 2022). While the ACR has to be reviewed in univariate time 72 

series (Box et al., 2016), in ILD researchers often overlook this aspect, despite the fact 73 

that several authors recommend its verification (Bolger & Laurenceau, 2013; Singer & 74 

Willet, 2003).  75 
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The debate surrounding the consideration of ACR in psychology has been ongoing. 76 

In a review of previously published works within a clinical psychology journal, 77 

Huitema (1985) concluded that the presence of autocorrelation in the raw data does not 78 

impede the analysis of temporal data as independent from cross-sectional research 79 

(employing F or t-tests, regression, etc.), disregarding the potential ACR. Huitema's 80 

approach has been under scrutiny due to calculating the average of correlations found in 81 

reviewed articles, which averaged close to zero. Huitema's conclusions seem to 82 

disregard three significant aspects: the varying nature of autocorrelation in each case, 83 

the limited statistical power due to a small number of observations per phase (Box et al., 84 

1970), and the improper standardization of correlation values (Matyas & Greenwood, 85 

1991). Huitema's stance has been questioned by various authors, prompting a 86 

reconsideration of his earlier standpoint (Kazdin, 1982; Suen & Ary, 1987); simulation 87 

studies suggest that higher autocorrelation increases the probability of Type I errors 88 

(Hibbs, 1974; Huitema et al., 1999).  89 

The 'pre-whitening' technique (Cochrane & Orcutt, 1949), suggested for removing 90 

autocorrelation in raw variables, has been found to lead to various statistical errors 91 

(Hamed, 2008); consequently, its utilization has diminished.   92 

The consequences of residual autocorrelation 93 

While in psychology there was a debate about the convenience of using AR models 94 

for LDA, Kmenta (1971, pp. 274-281) showcased, in a context of statistical economy, 95 

that in cases where ACR is significant, utilizing ordinary least squares (OLS) for 96 

parameter estimation leads to underestimated errors' variances. Consequently, the 97 

variances and standard errors of the parameters, included in the estimators' 98 

denominators, are similarly underestimated. This situation causes overestimation of 99 

values in t, z, F, R2, b0, b1,… statistics, leading to an increased risk of Type I errors. 100 
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Thus, if ACR is not significant, using OLS or similar procedures becomes appropriate 101 

for correct parameter estimation in temporal regression. 102 

In Kmenta's manual (1971), a straightforward illustration is provided regarding 103 

ACR when it follows an AR1 pattern (Bolger & Laurenceau, 2013). It begins by 104 

assuming a forecast model where residuals (et) are autocorrelated with a value of ρ, 105 

represented as et = ρet-1 + εt. This formulation leads to an evaluation of the variance of 106 

et: 107 

Var(et) = Var(εt)/(1-ρ2),                                                (1) 108 

here, several aspects should be noted. The first is that if ρ = 0, then Var(et) = Var(εt). 109 

The second aspect is that for values of ρ ≠ 0, Var(et) > Var(εt). Also, the value of Var(et) 110 

will be larger the greater the absolute value of ρ, making it easier to make Type I errors; 111 

this confirms simulation studies with time series. 112 

General hypothesis  113 

The general hypothesis posits that in LDA (SCD, ILD, etc.), AR time series 114 

models prove more suitable than polynomial models (linear, quadratic, etc.) for accurate 115 

analysis. AR models are more adept at eliminating autocorrelation, thus minimizing 116 

Type I errors in parameter estimation. To test this hypothesis, Study 1 employs a 117 

polynomial model to analyze a dataset, followed by Study 2 which utilizes an AR model 118 

on the same data. Finally, Study 3 conducts a 'confounding test’ to contrast the models 119 

from Studies 1 and 2.  120 

Method 121 

Procedure and data  122 

A daily registration was completed during 45 days of lockdown for COVID-19 123 

in Spain, from March 20th (fourth day after the start of the confinement in Spain) to 124 

May 3rd (end of the confinement) of 2020, which is 45 consecutive days, participants 125 
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were asked to respond to a daily survey comprising the MASQ-D30 and some day-to-126 

day behaviors. On this research, we analyze the variable Worthless, belonging to the 127 

factor General Distress, in the Mood and Anxiety Symptom Questionnaire (MASQ-128 

D30) Scale (Wardenaar et al., 2010). More information can be got on Flor et al. (2021). 129 

Data, input syntax and outputs are on the website 130 

repositori.uji.es/xmlui/handle/10234/204504 in SPSS format (IBM SPSS, 2022). For all 131 

analyses an α = .05 was used. 132 

Participants 133 

The initial sample consisted of 319 participants recruited voluntarily through 134 

social media (web forums, WhatsApp, Twitter, and Facebook). Finally, 123 participants 135 

were selected from the total, because participants with less than 25 observations or non-136 

consecutive registries were excluded. The research had the authorization CD/24/2020 of 137 

the university deontological commission. 138 

Variables 139 

Worthless: Consistent in the item ‘During today, I felt worthless’, an 11 points Likert 140 

scale with a possible answer between the values of 0 (I have not felt at all) and 10 (I 141 

have felt totally), we selected this variable because it is the best indicator of the factor 142 

General Distress, in MASQ-D30 Scale (Wardenaar et al., 2010), having the highest 143 

loading (.76) with its factor.  144 

Gender: The variable, Gender, was coded as a categorical variable, with 0 for Male and 145 

1 for Female, we put the option 2 for Other, but any of the participants answered this 146 

option. The sample included 40 men (32.5% of the total sample) and 83 women (67.5% 147 

of the total sample).  148 

Age: Was measured in years, the final sample of 123 participants’ mean age was 42.80 149 

(between 21 and 75 years old), with a standard deviation of 10.35 years. 150 

https://repositori.uji.es/xmlui/handle/10234/204504
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Day of the week and Day of the week squared: The Day of the week has been measured 151 

with a scale where Sunday is 1, Monday 2, and so until Saturday, that is 7; in the same 152 

way, Day of the week squared is for Sunday 1, for Monday is 4,… continuing until 153 

Saturday that is 49.  154 

Study 1. Polynomial model  155 

Hypothesis  156 

In ILD, when we have multiple participants who are measured at different time 157 

points, one of the hypotheses of the model is multilevel (Raudenbush & Bryk, 2002; 158 

Singer & Willet, 2003), so that the temporal data, level 1, are nested within each 159 

participant, level 2. The substantive additional hypothesis at level 1 is that Worthless 160 

depends linearly on Gender, Age, Day of the week and Day of the week squared. At 161 

level 2, according to the data structure, there will be variation by participant in the 162 

intercept, Var(u0). Statistically (Raudenbush & Bryk; 2002), the current hypothesis will 163 

be: 164 

Worthlessjt = (γ00 + u0j) + γ10Genderj + γ20Agej + γ30Weekdayt + γ40Weekday2
t +ejt,    (2) 165 

where the subscript j represents each participant in the study (j: 1, 2, … , 123), and the 166 

subscript t represents each measurement time point (t: 1, 2, … , 45). Note that the 167 

temporal IVs are Day of the week (Time: 1, 2, … , 7) and Day of the week squared 168 

(Time2: 1, 4, … , 49). 169 

Data analysis 170 

The overall results for Worthless were M(Worthless) = 2.53 and SD = 1.48, 171 

ranging from 0-9. For the Gender variable, Male: M(Worthless) = 2.23, SD = 1.41, 172 

ranging 0-8; for Female: M(Worthless) = 2.68 and SD = 1.49, ranging 0-9. Female have 173 

bigger mean, standard and range. In Figure 1 we can see the means of Worthless by Day 174 

of the week and Gender. 175 
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Figure 1 176 

Means of Worthless in function of Day of the week and Gender.  177 

 178 

In Figure 1, the lines for Female are higher than for Male each day of the week, 179 

the grand mean is closer to Female because there are more women than men, and the 180 

Female and the Male lines are relatively equidistant, so there is not statistical interaction 181 

Gender⨯Day of the week. Note that the highest Worthless means are on Tuesday, and 182 

the smallest are on Saturday, but Men also on Friday. 183 

Results 184 

As a statistical reference, the unconditional model, Table 1 model M0, with an 185 

intercept at level 1 and also at level 2, has an AIC value of 14179.84, (𝜎𝑒
2) = .957, and 186 

its variance of the intercept at level 2, Var(u0) = 1.328, so its intraclass correlation is 187 

.581 (p < .001), meaning approximately 58.1% of the variance of the Worthless variable 188 

is due to the similarity of the data within each participant.  189 

Table 1 190 

Statistical overall indicators for each model.  191 

Model -2LLa Partrsb 
Δ(-2LL); 

Δ(Partrs)c pd AIC Δ(AIC) 

Unconditional M0 14175.85 3 - - 14179.84 - 

Study 1  

Polynomial     M1 

13851.82 8 (M1)-(M0): 

-324.03; 5 

<.001 13857.82 (M1)-(M0): 

-322.02 

Study 2  

AR                  M2 6205.81 14 
(M2)-(M0): 

-7646.01; 11 <.001 6209.81 
(M2) - (M1): 

-7648.01 
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a -2 Restricted Log Likelihood. b Number of parameters. c Increment in -2LL and in 192 

number the parameters. d p is the probability of the difference of models according to 193 

the difference of -2LL and of the number of parameters. 194 

For this Study 1, we will follow the guidelines indicated by Bolger & Laurenceau 195 

(2013, 4th chapter), in the technical sections of the analysis; so we have used the option 196 

that the data structure consists of repeated measures each Day of Lockdown (SPSS 197 

Syntax: REPEATED = Day of Lockdown), that the covariance structure for each 198 

participant is AR1 (Syntax: COVTYPE(AR1)), and that the parameter estimation 199 

system was made by way of restricted maximum likelihood (REML). The covariance 200 

AR1 option in SPSS uses a generalized least squares (GLS) estimator of the parameters 201 

(Diggle et al., 2013; Verbeke & Molenberghs, 2000).  202 

The statistical analysis gave the overall results of Table 1 M11, with an AIC of 203 

13857.82, and -2LL = 13851.82, with 8 parameters, with a difference in -2LL 204 

compared to the unconditional model, M0: Δ(-2LL) = -322.02, Δ(Parmtrs) = 5, p 205 

<.001, indicating a good overall fit of the model to data. To compare the goodness of fit 206 

of two different models for the same data, when one of them is nested inside the other, 207 

we can use the Chi-squared statistical distribution, so M1 ‘vs’ M0 can be compared with 208 

the results: [Δ(-2LL), Δ(Parameters)].  209 

Table 2 210 

Parameter estimates for polynomial model, Study 1, of Worthless as a function of Day 211 

of the week.  212 

  213 

 
1 Gender and Age are Level 2 variables, but in SPSS is not necessary to specify this aspect, because if 

within a higher level, a variable always repeats its value (i.e., Age) coinciding with the value of the higher 

level identifier (Participant), SPSS assumes that it is a level 2 variable, and estimates it as such. 

Compared to Mplus, the Age variable must be indicated as level 2.  
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A. Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t p 

95% Confidence  

Interval 

Lower  

Bound 

Upper  

Bound 

Intercept (γ00) 2.561 .476 123 5.378 <.001 1.618 3.503 

Gender (γ10) .485 .221 119 2.194 .030 .047 .923 

Age (γ20) -.011 .010 119 -1.054 .294 -.031 .009 

Weekday (γ30) .135 .036 3416 3.729 <.001 .064 .205 

Weekday2 (γ40) -.020 .004 3341 -4.603 <.001 -.029 -.012 
a Dependent Variable: Worthless. 

 

 

B. Estimates of Random Effects, Variance Parametersa 

                                         Parameter 

     

Estimate SE Wald’s z 

          

p 

95% Confidence                 

Interval 

Lower 

Bound 

Upper 

Bound 

Level 1 Residual (𝜎𝑒
2) .966 .022 44.830 <.001 .924 1.009 

Repeated Measures AR1 rho .255 .015 17.294 <.001 .226 .284 

Level 2 Variance, Var(u0j) 1.269 .170 7.483 <.001 .977 1.649 
a Dependent Variable: Worthless. 214 

In Table 2A, the fixed effects estimation confirms that the mean intercept of 215 

Worthless differs from the value of 'zero' (γ00 = 2.561, p < .001), as does the effect of 216 

Gender (γ10 = .485, p = .030) on Worthless, but the effect of Age (γ20 = -5.92, p = .294) 217 

is not significant; we will include this variable with non-significant effects in the model. 218 

The coefficients of Day of the week, γ30=.135, p <.001, and Day of the week squared, 219 

γ40=-.020, p <.001, are both significant, showing that data fit a squared shape.   220 

Regarding the level 2 results in Table 2B, we observ that the variance of the 221 

intercept is significant (Var(u0)=1.269, p=<.001), indicating that the general intercept at 222 

level 1 (γ00=2.561) has also a significant inter-subject variability. As for the other two 223 

results in Table 2B, the residual variance (𝜎𝑒
2=.966, p <.001) is the variance 224 

corresponding to the ejt errors of the statistical model of Equation 2. The forecast error 225 

autocorrelation, AR1 rho, is .255 (p <.001), indicating that the average correlation of the 226 

forecast errors, per participant, has that value and is significant.   227 

Residual analysis 228 
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To ensure accurate modeling of longitudinal data, it is essential that the residuals 229 

are "white noise", i.e., that they do not exhibit significant autocorrelation in their lags. 230 

We advise against an automatic analysis of autocorrelation function (ACF) and partial 231 

ACF (PACF) using statistical software on pooled grouped data residuals, as this method 232 

intermingles subjects' values, generating spurious correlations (e.g., merging the last 233 

value of one participant with the first value of another, and so on). Automatic ACF and 234 

PACF calculations are tailored for individual participant data, not aggregated or pooled 235 

data across different participants. A correct approach with SPSS involves manually 236 

calculated ACF and PACF as instructed in the syntaxi for accurate analysis. 237 

We will perform a residual analysis of Table 2 estimated values using pooled ACF 238 

and PACF of the first 21 residuals; the results are in Figure 2.  239 

Figure 2 240 

A. Pooled ACF of the Study 2 residuals, Polynomial model 241 

  242 

B. Pooled Partial ACF of the Study 2 residuals, Polynomial model  243 
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 244 
*** p < .001, two tailed. ** p < .01, two tailed. * p < .05, two tailed. 245 

A temporary delay is significant when both the ACF and the PACF are significant 246 

inside the same lag, note that the 11th delay is not, because the ACF is significant, but 247 

not its PACF; while that the residuals for the 1st, 2nd, 6th, 7th, 12th, and from the 15th to 248 

the 20th lags in ACF and PACF are both significant, indicating that the ACR are not 249 

"white noise", and Type I errors are likely to occur in this polynomial model, Study 1. 250 

We will analyse the same data with an AR model. 251 

Study 2. Autoregressive model  252 

The data analysed are the same as in Study 1. Our hypothesis is that the data 253 

follows an AR structure, with Worthless as a function of its own previous values 254 

(Worthlessjt = f(Worthlessjt-1, Worthlessjt-2,…, Worthlessjt-7, …, Worthlessjt-14, Worthlessjt-255 

P7, … )); this means that Worthless is function of immediate previous values, Worthlessjt-256 

1, Worthlessjt-2, …, and of lagged ‘seasonal’ weekly values, Worthlessjt-7, Worthlessjt-14, 257 

… , Worthlessjt-P7, … (Flor et al., 2021; Rosel et al., 2019), being a model AR(p)(P)S, 258 

where p is the number of immediate lags influencing the dependent variable (DV), and 259 

there will a seasonality of 7 days, or S=7, with a number of P lagged seasons. Note that 260 

in Study 1, Worthlessjt = f(Weekday, Weekday2), being Weekday and Weekday2 the 261 

temporal IVs; but in Study 2, the temporal IVs are the auto-regressed values of 262 
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Worthless, or Worthlessjt = f(Worthlessjt-1, Worthlessjt-2,…). In order to mirror the Study 263 

1, Worthless will vary according to Gender and Age. 264 

Similarly, at the between-subject level, or level 2, the intercept will vary according 265 

to the participant, i.e., Var(u0); being the general equation of the AR general hypothesis:  266 

Worthlessjt = (γ00 + u0j) + γ10Genderj + γ20Agej + γ30Worthlessjt-1 + γ40 Worthlessjt-2… 267 

       + γ70Worthlessjt-7 + γ140Worthlessjt-14 +… + γP70Worthlessjt-P7 + ejt           (3) 268 

Figure 3  269 

A. Exploratory pooled ACF of the raw data 270 

 271 

Note. All the correlations are significant, having p <.001. 272 

 273 

B. Exploratory pooled Partial ACF of the raw data 274 

 275 
*** p < .001, two tailed. ** p < .01, two tailed. 276 
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To check the serial dependence of Worthless, we conducted an exploratory analysis 277 

of pooled ACF and PACF of the original raw data, with the results shown in Figure 3, 278 

which confirms that the data follow a long AR structure, observe that most correlations 279 

are significant and, in relation to the hypothesis about the seasonality of 7 days, it can 280 

be observed that lags 7th, 14th and 21st are significant in the ACF and in the PACF.  281 

Results  282 

       The same system as in Study 1, REML, was used for parameter estimation. It was 283 

not indicated that the data were repeated measures, nor that the covariance structure was 284 

AR, since these aspects were already explicitly included in Equation 3 and the 285 

corresponding analysis model.  286 

The overall results are in Table 1; the -2LL is 6205.81 for the regression of this AR 287 

M2, which compared to the unconditional M0 model: Δ(-2LL) = -7646.01, Δ(df) = 11, 288 

p <.001, indicating a significant overall fit; and the AIC value, model is 6209.81. M2 289 

‘vs’ M0 can be compared with a Chi-squared test throw the -2LL values because M0 is 290 

nested inside M2. When they are not nested models, which is our case for comparing 291 

M2 ‘vs’ M1, because the IVs are different in each model, we will use the Burnham and 292 

Anderson procedure (Burnham et al., 2011), based on the Akaike information criterion 293 

(AIC), which establishes that if Δ(AIC) = AICA−AICB, when Δ(AIC) > |7|, then the 294 

model with the largest value is not supported; so, we can assess that AR M2 model of 295 

Study 2 is much better than polynomial M1 model, being Δ(AIC) = |-7648.01|.   296 

Table 3 297 

Parameter estimates for AR model, Study 2.  298 

A. Estimates of Fixed Effectsa 

Parameter Estimate SE t p 

95% Confidence   

Interval 

Lower 

Bound 

Upper 

Bound 
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Intercept (γ00) .287 .096 2.999 .003 .099 .475 

Gender (γ10) .000 .041 -.009 .993 -.081 .080 

Age (γ20) -.003 .002 -1.557 .120 -.007 .001 

Worthlessjt-1 (γ30) .284 .020 13.907 <.001 .244 .324 

Worthlessjt-2 (γ40) .068 .021 3.226 .001 .027 .109 

Worthlessjt-3 (γ50) .076 .021 3.567 <.001 .034 .117 

Worthlessjt-4 (γ60) .030 .021 1.420 .156 -.012 .073 

Worthlessjt-5 (γ70) .116 .022 5.365 <.001 .074 .158 

Worthlessjt-6 (γ80) .083 .022 3.801 <.001 .040 .126 

Worthlessjt-7 (γ90) .115 .021 5.410 <.001 .073 .157 

Worthlessjt-14 (γ100) .072 .020 3.682 <.001 .034 .111 

Worthlessjt-21 (γ110) .095 .018 5.231 <.001 .059 .130 

a Dependent Variable: Worthless. 299 

B. Estimates of Random Effects, Variance Parametersa 300 

Parameter Estimate SE Wald Z p 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Level 1, Residual (𝜎𝑒
2) .833 .025 33.919 <.001 .786 .882 

Level 2, Intercept Var(u0) .000b .000 - - - - 
a Dependent Variable: Worthless. b This covariance parameter is redundant; the test 301 

statistic and confidence interval cannot be computed. 302 

The parameters results are shown in Table 3. Table 3A shows that the AR 303 

coefficients are significant, indicating a strong serial dependence of 21 days, or three 304 

weeks. Only the fourth lag, corresponding to Worthlessjt-4, is not significant, but we 305 

have preferred to include it, because if there is a subsequent significant simple 306 

coefficient, the fifth, Worthlessjt-5, it is more correct to leave the previous ones although 307 

they are not significant (Box & Jenkins, 1970), being a model AR(6,37). Doing 308 

Worthlessjt equivalent to Yjt for saving space, the general equation in Table 3 will be:  309 

Yjt = (γ00 + u0j) + γ10Genderj + γ20Agej + γ30Yjt-1 + γ40Yjt-2 + … 310 

         + γ80Yjt-6 + γ90Yjt-7 + γ100Yjt-14 + γ110Yjt-21 +ejt,                311 

or, because Var(u0) = 0, Table 3B: 312 

Yjt = .287 + .000Genderj - .003Agej + .284Yjt-1 + .068Yjt-2 + .076Yjt-3 + .030Yjt-4  313 

     + .116Yjt-5 + .083Yjt-6 + .115Yjt-7 + .072Yjt-14 + .095Yjt-21 +ejt                          (4) 314 

 In Table 3A, we see that the intercept is significant, differing from the value of 315 

'zero', γ00 =.287, p=.003, that the coefficient of Gender is practically 'zero' and not 316 
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significant γ10 < .000, p=.993, and the variable Age neither is significant, γ10 = -.003, 317 

p=.120. Remember that in Study 1, Table 2A, the effect of Gender was significant, but 318 

here no. 319 

Each participant has their starting level, although Equation 4 did not result in a 320 

multilevel model in the intercept, with its level 2 variance equal to zero, Var(u0) = 0 321 

(Table 3B), which is probably due to the fact that the AR model, Equation 4, estimates 322 

the starting intercept based on the previous values of Worthlessjt in Equation 4 323 

(Worthlessjt-1, Worthlessjt-2, Worthlessjt-3, …, Worthlessjt-7, Worthlessjt-14, Worthlessjt-21,), 324 

thus the possible multilevel intercept effect has already been included in the initial 325 

values of the AR model's predictions.  326 

Residual analysis 327 

Regarding the residuals of Study 2, the AR model, the values of the ACF and PACF2 328 

are presented in Figure 4. An important aspect to note is that none of the ACF or PACF 329 

values of the AR model residuals are significant, being ‘white noise’. Therefore, the 330 

parameters obtained in Table 3, AR Study 2, are more reliable than the parameters of 331 

polynomial Study 1, Table 2, preventing the AR model against the risk of committing 332 

Type I errors. Figure 4 333 

A. Pooled ACF of residuals from the AR model, Study 2 334 

 335 

B. Pooled Partial ACF of residuals, AR model 336 

 
2 We have used the same scale in Figures 3 and 4 (-.200 to +.700), with the aim of making them directly 

comparable, being the real ACF and PACF values smaller in Figure 4 than in Figure 3. 
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 337 

Note. All the correlations in Figure 4A and 4B are not significant, the residuals are 338 

'white noise'.  339 

Study 3. Confounding test 340 

We had the doubt about what is the best model describing our longitudinal DV 341 

Worthless, for resolving this question, we will do a ‘confounding test’, initially used in 342 

epidemiology (Maldonado & Greenland, 1993; Clayton & Hills, 2013), the confounding 343 

test has been related to causation in statistical theory (Imbens & Rubin, 2015).  344 

There are different versions of the test, but when in regression there exists two sets 345 

of competing IVs, polynomial versus AR, it is necessary to run each set of ‘crude’ IVs 346 

separately, getting a ‘crude’ regression model for each of them, and finally it is 347 

necessary to run the two sets of IVs altogether, the ‘adjusted’ test; the IVs that in de 348 

adjusted and the crude model regression are very similar, are the real IVs of the DV to 349 

explain; if the crude and adjusted IVs estimators are very different, they are 350 

confounding IVs (Rolf et al., 2013; VanderWeele et al., 2021); importantly, this 351 

verification process does not necessitate formal statistical tests but entails a careful 352 

comparison of estimated parameters, ensuring robust causal inference.  353 

The 'confounding test' holds a pivotal role in the realm of causal inference. From a 354 

causal perspective, it addresses the fundamental question of whether an observed 355 

relationship between an independent variable (IV) and a dependent variable (DV) 356 
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reflects true causation or if it's distorted by the presence of confounding variables. 357 

Confounders are lurking variables that obscure the causal pathway, leading to 358 

potentially erroneous conclusions (Westreich, 2020). The test identifies true causal IVs 359 

by revealing their consistency across both models, while confounding IVs manifest as 360 

significant discrepancies. In doing so, this approach enhances our ability to establish 361 

robust causal links and ensures that our regression models accurately represent the 362 

underlying causal mechanisms, a critical aspect of rigorous scientific inquiry (Pearl, 363 

2009; Wysocki et al., 2022).  364 

The data analysed are the same as in Studies 1 and 2. In our context, the two 365 

‘crude’ models are the polynomial of Study 1 and the AR of Study 2, we will run the 366 

‘adjusted’ test on this Study 3, constituted by all the level 1 and level 2 parameters and 367 

variables included in the ‘crude’ models of Study 1 and Study 2. The results of this 368 

confounding test Study 3 are in Table 4.  369 

Table 4 370 

Parameter estimates for Study 3, adjusted model, integrated by the polynomial Study 1, 371 

and the AR Study 2 models. 372 

A. Estimates of Fixed Effectsa 

Parameter Estimate SE t p 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept (γ00) .374 .127 2.948 .004 .124 .624 

Gender (γ10) .004 .044 .099 .921 -.082 .091 

Age (γ20) -.003 .002 -1.565 .120 -.007 .001 

Worthlessjt-1 (γ30) .223 .020 10.915 <.001 .183 .263 

Worthlessjt-2 (γ40) .084 .021 4.039 <.001 .043 .124 

Worthlessjt-3 (γ50) .088 .021 4.230 <.001 .047 .129 

Worthlessjt-4 (γ60) .044 .021 2.076 .038 .002 .086 

Worthlessjt-5 (γ70) .119 .021 5.589 <.001 .077 .161 

Worthlessjt-6 (γ80) .088 .022 4.109 <.001 .046 .131 

Worthlessjt-7 (γ90) .119 .021 5.597 <.001 .077 .160 

Worthlessjt-14 (γ100) .072 .020 3.642 <.001 .033 .112 

Worthlessjt-21 (γ110) .094 .018 5.114 <.001 .058 .130 

Weekday (γ120) .015 .047 .320 .749 -.077 .107 

Weekday2 (γ130) -.006 .006 -1.053 .293 -.017 .005 
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a Dependent Variable: Worthless. 

 373 
 374 

B. Estimates of Random Effects, Variance Parametersa 

Parameter Estimate SE Wald’s z p 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 
Level 1 

Repeated Measures 

Residual (𝜎𝑒
2) .832 .025 32.636 <.001 .783 .883 

AR1 rho .065 .065 1.011 .312 -.062 .191 

Level 2  Variance, Var(u0) .000b .000 - - - - 
a Dependent Variable: Worthless. 
b This covariance parameter is redundant. The test statistic and confidence interval 

cannot be computed. 

Results 375 

Doing a comparison between the results in Table 2, the polynomial model, and the 376 

adjusted model in Table 4, we see that the next variables in Level 1: Gender, Day of the 377 

week, and Day of the week squared, that were significant in Table 2A, are not 378 

significant in the adjusted model, or confounding test; at level 2, Tables 2B and 4B, we 379 

can observe that two significant variables in Table 2B, the AR1 rho and the variance of 380 

the intercept, Var(u0), now in Table 4B are not significant.   381 

Comparison of results 382 

Likewise, comparing the AR model in Table 3A, with the confounding test in Table 383 

4A, we see that Age, Gender, and the AR variables have almost the same values, being 384 

significant or not in both tables, almost as if there were a copy form one to the other 385 

table. In Table 4B we see that the AR1 rho and the intercept variance, Var(u0), are both 386 

not significant; in Table 3B, the AR1 rho parameter has not been included by hypothesis 387 

and Var(u0) is also not significant.  388 

In Study 3, we have not included the ACF or the PACF of the residuals; this 389 

decision was made as our primary objective was to compare polynomial and AR 390 

models, and the focus of this analysis did not involve these specific measures. Also, we 391 
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have not included these figures in order to save space; but it is worth noting that the 392 

residuals in Study 3 closely resemble those of the AR model in Study 2, this similarity 393 

can be observed by comparing Tables 2 and 3 results, including the residual variances 394 

(𝜎𝑒
2) of models 2 and 3.  395 

Another peculiarity of the polynomial model, in the case of longitudinal data, is that 396 

a more complex GLS estimator could be used. The correct way would be to use an AR 397 

matrix with the significant structure of ACF and PACF for obtaining the correct GLS 398 

regressor estimators. So, we can conclude that the statistical and confounding tests 399 

verify that the AR model is more adequate to our longitudinal data than the polynomial 400 

model, despite being the most widely used model in psychology.  401 

Discussion  402 

In tracing the brief historical trajectory of LDA in psychology from the 1960s and 403 

1970s, the diverse array of methods employed highlights that the commonly utilized 404 

polynomial model is not always optimal. Our comparison between polynomial and AR 405 

models underlines the superiority of the AR model in eliminating ACR, resulting in 406 

more precise and reliable IVs parameters for VD forecasting.  407 

Based on our data, several statistical aspects favor the AR model's suitability. 408 

Despite its increased complexity and additional variables, the AR model significantly 409 

exhibits a lower AIC compared to the polynomial model. Notably, the AIC calculation 410 

penalizes larger regression models due to increased variables, making the AR model's 411 

lower AIC particularly significant. 412 

Another advantageous aspect favoring the AR model is revealed through a 413 

‘confounding test’. This test involved an 'adjusted' regression, encompassing both 414 

polynomial and AR IVs as explanatory factors for the DV at levels 1 and 2. Notably, 415 

only the AR variables displayed significant parameters, indicating that the IVs from the 416 
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polynomial model acted as confounding variables, exerting negligible influence on the 417 

DV. In summary, it is evident that a standalone polynomial regression (or any cross-418 

sectional analysis, such as t-test, F-test, polynomial regression, etc.) rarely fully 419 

eradicates autocorrelation when the original data displays such tendencies. It is more 420 

likely that the IVs in the AR model of Study 2 are trustworthy for the daily variability of 421 

Worthless than the IVs in the polynomial model of Study 1 (Pearl, 2009; VanderWeele 422 

et al., 2021).  423 

The previous statistical insights hold significant implications for results 424 

interpretation and application. For instance, in Study 1 (polynomial model), the variable 425 

Gender was significant, while in Studies 2 and 3, it did not. To illustrate the impact, let's 426 

consider a clinical pharmacological trial testing the effectiveness of a Drug X on a 427 

Pathology Y, and in our data, being Drug X the variable Gender, as well as the variable 428 

Pathology Y being the DV Distress. If the data were analyzed solely using a polynomial 429 

regression model (Study 1), the results would suggest a significant improvement in 430 

Pathology Y due to the Drug X, although in reality, this improvement does not exist, as 431 

confirmed by the AR model (Table 3A) and the confounding test (Table 4A) in Studies 432 

2 and 3. These misleading statistical findings could have substantial consequences, 433 

potentially leading researchers in Study 1 to recommend the Drug X as an effective 434 

treatment for Pathology Y when, in reality, it is not.  435 

In the same vein, applying the Study 1 inter-individual level 2 results suggests 436 

participant differences in intercept levels, which appear statistically significant (Var(u0) 437 

= 1.269, p < .001, Table 2B). However, Study 2's findings indicate no such variance 438 

(Var(u0) = 0, Table 3B). This discrepancy is linked to the "inertia" effect stemming from 439 

the prior Worthless levels over the preceding 21 days (3 weeks!). 440 
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The bias of underestimating forecast error variance in polynomial models does not 441 

just affect an auxiliary variable like the IV Gender; it extends to the 'core' IVs, such as 442 

Day of the week and Day of the week squared. While both variables appeared significant 443 

in Study 1, their significance faded in Studies 2 and 3. It is highly probable that these 444 

IVs are indeed not significant, and their apparent significance is likely a Type I 445 

statistical error, rendering Gender, Day of the week, and Day of the week squared as 446 

spurious confounding IVs. These findings echo a previous applied investigation 447 

wherein, within the same day, Hour and Hour squared were employed as polynomial 448 

IVs with Salivary alpha-amylase as the DV, suggesting that the AR model is more 449 

fitting (Rosel et al., 2019). 450 

 The AR model outcomes (AR(p,PS) or AR(6,37) model in our case), as illustrated in 451 

Table 3 or Equation 4, signify that a participant's feelings of Worthless on a specific 452 

day, for instance, a Tuesday (Worthlessjt), are influenced by various time-lagged 453 

Worthless values. These include the Worthless from the preceding day (Worthlessjt-1), 454 

two days prior (Worthlessjt-2), extending up to six days earlier (Worthlessjt-6). 455 

Additionally, it factors in the Worthless experienced seven days before (Worthlessjt-7), 456 

corresponding to the same weekday of the prior week. Furthermore, it considers 457 

Worthless from 14 days earlier (Worthlessjt-14), reflecting the Tuesday two weeks back, 458 

and the Worthless from 21 days before (Worthlessjt-21), indicating the Tuesday three 459 

weeks ago. Notably, the last lag, the 21st is derived from the product of the number of 460 

periods (P) and the number of days of the week (S), equaling 3 periods (periods or 461 

weeks) multiplied by 7 (days), totaling 21 days. These results confirm that human mood 462 

behavior exhibit a prolonged inertia, sometimes persisting not just for days but across 463 

several weeks (Flor et al., 2021).  464 
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In summary, we have established the superiority of the AR model over the 465 

polynomial model in ILD analysis. The AR model offers enhanced flexibility, adapting 466 

to diverse temporal patterns without imposing a fixed form on the data, accommodating 467 

not only linear or quadratic trends but also capturing periodic influences, such as 468 

weekly variations. In contrast, the conventional polynomial model remains pervasive in 469 

psychology (Cohen et al., 2021; Øverup et al., 2020), very frequent in epidemiology 470 

(Amar et al., 2020; Waterfield, 2023) and pharmacology (Hill et al., 2023; Keenan et 471 

al., 2023) studies. Surprisingly, AR studies are infrequent in these fields, and even rarer 472 

are investigations examining the ACF and the PACF of the residuals.  473 

In our research, we have emphasized the significance of assessing the ACF and 474 

PACF) of the raw data (see Figure 3). However, we believe it is of greater importance to 475 

focus on the ACF and PACF of the residuals (see Figure 2 for the polynomial model and 476 

Figure 4 for the AR model). There are a couple of reasons for this emphasis; firstly, the 477 

ACF and PACF of the raw data represent a preliminary exploratory analysis of the 478 

potential AR model of the data. This analysis may be relatively misleading if additional 479 

IVs, such as Gender and Age in our case, are introduced. The exploratory ACF and 480 

PACF of raw data may not account for these other IVs, potentially influencing the 481 

temporal data; secondly, in psychological and social studies, unlike many physical or 482 

biological sciences, there may not be a clear behavioral regularity. As a result, the ACF 483 

and PACF can sometimes appear more complex in psychology compared to the final 484 

model. Therefore, to ensure the validity of the results derived from the proposed model, 485 

it is imperative to investigate the ACF and PACF of the residuals. This helps confirm 486 

that the residuals exhibit a white noise pattern, thereby preventing autocorrelation and 487 

the risk of biased parameter estimation, with the possibility of Type I errors.  488 
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For precise model estimation, researchers require in-depth knowledge of the field 489 

under study, essential for formulating hypotheses regarding immediate and seasonal AR 490 

temporal effects; and the ACF and PACF of the residuals should ideally reflect a 491 

statistically not significant departure from the value of 'zero' in each lag.       492 

In statistical analyses of SCD or ILD, a crucial issue arises when the number of 493 

records is limited, with fewer than 50 records leading to reduced statistical power to 494 

reject the null hypothesis; pooled data, on the other hand, offers higher statistical power. 495 

Only when the observations per subject in pooled data fall below ten data is there a need 496 

for more specialized estimation methods (Arellano & Bond, 1991; Jin & Lee, 2012; Lee 497 

& Yu, 2015). 498 

In summary, the preference for an AR model in LDA emerges from several 499 

compelling reasons: (a) human behavior's reliance on past values signifies an AR 500 

nature, especially in cognitive, physiological, affective, and habitual aspects; traditional 501 

statistical models, based on the independence of measurements, lose validity in LDA, 502 

where linear dependence among data points is observed; (b) our LDA indicates that the 503 

statistical fit of the AR model (Study 2) is substantially better than that of the 504 

polynomial model (Study 1); (c) polynomial models (linear, quadratic, etc.) used in 505 

LDA are prone to Type I errors due to the non-white noise nature of the residuals; (d) 506 

furthermore, the confounding test (Study 3) shows the AR model's superior causal 507 

adequacy over the polynomial model, ultimately; (e) once again, it is recommended to 508 

perform ACF and PACF of the residuals obtained, in order to check that they are 'white 509 

noise', and thus avoid Type I errors. Therefore, caution is warranted regarding results 510 

from LDA that overlook data serial dependence or fail to account for autocorrelation. 511 

Such oversights might lead to the discovery of statistically significant effects that are 512 

not objectively present in reality. 513 
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Future years are expected to see a rise in longitudinal research studies. However, 514 

critical areas need attention: (a) implement specialized training programs in longitudinal 515 

data analysis for methodologists, covering time series and temporal data analyses; (b) 516 

research groups should involve data analysis experts, fostering collaboration between 517 

researchers and specialists; (c) scientific publications should establish standards for the 518 

review of longitudinal data analysis and incorporate expert reviewers in this 519 

methodology (Hardwicke et al., 2019). It is to be expected that more ILD will be 520 

published in the coming years, but also that the quality standards of the publications will 521 

be improved.  522 
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