
Dark Sorcerer: a visual novel video
game created with the assistance of AI

technologies

Sergi Timoner Romero

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 19, 2023

Supervised by: Supervised by: Diego José Díaz García

http://creativecommons.org/licenses/by-nc-sa/3.0/

To Víctor

Acknowledgments

I would like to thank my Final Degree Work supervisor, Diego José Díaz García , for his
support and patience.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

i

Abstract

This document aims to cover the development of Dark Sorcerer, a Visual Novel videogame.
This project relies heavily on Artificial Intelligence software to streamline the process as
much as possible. A videogame prototype is created by applying these recently emerged
technologies, verifying the potential of these tools for the game development field.

iii

Contents

Contents v

1 Introduction 1
1.1 Keywords . 1
1.2 Work Motivation . 1
1.3 Objectives . 2
1.4 Environment and Initial State . 2

2 Planning and resources evaluation 5
2.1 Planning . 5
2.2 Resource Evaluation . 6
2.3 Time Verification . 7
2.4 Cost Evaluation . 8

3 System Analysis and Design 11
3.1 Requirement Analysis . 11
3.2 System Design . 14
3.3 System Architecture . 17
3.4 Interface Design . 18

4 Game Design Document 21
4.1 Game Overview . 21
4.2 Game Mechanics . 22
4.3 Game Story . 22
4.4 Character design . 24
4.5 Art Direction . 28

5 Work Development and Results 29
5.1 Work Development Overview . 29
5.2 Development Process . 33
5.3 Results . 38

6 Conclusions and Future Work 39
6.1 Conclusions . 39

v

vi Contents

6.2 Future work . 40

Bibliography 41

A Other considerations 43
A.1 Bibliography . 43
A.2 Appendices . 43

C
h

a
p

t
e

r

1
Introduction

In this report, I will describe my Final Project, and the means that were used to develop
it. In short, it consists on the creation of a Visual Novel called ’Dark Sorcerer’. The
script, coding and assets are made through various Artificial Intelligence (AI for short)
models.

A visual novel displays a story as text, but also accompanying it with sound effects,
music, and graphics. It can be compared to a book that is read/viewed experienced, with
a slightly higher amount of interactivity. Examples of visual novels include ’Fate/Stay
Night’, ’Umineko No Naku Koro Ni’ and ’Doki Doki Literature Club!’

Contents
1.1 Keywords . 1
1.2 Work Motivation . 1
1.3 Objectives . 2
1.4 Environment and Initial State . 2

1.1 Keywords

Visual Novel, asset generation, AI art, AI tools.

1.2 Work Motivation

Starting in late 2021 and early 2022, the state of art of AI-related technologies has
experienced a revolution. Language based models, image-generation models and even
voice imitation tools. This field is evolving at a very fast pace.

1

2 Introduction

These changes in the industry are opening new opportunities, while also upsetting
the status quo, which brings dangers to already established businesses and start-ups.

In the field of video-game development, the bottle-neck that limits the learning and
producing of projects are mainly the difficulty and cost of acquiring assets (art, music,
script), and the time-consuming task of coding.

AI tools that automate the process of creating these assets and accelerate the coding
process could further lower the entry barrier to video-game development.

Which is why, it is important to understand and measure how much impact these
tools will have. How does the workflow change, once they are applied to the creation
process? How much time is saved, compared to before?

And, how likely is it for AI-generated code and resources to become common-place?
Will an AI-assisted developer outperform a traditional developer who eschews such tools?

Will there be a need for developers at all, once the AI develops the ability to handle
all the parts of the process in an unified manner, just from a prompt from the average
user? As of 2023, we are not at that point yet, but it is still worthwhile to consider
such dilemmas early on, and acquiring data on the current limitations, drawbacks and
capabilities of AI-assisted game development is a good starting point.

1.3 Objectives

This project aims to evaluate the feasibility of developing a video-game with minimal
human intervention. All assets will be created from AI-related prompts, and that will
include the coding of the game. If by the end of the semester, a fully functional and pol-
ished video-game is completed while following that limitation, this goal will be fulfilled.

Once that is accomplished, the process will be reviewed so that initial observations
can be raised, and conclusions can be drawn from them. We want to answer the question
of "How easy is it to make a video-game using AI?". The secondary objective beyond
proving that it can be done at all, is finding out how much of a difference does applying
these new technologies make, for the developer. It will also be worth comparing how
well the finished game holds up against other games in the same genre, in terms of asset
quality and gameplay.

In short, a video-game will be made using AI technologies to assist the development.
Any difficulties, challenges or observations that arise during the development will be
discussed, as well.

1.4 Environment and Initial State

Every work is developed under a set of given circumstances (the way of working, the
technical and human team, etc.) and start from a given initial state. This section should
reflect both. Furthermore, all decisions made before starting the work or externally
imposed (those that have not been made by the author of the work) must be clearly
stated.

1.4. Environment and Initial State 3

It was decided early on that the genre of the video-game that would be made in this
project would be a Visual Novel. This is because the gameplay loop is simple, which
would raise the odds of ChatGPT (the AI technology used to generate the code of the
game) successfully creating a playable result. It is also a type of game which requires of
a decent amount of graphic assets, as well as a script/story, which should be generated
with similar tools as well.

At the time of the project’s start, there are already early implementations that
attempt to integrate AI within the Unity editor, for ease of usage. This project will not
be using them, because there is no access to these technologies to the public, and they
are hardly polished enough to be used successfully. The equipment that is being used
to develop the game lacks the required processing power for running those tools locally,
which also limits our options in that regard.

The technologies and tools used on this project are all hosted online, and be free to
use. That means, ChatGPT’s free model will be used, instead of the paid GPT4, which is
admittedly, much better for this task, but unavailable to us. Stable Diffusion, for image
generation, will be run on Google Colab, or otherwise, on a free, hosted environment
that will handle the VRAM processing.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 5
2.2 Resource Evaluation . 6
2.3 Time Verification . 7
2.4 Cost Evaluation . 8

2.1 Planning
The project was scheduled to be split into different parts, which corresponded to the
production of the resources necessary to make the game, and their implementation.

Generating the story. 120 hours
Creation of the Game’s framework in Unity and coding. 70 hours
Generating the Game Art: Character Sprites, background Images, and Interface. 30 hours
Generating the Music and Sound Effects. 30 hours
Project Memory and Other Documents 50 hours
Total: 300 hours

Table 2.1: initial schedule of the project

Below is the initial plan to carry out this project, as it was proposed.
1- Generating the story. (120 hours)
ChatGPT or, if it is inaccessible, AI Dungeon will be used to generate the text of

the story. Nonsensical results will be repeated until the results are consistent.

5

6 Planning and resources evaluation

2- Creation of the Game’s framework in Unity and coding. (70 hours)
Requests will be sent at ChatGPT to produce code that would serve for a Visual

Novel game in Unity. Since it is unlikely to give fully functional code, the result will be
adjusted manually until it works. It may also end up being more viable to do most of
this part manually, and resort to ChatGPT to fill in gaps in the code.

3- Generating the Game Art: Character Sprites, background Images, and Interface.
(30 hours)

For this, Stable diffusion will be used. Prompts will be tried and a large amount of
images will be generated. From those, the suitable ones will be picked, and edited using
the Img2Img and Inpainting functions of Stable Diffusion. For minor edits, if necessary,
an art tool such as SAI will be used manually.

4- Generating the Music and Sound Effects. (30 hours)
Suitable genres and instruments will be selected and prompted into Soundraw. The

resulting melodies will be listened, and the most fitting will be selected and saved, to be
added to the game. VoiceAI will be used to generate voice acting for the characters. 5-
Project Memory and Other Documents (50 hours)

Writing all the required material to present for reviewing, including this document.

2.2 Resource Evaluation

The project will be carried out in a laptop with a 6 VRAM GPU. Because it is not
potent enough to run the required AI tools, online services offering them will be used
instead. The software used is described next:

1- ChatGPT: ChatGPT is an AI Chatbot developed by Open AI. The chatbot has
a language-based model that the developer fine-tunes for human interaction in a con-
versational manner. Effectively it’s a simulated chatbot primarily designed for customer
service; In this project, it is used to generate the storyline script of the Visual Novel
game, as well as the source code in C#. It is also used to provide assistance or instruc-
tions for successfully using Unity.

2- Stable Diffusion: Stable diffusion is an open-source text-to-image model of Deep
Learning published in 2022 by Stability AI. It creates images which are conditioned by
textual descriptions or ’prompts’. The graphic components of the visual novel, such as
the character sprites, background, and game art, is made using this tool.

3- Soundraw: Soundraw is an AI music generator that allows the user to create and
compose original, royalty-free music. The visual novel’s soundtrack is made using this
tool.

4- Unity: Unity is an all purpose, cross-platform game engine that supports 2D and
3D graphics, drag and drop functionality and scripting through C#. It is the engine
upon which this project’s visual novel is built.

2.3. Time Verification 7

2.3 Time Verification

I will now compare the original plan, with how the project actually progressed in practice.
The most important changes will also be explained and justified.

Task Planned Duration Actual time spent
Generating the story. 120 hours 110 hours
Creation of the Game’s framework in Unity and coding. 70 hours 74 hours
Generating the Game Art. 30 hours 56 hours
Generating the Music and Sound Effects. 30 hours 6 hours
Project Memory and Other Documents 50 hours 56 hours
Total: 300 hours 302 hours

Table 2.2: Comparison between the initial schedule and the final schedule

The biggest change is the amount of time invested in the game’s music and audio.
Generating the music turned out to be a quicker and easier affair than it was initially
expected. In barely under 6 hours of work, There were already 10 tracks of music for
the game, which was deemed sufficient. There had been plans to produce voice acting
for the game’s dialogue lines, but it became clear it was not going to be possible, and
the idea was discarded.

The second biggest change is in the hours dedicated to generating the Game Art.
Initially, the idea had been to create spritesheets for the characters, and overlay them
over background images, which would depict landscapes. However, generating the
spritesheets proved to be an issue, as Stable Diffusion did not produce consistent results.
The amount and dimensions of the character portraits when laid in the spritesheet was
different in each generation, and in many cases, the faces were not different from one
sprite to the next. I switched from sprites to pictures depicting the events, instead. This
required a much larger amount of pictures.

I populated the first chapter with images, averaging for a new image for every three
or four lines. While this worked nicely, I greatly underestimated how long it would take
me to give the rest of the story this treatment. Hence, I ended up spending a considerable
amount of time making new images to make up for the lack of character sprites.

There were plans to make up to 8 paths, each leading to a different ending. In the
end, only 6 of paths were made, as it was decided to spare those last remaining 10 hours
of work on generating the story, which would have taken considerable longer, and invest
them into further creating images to illustrate the paths that were already finished.

Out of the 6 final paths, only 2 are fully covered in images. The rest have a much
smaller amount of images displayed per chapter.

8 Planning and resources evaluation

Figure 2.1: Gantt Chart depicting the start and end of every part of the project

2.4 Cost Evaluation
This project has been carried out by a single person, who was in charge of overseeing all
the parts of it.

A videogame developer on average in Spain is paid around 1.740 € per month. This
project has been in the works for roughly 5 months, so, should a developer be hired for
a project such as this, for this length the cost would be around 8.700 €

Save for the price of the hardware, which is around 1400€, the software used for this
project is entirely free, amounting to 0€ of cost. ChatGPT is free to use. So is Stable
Diffusion, which has become open-source. All means used to develop the project have
no cost for the developer.

There was a possibility of Google shutting down the Colab project housing the free
web-ui interface used to generate the graphics of the game. While that did happen
eventually, I found free alternatives I usd for the remainder of the images. Had no
free alternatives become available, the same web-ui was also hosted in Runpod.com and
Paperspace.com. The prices for renting GPU on Runpod ranged between $0.44/hr to
$1.89 /hr. On the other hand, the subscription to the basic Paperspace services has the
price of $8.00/month. I was prepared to have to use these, but it ended up not being
necessary.

Costs of the tools and human resources employed for the development of this project:

2.4. Cost Evaluation 9

Videogame Developer The human worker developing the game 8700 €
HP ENVY Notebook Gaming laptop in which the project is hosted 1400€
ChatGPT Free online LLM for Generating code 0€
Kobold AI Lite Generating story script (dialogue) 0€
Stable Diffusion (Google Collab) Generating background images 0€
Soundraw Generating the music 0€
Unity Game engine on which the game is built on. 0€
VisualStudio Code editor 0€
Overleaf Free LaTex editor for the memory 0€
Total - 10100€

Table 2.3: Project Costs

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 11
3.2 System Design . 14
3.3 System Architecture . 17
3.4 Interface Design . 18

This chapter presents the requirements analysis, design and architecture of the
project.

3.1 Requirement Analysis

Among the many genres of videogames, Visual Novels are structured in a rather simple
way. A screen depicting an image, meant to be interpreted as a background or scenario.
Character sprites adopting a variety of poses and expressions. And, either hovering over
the sprites or placed in a dialogue box beneath them, the text representing the narration
and the dialogue of the characters. Different configurations of text, background and
character sprites are presented according to the player’s choices, which are prompted to
them via selectable buttons on key moments.

The player has to be able to click on the screen to progress the story and select the
buttons to decide the path the story follows.

All other screens and functions within the game are minor, and provide quality of
life to the player by allowing them to make adjustments to the settings, or to save the
state of the game.

11

12 System Analysis and Design

3.1.1 Functional Requirements

Here is a list of the functional requirements of the project:

• R1: The player can advance the story by right-clicking the screen

• R2: The player can select a story path by clicking a choice at key points of the
story.

• R3: The player can open up a backlog that displays previously read lines.

• R4: The player can skip forward, passing over the text quickly.

• R5: The player can hide the text box to view the background picture at any time.

• R6: The player can save their progress, storing their progress on a permanent,
loadable file.

• R7: The player can load a saved game to resume their previous playthrough where
they left off.

Requirement: R1
Input: Player clicks on the main screen.
Output: Script line displayed, visible sprites and background change.
In the main screen of the game, the player clicks on the screen to advance the
story.

Table 3.1: Functional requirement «CLICK1. Click to advance»

Requirement: R2
Input: Player clicks on a storyline path button
Output: A new chapter file is loaded, based on which button the player

selected.
When the player is prompted to choose the actions of the visual novel’s pro-
tagonist, two or more buttons will be displayed to them. Clicking them will
determine which path the story will follow, and load the required files associ-
ated with that path.

Table 3.2: Functional requirement «CLICK2. Click to choose path»

3.1. Requirement Analysis 13

Requirement: R3
Input: Player clicks the button labeled ’backog’ on the UI box con-

taining the text
Output: The backlog opens up, if it wasn’t already. If it was, it closes

instead.
The player can open or close the backlog text box by clicking the button asso-
ciated to it. The backlog allows the player to view lines that have already been
seen.

Table 3.3: Functional requirement «BACKLOG1. Backlog button»

Requirement: R4
Input: Player clicks the button labeled ’skip’ on the UI box containing

the text.
Output: The text fast-forwards, proceeding quickly until the player

clicks on the screen, the script reaches a storyline path choice,
or the story ends.

The player can cause the text to proceed much faster in order to skip ahead in
the story without manually having to click repeatedly to advance the lines one
at a time.

Table 3.4: Functional requirement «SKIP1. Skip text button»

Requirement: R5
Input: Player clicks the button labeled ’hide text’ on the UI box

containing the text.
Output: The text box containing the currently displayed line disap-

pears from the screen
The player can hide the text box to fully view the character sprites, background
and art, which would normally be partially covered. Once they are done watch-
ing, a single click anywhere on the screen will cause the text-box to return

Table 3.5: Functional requirement «HIDE1. Hide Text button»

14 System Analysis and Design

Requirement: R6
Input: Player clicks the button labeled ’save’ on the UI box contain-

ing the text.
Output: The line in which the layer is currently becomes registered on

a file
By clicking the save button, the game registers the current line in which the
player is. This allows the player to mark a spot of the story in order to return
to it at a later time, through the Load action.

Table 3.6: Functional requirement «SAVE1. Save the game»

Requirement: R7
Input: Player clicks the button labeled ’load’ on the UI box contain-

ing the text.
Output: The player is brought to the game state that was registered

last time the ’save’ button was pressed
By clicking the load button, the game brings the player to the line that is
registered in the save file. This allows them to continue reading from the point
they left off, when they last played the game.

Table 3.7: Functional requirement «LOAD1. Load the game»

3.1.2 Non-functional Requirements

Non-functional requirements impose conditions on the design or implementation. In this
project, the non-functional requirements are as follow:

• R8: The Visual Novel’s assets must be generated by AI technology.
• R9: All the contents of the story script must be reachable in-game. That is, the

player must be able to actually reach all available endings.
• R10: The script of the game must be coherent. The narrative must be consistent

and not present plot-holes.
• R11: The art assets must be consistent in style. Furthermore, the character art

may not present anatomy flaws or disfigured shapes, which AI-generated art is known
to produce.

• R12: The game must be playable on a Windows 10 computer.

3.2 System Design
Initially, there was going to be a more complex system of game states. This was the
description I proposed when I was yet to begin working on the project:

3.2. System Design 15

From the Main menu, the player can access to the story screen, enter the screen to
change the settings, enter the loading screen and exit the game.

From the story screen, the player will view the story, and access the pause screen.
The pause screen lets the player interface with the backlog, the save screen and the
loading screen, as well as return to the main menu or to the story screen when they are
done there. The loading screen allows the player to go to a saved point of the story. It
can be exited to return the screen from which the player entered it.

In the final version of the game, the pause screen is un-necessary, because all of those
buttons are added to the text box of the Story Screen. Now the backlog can be accessed
directly from the Story Screen without needing to go to a different scene. Lastly, the
load and save screen have been replaced. A few buttons on the text box, and in the title
screen suffice to do the same function.

16 System Analysis and Design

Figure 3.1: initially intended game states

3.3. System Architecture 17

Figure 3.2: game states in the final version of the game

3.3 System Architecture

Minimum System Requirements to run the visual novel made during the project:
Operating system version: Windows 7 (SP1+) , Windows 10 and Windows 11

18 System Analysis and Design

CPU: x86, x64 architecture with SSE2 instruction set support.
Graphics API: DX10, DX11, DX12 capable.
Additional requirements: Hardware vendor officially supported drivers. For develop-

ment: IL2CPP scripting back-end requires Visual Studio 2015 with C++ Tools compo-
nent or later and Windows 10 SDK.

3.4 Interface Design

Figure 3.3: Arrangement of buttons of the title screen

3.4. Interface Design 19

Figure 3.4: Default interface of the main screen

Figure 3.5: Arrangement of buttons of the main screen when there is a choice.

C
h

a
p

t
e

r

4
Game Design Document

Contents
4.1 Game Overview . 21
4.2 Game Mechanics . 22
4.3 Game Story . 22
4.4 Character design . 24
4.5 Art Direction . 28

4.1 Game Overview

Dark Sorcerer tells the tale of Arin, a young boy born with the talent to use magic. The
day his village is attacked by the minions of the Dark Sorcerer, he awakens to his power
and flees from his home with his family. Once they make it to safety, Arin will have to
find a way to master his powers, so that he may use them to oppose the Dark Sorcerer
and protect his people from him. Thus, he embarks a journey to save his kingdom from
the evil plans of his enemy.

4.1.1 Genre

The game is a visual novel, a sequence of text and images that present a story to the
player/reader, and allow them to make choices, which determine the outcome of the
story.

21

22 Game Design Document

4.1.2 Target Audience

The intended audience for the game is early to late teenagers, possibly young adults, as
well. It will be played by regular players of visual novels or casual readers of epic fantasy
novels.

4.2 Game Mechanics

The gameplay is minimal. A screen will display the background, and character sprites
will appear, switching expressions whenever the story has them act or talk. Occasionally,
artwork depicting the events in the story will be shown to the player. Meanwhile, a text
box in front of those will show the text of the narration and the dialogue.

The player will be able to click or hit space to make the next lines advance. It will
also be possible to right-click to open up a menu, which will allow viewing the images
without text, skip to the next chapter, read the backlog or save their game, marking the
spot at which they are at, for returning to it at a later time.

In chapters that present the player a choice, the text will give way to buttons de-
picting the options available. Hovering over a choice will highlight it, and clicking it will
select it.

The majority of the playtime will be spent in the story screen. This one will have
a plain text-box to allow reading, located at the bottom half of the screen, occupying
about 20 to 30% of the view. It will cover the background, but it will be possible to
conceal it with a button press, should the player wish to see the image below. The
background placed behind this text box will contain AI art depicting either events from
the story, or a picture of the environment in which the characters are. Along with the
background, sprites of the characters will be visible, being highlighted to represent one
of them is talking.

4.3 Game Story

Dark Sorcerer’s story has branching paths, which lead to several possible endings. The
story is divided in three parts. Each part will have several chapters, and a single major
choice, in which two alternatives will be presented.

Depending of his choices, he will train under the tutelage of a sagely wizard called
Eldric, or a battle-mage called Sabel. With what he learns from them, he will have to
prepare for a difficult quest. Whether he will go through it with alone with his mentor, or
accompanied by his little sister Irina, will be the second choice, and the options available
for him in the end will depend on what he chose in these two moments of the story.

Like it was mentioned previously, the first choice has the player choose who the
protagonist’s mentor will be.

In the second act, only the path of the Battlemage mentor has a choice. This choice
has the player decide whether his sister joins him on his journey to defeat the Dark
Sorcerer or not. Lastly, in the third part, at the climax of the story, the protagonist will

4.3. Game Story 23

have a final choice, on what he is willing to sacrifice to defeat the villain and save an
endangered village.

Figure 4.1: Chart depicting story routes and the endings they lead to

That makes for a total of six paths which have different endings at the end of each
of them.

24 Game Design Document

4.4 Character design
In Dark Sorcerer there are several important characters which appear in all acts, no
matter what path the player chooses:

Arin

Figure 4.2: Arin

The protagonist of the game. He awakens to his magical power while the Black
Guard raids his village, and uses those to defend his family. He is hard-working and
serious, with a strong sense of justice.

4.4. Character design 25

Irina

Figure 4.3: Irina

Arin’s little sister. She moves with Arin and his parents to Ralz village after their
home village is raided. While Arin learns how to use magic, Irina trains to become an
archer. In one of the routes, she accompanies Arin in his adventures.

26 Game Design Document

Eldric

Figure 4.4: Eldric

A wise wizard, and an important member of the Magic Council, which work to keep
the kingdom safe from malicious magic users. He lives in Ralz village, and offers to teach
Arin how to use magic adequately. He prefers to use long range spells that require time
to prepare.

4.4. Character design 27

Sabel

Figure 4.5: Sabel

A battle mage who lives in Ralz village. She has extensive martial training and has
mastered a lot of weapons, in addition to her magic, which she uses during combat to
support her mixed fighting style. Along with Eldric, she involves herself on the search
for the Dark Sorcerer, and volunteers to train Arin.

28 Game Design Document

Eryndor

Figure 4.6: Eryndor

The Dark Sorcerer. He leads the Black Guard, and is responsible for the destruction
of many villages and the summoning of countless monsters and demons into the kingdom.
Resentful and cruel, he will stop at nothing to achieve his ambitions.

4.5 Art Direction
The art of the game is AI generated. the aesthetic of the game is anime style. The AI
art models AnythingV3 and Anylora have been used in Stable Diffusion to make all of
the graphics of the game.

C
h

a
p

t
e

r

5
Work Development and Results

Contents
5.1 Work Development Overview . 29
5.2 Development Process . 33
5.3 Results . 38

5.1 Work Development Overview

The Work Development section of this report details the development of a Visual Novel
in Unity, leveraging the use of several AI tools to enhance the project’s overall quality.
Notably, ChatGPT was utilized to generate the script for the story and the code for the
game, streamlining the development process and saving valuable time.

Figure 5.1: ChatGPT generating the script of the game’s story

29

30 Work Development and Results

However, it should be noted that while the use of ChatGPT was successful in gen-
erating the game’s code, the generated script required extensive editing to maintain
coherence and ensure that the plot progressed as intended. This was less noticeable
during the early chapters of the story, in which ChatGPT could recall clearly all the
key points from conversations and prompts. But the more the story advanced, the more
frequently it would forget important things established early on. It would also introduce
new characters without being prompted to do so. Its prose had also a tendency to repeat
itself. The gradual decrease of internal coherence in the text stalled the project for a
while.

Figure 5.2: KoboldAI Horde used for producing the script of the game’s story

On regards to the code, the convenience of the AI assistant was considerable. Not
only it could analyze code and find the errors, but it would suggest corrected alternatives
to that code, which solved it successfully most of the time. If it ever generated faulty
code, telling it the error message the Unity Editor returned would allow it to pinpoint
what it did wrong and amend it. The main challenge was explaining with words, within
the prompt, what exactly was the intended functionality of the code. While writing
the prompt, the developer has to make sure to use unambiguous language that can’t be
misinterpreted. The more vague the prompts of the developer are, the most likely that
the AI will misunderstand what is being asked of it.

Not long after I ran into this issue, I switched to a different software to produce the
text for the game. I used KoboldAI Horde for it. It provides free models which are
optimized for narration, and it features a "memory" textbox, which allows the user to
remind the AI of important things. It can be adjusted on the fly, which makes it easier
to guide the narration in the desired direction. The main issue of this new feature is
that, even though the quality of the output is much greater, the speed at which it is
produced is much slower, going from ChatGPT 5 seconds of generation to KoboldAI’s

5.1. Work Development Overview 31

120 seconds of generation. Having to wait that long before a prompt gave any results,
only for it to be inaproppriate and requiring to start the generation all over added a
considerable amount of tedium to the project.

Figure 5.3: ChatGPT used for producing the code of the game’s framework

ChatGPT could provide step-by-step instructions on how to use the editor, to make
all the processes that didn’t rely on coding also be performed more smoothly. If I
needed to know how to find an option in the editor, or what kind of component was I
required to add, and where, the usual method would have been to invest time searching
google for an answer. Being able to ask ChatGPT for help, and it producing a valid
answer instantly let me skip on extensive searches through the official documentation,
and browsing queries left by other users which had similar issues, but not exactly the
same ones as I did.

The incorporation of Stable Diffusion for the procedural generation of text proved
to be an effective tool for the project. However, challenges were encountered in the
generation of fine details, such as the characters’ hands, which often required multiple
iterations to achieve the desired result.

Figure 5.4: Stable Diffusion generating the background images that populate the Visual
Novel.

32 Work Development and Results

As a brief description of how it works, positive and negative prompts are delivered,
specifying keywords on what must and must not appear on the image. By setting the
batch count to 8, for each prompt 8 images are generated. Once a satsifying one is
found, it gets sent to the In-Painting tab, where small edits can be done. For example,
selecting a character’s hair and prompting "shorter hair, brighter color, red", would fix
a hair that is black-colored and too long.

Img2Img is an additional mode that allows creating a new image while using another
one as a loose reference.

The CFG parameter below determines how closely the image’s result must come to
the description provided. The lower it is, the more leeway the AI has to improvise,
giving as a result more creative compositions and images.

In the case of In-Painting and Img2Img modes, there is a parameter called Denoising
strength, which determines how closely the resulting image must mimic the original
image. Setting it at 0, no changes happen. Setting it at 1, the result has nothing to do
with the source image, ignoring it entirely. Generally, when I had to use a base image
from which to produce a new one, I set CFG Scale at the low value of 7, while keeping
the Denoising value between 0.5 and 0.7.

Soundraw, as a service, still seems to be in its infancy. Producing music that fit
closely to my description wasn’t often possible. Still, it produced a more than adequate
result. The soundtrack needed to sound fitting, and the results obtained were deemed
good enough, even if they left something to be desired.

Figure 5.5: Soundraw producing music that plays during the game

Despite these challenges, the overall development process was successful, with the use
of AI tools proving to be a valuable asset in the creation of a high-quality Visual Novel.
Through careful planning, efficient implementation, and effective problem-solving, the
project was able to achieve most of its objectives and overcome any obstacles encountered
along the way.

5.2. Development Process 33

5.2 Development Process

After the project I had proposed was given the green light, I created a new ’conversation’
with ChatGPT, in which I explained to it my goal to write a story, and my need for it
to assist me in the process. It offered a series of ideas for the story, suggesting several
different genres. After considering all genres it proposed, I decided to go for an epic
fantasy. This caused ChatGPT to provide seven ideas for the story, taking the newly
selected genre into account. The one I picked read like "A story where the player takes
on the role of a powerful sorcerer who must master their powers and use them to defeat
a dark sorcerer who threatens to destroy the kingdom."

It was also the AI’s idea to split the story in three acts, each one with a different
set of choices. Afterwards, we developed the antagonist and the protagonist, detailing
their motivations and the resources each one of them would have. Afterwards, secondary
characters were discussed.

Once all the characters had been developed sufficiently, I told ChatGPT to make a
list of chapters in which the whole action would be neatly summarized. Then, I had it
write chapter 1.

This is where I found my first setback. The intention had been to write the entirety
of chapter 1, which would have around 2000 words, with just one generation. Even after
I specified I wanted the chapter to be around 2000 words long, ChatGPT tried to wrap
up the chapter in an amount of words that was closer to 300-400 words. This caused
every event within the story to feel rushed, and there were no instances of dialogue
between the characters.

In a visual novel, dialogue is very important, more so than actual narration. So the
first few generations were just not good. I asked ChatGPT whether it was capable of
making replies of 2000 words, and it confidently replied that it could.

After some investigating, I discovered the problem. ChatGPT can, in theory, give
replies with the length requested. In practice, however, it is set to not exceed a set limit
of words, so no matter how much one pleads, the reply won’t reach the desired length.
In short, the AI lied. When asked about its capabilities, it may assure the user it can do
something it actually can’t do. Likewise, it can claim itself incapable of doing something
that it can easily do.

This required a change in strategy. Instead of making the entire chapter in one
sitting, it would split the chapter into several parts, and then write each part separately,
in order. This worked just fine, at first. Though an issue that was subtle initially, but
that would grow more noticeable the longer work progressed began popping up.

Each generation took the narrative in a different direction. there was a loose connec-
tion between the two replies, but the narration was disrupted. This could be smoothed
over by manual editing, and by telling the AI to repeat the generation after being re-
minded of what it did wrong.

Guiding the AI so that it would write a compelling narrative was challenging, requir-
ing me to edit constantly parts of the text. After five hours of progress, I concluded the
first work session, with a half-finished first chapter, amounting to 1336 words. It became

34 Work Development and Results

clear that leaving the software to generate the entire story unsupervised was not going
to work. It would be a much more involved process.

Over the days of that week, I progressed following the same modus operandi, and
eventually arrived at the first milestone of the project. The first choice which separates
the main paths of the story. The common part of the story ended at this point.

The choice was made to focus on one path first, and once it was complete, switch to
the next. By March 5th, the story had 3460 words, and the story began to take shape.

The amount of generations I had to make at this point to get the story back on
track was higher than before. It appears ChatGPT has a limited memory for all that
is discussed, which means that the longer that a conversation goes on, the more trouble
ChatGPT has to remember the information that was discussed in the beginning. At this
point, it began to forget about some characters altogether, or it introduced new ones
unprompted.

Eventually, the difficulty to generate coherent text made it look like writing the story
by myself without the input of the AI would be faster and produce better results, but
that would defy the point of the project.

I went through an intensive revision of the story as it was at that time. The hope was
that, if I was able to tweak everything written so far to make it read more consistent,
the software would have an easier time understanding everything, and the quality of the
text generations would increase.

By the 19 of March, I finished the partial rewrite and had the AI keep going from
there. I did notice an improvement, and that same day, the first act of the story following
’Route A’ was close to completion.

I decided to begin preparing the framework of the game then, and take a break from
the tedium that was generating the story, correcting its mistakes telling it to start over
repeatedly.

Creating a new Unity Project, I decided to start a separate conversation with Chat-
GPT, which would handle the programming aspect of the creation process. ChatGPT,
which had struggled making a compelling story, had a surprisingly easy time not only
generating the C# scripts, but also giving instructions for me to follow while using the
game editor. The instructions were accurate, and so clear that even a beginner could
follow them. Occasionally, a code would not work, and by copying and pasting the error
code, ChatGPT was able to find out what had gone wrong, and either adjusted the
script, or told me where to go in the editor to address the issue.

In a single sitting, an intensive work session lasting twelve hours, there was a func-
tional title screen, a settings menu, and a scene in which the story would play.

The text is contained in ’.txt’ files on the Resources folder, which the code accesses
to read and store each text line, then displays it on the screen. Each click causes the
text to advance.

As for the settings menu, at this stage of the creation it allowed to change the game’s
resolution and switch between windowed and full-screen mode.

With the game’s skeleton already working as intended, I returned to the generation
of the story, by the 9th of April, Act 1 of path A was finished. Five days later, and after

5.2. Development Process 35

a short break, I added the story script so far into the game’s txt files.
Small additions and adjustments took place over the rest of the month. At the start

of May, the barebones buttons without graphics from the title screen were outfitted with
actual button sprites.

A couple of days were set aside to advance working on the first draft of the current
document.

After this, I began implementing non-core functionalities to the game. Quality of life
changes that made the experience better for the player. In particular, the button to skip
forwards was useful to speed up work on the game. Having to click over one hundred
times to progress to the same spot in the story repeatedly was delaying the progress
quite a bit. Once the button worked properly, testing the game became much faster and
easier. That day, a "hide text" button was also added to the game, and the first art for
the game, he background of the title screen, was generated using Stable Diffusion.

With the delivery of the Memory of the project close, I ceased progress on the game
to fix the issue the first draft had. On the 22th of May, I resumed work on the story
of the visual novel. However, I kept running into the issue of ChatGPT’s responses
becoming less creative and more nonsensical the further the story advanced. I had run
into a wall, and there wasn’t much time left to work on the project.

Rather than pushing ahead with chatGPT, I dedicated some time to search for
alternatives that could give me better results. While I had kept AI-Dungeon as my plan
B, this one wasn’t good enough either.

I found KoboldAI Lite, which unlike ChatGPT, it was trained for storytelling and for
roleplay purposes. It also had an editable memory field, which made it easier to ensure
all the relevant details in each scene were kept into account by the AI. The dialgues too,
were consistent and not repetitive.

The downside of this tool is that it was much slower than ChatGPT, having a queue
that all the currently online users had to wait through, before it was their turn to get
a generation. The generations of text themselves were much shorter, vaguely equivalent
to two or three lines of narration, or one lengthy line of dialogue.

But they were of much higher quality, so I endeavored to use this tool for the project
from then on. ChatGPT was relegated to work on the programming aspect of the project.
Because the transition in narrative style was so abrupt, I realized I had to start over the
story from scratch.

I spent 12 hours straight trying to catch up to where I had been so far with the
story. And in these, I generated over 4000 words, barely having to discard any of the
text that was generated. Contrast that with the 6742 words of the complete "Act 1A"
at this point, which took 35 hours to make using ChatGPT.

While discarding over six thousands lines of script felt like a waste, the bump in
quality the project received after doing so was worthwhile. And at the rate KoboldAI
was going, the decision would pay dividends soon.

But there was one more aspect of the game which had not even been worked on yet:
The generation of AI images. In a sense, this is the core of the project, even more so
than the text generation is.

36 Work Development and Results

The day after the intensive story-writing session, I booted Stable Diffusion from
the official Automatic11111 Google Collab, and after loading the AnythingV3 model, I
started testing things out.

Making spritesheets was impossible using this tool, though, so I scrapped the idea of
the conventional sprites over a background, and decided to make illustrations depicting
the actions themselves.

This was done by copying and pasting lines from the story in the ’.txt’ files into the
prompt field. I also added some keywords to distinguish each character. Associating a
different hair color to each character was more than enough to get consistent results.

Over the course of the afternoon, 8 images were generated.
By the 3rd of June, I was able to finish all three acts of route B, reaching the first

completed ending of the story. Because the final player choice happens right at the end,
I quickly finished the second ending before that day was finished.

At this time, I still had the hope that I’d be able to deliver a complete game before
the deadline for the first turn of the Final Project’s defense, so I increased the hours I
dedicated to the game every day, and the progress of the game naturally benefited from
that.

On the 4th of july, I made 10 more images, and used KoboldAI to progress further on
the story of the second act of route B, trying to get to the 3rd and 4th endings. By the
next day, I arrived to the final choice point, and made a brief stop to actually implement
the story into the game, including the first and second endings. Once that was done, I
compiled and created the first playable prototype, which worked without issues outside
of the Unity Editor.

The deadline for the first turn arrived and, while the game was in a state that could be
considered playable, it left a lot to be desired. Only two endings, out of the initial eight
that had been promised. It was lacking in the game art as well, with only 18 pictures,
which barely covered half of the common route of the first act. It lacked features that I
had promised in the original project proposal. And it lacked music, as well.

After requesting a shift to the second turn and acquiring it, I set to work to further
advance the project into a complete state.

On the 8th of June, I opened Soundraw and recorded the sound of my computer while
sending the online Music AI tool the required settings for the genre music I wanted. seven
recordings which, after being changed to a mp3 format, were ready to add to the game.

One day later, I finished generating the 3rd ending of the game. The day after that,
the 4th one was finished as well. Both of these were added into the game, and I had
ChatGPT generate more quality of life features that the game was lacking. The one
that took most work to get it done was the Backlog Button, which allowed to view text
of lines that had been already passed.

This was handled using a different index pointing always at the line of text immedi-
ately before the current one. Two buttons signifying arrows would allow the player to go
back or forward. Clicking anywhere other than those buttons would close the backlog
and display the current story text again.

5.2. Development Process 37

Besides that, I added an aesthetic change which caused the name of the character
who was talking during dialogue to appear separately from the rest of the text. Each
character had a color assignated to them, and whenever they spoke, the text displayed
on the text box would change to their color. It bears repeating that this was all code
that ChatGPT generated, and I only prompted it to correct itself when it didn’t work
on the first try. Before I called it a night, on that same session I implemented the 3rd
and 4th endings into the game, and expanded the code that displays the text so that
each of the images I had made so far would show up exactly in the line they were meant
to show up.

The day after, I did the same for the music. Both the images and for the music rely
on a couple of nested dictionaries, which stored all the images and music, and associated
a text line to each. Whenever the index of the currently selected text is reached, the
dictionaries are checked to see if they match with a key associated with an image or a
sound file. If there is a match in the music dictionary, the Audio Source object is updated,
changing the track. If there is a match in the image dictionary, the background image
object is updated, changing it’s source image to the new one.

Once I was done adjusting all the images and music tracks to their respective lines,
I switched to story generation, finished the 5th ending, the first one that belonged to
route A, and created the second playable prototype of the game. That was on the 12th
of June.

The day after, I finished the 6th and final ending, making the decision to invest the
rest of the time I would have dedicated to make a 7th and 8th ending, into ensuring
enough images were made to populate the Visual Novel with it. With that, the story
generation part of the game was finished, with a script that is composed of 25379 words.
The entire text, when pasted on a word file, is 62 pages long.

From there, I worked on the game non-stop everyday, settling into a routine. Start
Stable Diffusion on Google Collab, and spend an entire session creating as many pictures
as possible. When the session expired, which took around 5 hours on average, I would
dedicate the next few hours to add all the images created into the game. From the 14th
of June until the 24th of june, I kept making new images and adding them to the game
every day.

The only exceptions were on the 21st and the 22nd, in which the Google Collab session
would not load for me. I took this chance to further refine the game’s programming,
taking on the last big challenge the game had in store for me: Implementing a Saving
and Loading system, which would allow the player to continue playing from the same
spot they were at last time they booted up the game.

Unlike most of the other features in the game, which I had an idea on how to do
even by myself, I had no clue how to add such a thing to a game, having never worked
on a project which involved storing data in to a file, which would persist between game
sessions. ChatGPT handled it for me, and it turned out it was easier than expected.
Just like with the text lines the game loaded, I could store the important variables the
game would need to load (such as the current line index, the currently displayed image,
the current act/route of the game, and the song currently playing) into a txt file, which

38 Work Development and Results

the game could read and adjust itself according to the text written in there.
Not only that, I expanded the save system the day after, to allow it to store settings

as well. The resolution at which the player sets his window, whether it’s in full-screen or
not, and, after a quick implementation, the volume slider which determined how loudly
the music is meant to sound within the game.

At the time of writing, the game has 103 images generated with AI. They are barely
enough to cover the first and second acts of route B. I intend to keep spending every day
until the time to deliver this document creating and adding more images to the game.

5.3 Results
The initial goal for the visual novel was that there would be three acts, with two branch-
ing paths each. This would lead to a total of eight routes, each one with their own unique
ending. The script generation was the bottleneck of this project, requiring more work
than expected to produce satisfying results. As a consequence of time constraints, the
total amount of routes has been lowered to 6. Of these 6, only two routes are completely
populated by images.

Still, all the functionalities a typical visual novel may include are present within the
project’s game, and they are functional too. It becomes proven, then, that using AI-tools
to produce simple videogames is viable. It remains to be seen how the AI handles more
complex genres, such as RPGs, shooting games, or racing games.

The story that was generated for the Visual Novel talks about a young boy who
awakens to magic powers while his village is being attacked. He learns to master his
powers, and embarks on a journey to stop the one responsible behind the attack on his
village. It is a pretty generic theme for a story, and the narration is not particularly
groundbreaking. ChatGPT is a multi-purpose AI, which may not be entirely suited for
narration and script-writing.

As of the time of writing this report, open-source, Deep-learning language models
have emerged, which specialize in dialogue and narration and achieve a greater immersion
than ChatGPT. Future attempts to do the same process I did for this project should
yield a greater quality of script, provided those models are used instead of the generic,
but highly versatile ChatGPT.

It should also be noted that all the tools were used independently, and then their
outputs were brought together manually to produce the game. In the future, dedicated
software that integrates all these technologies will become available, and the time spent
manually using each one of them should decrease as a result, as well.

C
h

a
p

t
e

r

6
Conclusions and Future Work

Contents
6.1 Conclusions . 39
6.2 Future work . 40

6.1 Conclusions

The amount of time, effort and money AI assistants, and automatic asset generation
tools will allow developers to save will only keep increasing the more this technology is
developed. At a personal level, the procedure I’ve used on this project will be adopted as
my new default way of designing and creating videogames. Developers will find a way to
tailor these tools for their own needs, making them more sophisticated and accurate over
time. I have no doubt that, if allowed to grow to its full potential, Artificial Intelligence
will become a cornerstone that all future developers of software will rely on, not just
videogames.

There will still be a market for completely non-AI assisted products, similar to how
traditional artists that make paintings on physical canvases and don’t reply on image
editing software still have their niches, but the majority of developers will sooner or later
adopt these tools to make their work easier.

There exists a worry in the industry that content creators and programmers will
eventually be replaced, with the average user being able to produce material of similar
quality with just a few clicks and typed sentences. However, my experiences using
these tools for this project tell me that this won’t be the case for a very long time.
Code produced by ChatGPT may be functional, but it won’t do anything if the person

39

40 Conclusions and Future Work

generating it lacks the expertise to know how it works, read it, and apply it where it
should be applied. Similarly, art created by AI will be lacking if the user doesn’t have
enough artistic skills and knowledge to know how to guide it into the desired result. The
results generated need to be revised, tweaked and altered, providing only a base from
which the creator can work with ease. But the need to actually work on the piece is still
there, even if the more tedious parts have been trimmed away from the process.

It is my prediction that, should exercises like this one be repeated once a year, I
expect newer software, which will leave the one used for this project entirely obsolete,
will keep being produced, and with it, increasingly promising results will be shown.
Which is why I’d be glad to see more projects of a similar thematic as this one to be
made, comparing their results with mine.

Perhaps the next AI-generated Visual Novel is very close to being published, and it
will be interesting to see how much better it is compared to ’Dark Sorcerer’, the one
that was made in this project.

6.2 Future work
As for Dark Sorcerer, the story endings will leave the story open enough to make possible
a sequel, or an expansion. Perhaps a new protagonist, exploring the same setting, and
learning about the events that took place in the first one, and carrying on the work of
the protagonist. Or maybe the protagonist will continue his adventures! I can definitely
see a Dark Sorcerer 2 being developed at some point in the future. I may try to repeat
the steps followed in this projct in a few years, if only to see how much the status quo
of the AI-Developed technology has grow since 2023. I spent roughly 5-6 month making
Dark Sorcerer. Maybe the sequel, following a much more perfected pipeline of softwares
and AI assistance, will be of much higher quality, and be finished in as little as a month
or two.

Bibliography

41

A
p

p
e

n
d

ix A
Other considerations

A.1 Bibliography

Software employed during the project:
Unity: https://unity.com/es

ChatGPT: https://chat.openai.com/
Stable Diffusion: https://stablediffusionweb.com/

- Google Colab project I used : https://colab.research.google.com/github/Linaqruf/
sd-notebook-collection/blob/main/cagliostro-colab-ui.ipynb (Will probably not work
anymore, usage is limited to those with a premium Google Colab account)

- Free crowd-sourced Stable Diffusion hosted by Kobold Horde:
https://aqualxx.github.io/stable-ui/

Soundraw: https://soundraw.io/

KoboldAI: https://lite.koboldai.net/#
Visual Novels referenced as examples in this work:
- The video-game Fate Stay Night. (adventure, visual novel).
https://en.wikipedia.org/wiki/Fate/stay_night

- The video-game Umineko no Naku Koro Ni (mystery, fantasy, visual novel).
https://en.wikipedia.org/wiki/Umineko_When_They_Cry

- The video-game Doki Doki Literature Club! (horror, visual novel).
https://en.wikipedia.org/wiki/Doki_Doki_Literature_Club!

A.2 Appendices

Developer’s diary in Google Docs, detailing the contents of each progress session:

43

https://unity.com/es
https://chat.openai.com/
https://stablediffusionweb.com/
https://colab.research.google.com/github/Linaqruf/sd-notebook-collection/blob/main/cagliostro-colab-ui.ipynb
https://colab.research.google.com/github/Linaqruf/sd-notebook-collection/blob/main/cagliostro-colab-ui.ipynb
https://aqualxx.github.io/stable-ui/
https://soundraw.io/
https://lite.koboldai.net/#
https://en.wikipedia.org/wiki/Fate/stay_night
https://en.wikipedia.org/wiki/Umineko_When_They_Cry
https://en.wikipedia.org/wiki/Doki_Doki_Literature_Club!

44 Other considerations

https://docs.google.com/spreadsheets/d/1Zpzj6enpZOnVkrHGUCMy_l2vbaImBtgMxDOjAfHzaCE/

edit?usp=sharing

Github repository containing the source code:
https://github.com/sergitim/Dark-Sorcerer-VN/commits/main

A build of the game can be downloaded at the following link:
https://drive.google.com/file/d/1yKSc07MmbJGzAXw8s3B2VQTYgWJ9d1Ds/view?usp=sharing

https://docs.google.com/spreadsheets/d/1Zpzj6enpZOnVkrHGUCMy_l2vbaImBtgMxDOjAfHzaCE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Zpzj6enpZOnVkrHGUCMy_l2vbaImBtgMxDOjAfHzaCE/edit?usp=sharing
https://github.com/sergitim/Dark-Sorcerer-VN/commits/main
https://drive.google.com/file/d/1yKSc07MmbJGzAXw8s3B2VQTYgWJ9d1Ds/view?usp=sharing

A.2. Appendices 45

Figure A.1: Work Diary of the project

46 Other considerations

Figure A.2: Gantt Chart depicting the length of each work session

A.2. Appendices 47

	Contents
	Introduction
	Keywords
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation
	Time Verification
	Cost Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design

	Game Design Document
	Game Overview
	Game Mechanics
	Game Story
	Character design
	Art Direction

	Work Development and Results
	Work Development Overview
	Development Process
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Other considerations
	Bibliography
	Appendices

