
1

2

3

Visual realism is necessary for most of the AAA (and some independent) games, as they are usually
more focused in this aesthetic than a stylized one, but normally the software used to achieve that
realism requires expensive licenses.

The purpose of this project is to both make an analysis on how to achieve visual realism in a game
engine and to use that knowledge to create an interactive scene to show that it is possible to reach
that level of realism using free software. Therefore it will consist in two parts: a theoretical one that will
collect all the important aspects to consider when making a visually realistic game and a practical one
that will show how taking care of those aspects can indeed get the desired result through the use of
a free engine and free modeling and texturing programs.

3D Modeling, Visual Realism, Free Software, Texturing

ABSTRACT

KEYWORDS

4

CONTENTS

1. Technical proposal………………………………………………………………………………7
 1.1 Introduction………………………………………………………………………………7
 1.2 Work Motivation………...………………………………………………………………7
 1.3 Related Subjects……….………………………………………………………………7
 1.4 Objectives ………………………………………………………………………………8
 1.5 Tools and Software……………………………………………………………………8

2. Planning and Resources Evaluation ……………………………………………………………9
 2.1 Planning…………………………………………………………………………………9
 2.2 Resource Evaluation……….…………………………………………………………10
 2.2.1 Hardware………………………………………………………………………10
 2.2.2 Salary……………………………...…………………………………………10
 2.2.3 Conclusions……………………………………………………………….…10

3. System Analysis and Design…..………………………………………………………………11
 3.1 System Analysis…………….…………………………………………………………11
 3.2 Design………………….…….…………………………………………………………12
 3.2.1 Game Atmosphere…………………………………………………………12
 3.2.2 Game Concept...……………………………………………………………13
 3.2.3 Scene Design....……………………………………………………………13
 3.2.4 Blockout……......……………………………………………………………14

4. Developement……………………………………………………………………………………14
	 4.1	 Workflow……….…………….…………………………………………………………14
	 	 4.1.1	General	Workflow………….…………………………………………………15
 4.1.1.1 From References to Blender……………………………………15
 4.1.1.2 Texturing in Quixel Mixer……………..…………………………19
 4.1.1.3 Importing to Unreal Engine…………..…………………………20
 4.1.2 Modeling From Texture……………………………………………………22
 4.1.3 Photogrammetry……….……………………………………………………25
	 	 4.1.4	 Neon	 Workflow.……….……………………………………………………29
 4.1.5 Background Buildings.….…………………………………………………31
 4.2 Unreal Engine…………………………………………………………………………32
	 	 4.2.1	Raining	Effect..………………………………………………………………32
 4.2.2 Creating Wet Materials..……………………………………………………32
 4.2.3 Milky Glass..…………………………………………………………………34
 4.2.4 Neon Flickering………..……………………………………………………35
 4.2.5 Interior Cubemap.……..……………………………………………………36
 4.2.6 Decals…………………..……………………………………………………38
 4.2.7 Video Textures………..……………………………………………………39
 4.2.8 Subsurface Scattering.……………………………………………………40
 4.3 Illumination.……………………………………………………………………………41
 4.4 Post-Processing………………………………………………………………………42
 4.5 Movement.……………………………………………………………………………44

5. Results……………………………………………………………………………………………45
 5.1 Time Balance and Deviations….……………………………………………………48
 5.2 Achieving the Objectives……………………………………………………………50
 5.3 Downsides of the Free Softwares………………………………………………50

5

6. Conclusions....……………………………………………………………………………………52
 6.1 Future Work……………………….……………………………………………………53

7. Bibliography..…………………………………………………………..…………………………54

8. List of Figures……………………………………………………………………………………57

9. List of Tables.……………………………………………………………………………………58

6

7

Visual realism is something that has been sought after for a long time, and nowadays there
is	finally	the	possibility	to	create	something	that	can	be	indistinguishable	from	reality.	The	3D	
industry is a market that is constantly growing due to industry 4.0, which is trying to fuse the
real world with technology, creating an augmented reality like the metaverse, for example.

This	project	intends	to	explore	the	different	technologies	available	to	create	realistic	3D	models	
and environments within the framework of a videogame by creating an explorable scene in
the style of Cyberpunk, making use of only free software to demonstrate their capabilities
of obtaining highly realistic results in comparison to others that require a license. It tries to
show the strengths of taking alternative paths to achieve similar results while also creating a
community that makes it possible to do so for free.

If the industry changes following this path, it would greatly reduce the economic costs while still
maintaining the quality of the product, and it is also an incentive for independent developers
to have the opportunity to make great games that otherwise (because of the economic costs)
would not be able to do it.

There	are	a	couple	of	reasons	why	this	topic	has	been	chosen.	The	first	one	is	that	there	is	an	
intention to work professionally in the 3D industry, so it will be interesting to learn about visual
realism,	as	it	is	not	the	only	field	in	3D	modeling,	but	usually	the	most	demanded	one.	The	
second reason is that, as a user of the free 3D modeling software Blender, which is a really
powerful tool, usually companies only look for experience in software with a really expensive
license (although this is gradually changing) and this is an economic barrier for most people.
Moreover, new alternatives are emerging for other paid softwares like Substance Painter
(in this case Quixel Mixer), so it is worthwhile to try them so there is not a dependency on
licenses to keep learning and working.

The subjects related to this work are mostly the ones that have to do with 3D modeling, such
as 3D Design and Character design and animation, and with graphics, like Graphic compu-
ting and Game engines. Although the latter is more focused in the Unity engine, what has
been learnt in it can be applicable to Unreal Engine	using	different	approaches.

VJ1216 - 3D DESIGN
VJ1221 - GRAPHIC COMPUTING
VJ1226 - CHARACTER DESIGN AND ANIMATION
VJ1227 - GAME ENGINES

1 TECHNICAL PROPOSAL

1.1 INTRODUCTION

1.2 WORK MOTIVATION

1.3 RELATED SUBJECTS

8

In accordance to the topic of the project, all of the software used will be free:

Unreal Engine 5: A game engine property of Epic Games. It is free and usually recommended
when looking for realistic graphics.

Quixel Mixer: A software for texturing models, similar to Substance Painter but still in early
access.

Blender: Multi-disciplinary, free and open source software used for modeling, sculpting,
animating and much more.

Krita: Software	usually	used	by	artists	that	allow	image	editing.	Mainly	used	for	the	modification	
of textures in this project.

Meshroom: Open source software used to get a 3D textured model using the photogrammetry
technology.

Instant Meshes: Free software used to reduce the number of vertices of a high poly mesh.

1.5 TOOLS AND SOFTWARE

The main objective of this project is to have completed a Cyberpunk scene at the end of it,
made solely with free software. To achieve this, the main objective can be divided in three
more	specific	objectives	necessary	to	obtain	the	expected	results:

• Researching and collecting all the important information regarding visually realistic
modeling.

• Modeling, texturing and arranging an interactive scene using everything that has been
learned.

• Showing that free software is capable of the same results obtained from other software
that require a license.

1.4 OBJECTIVES

9

TASK HOURS

Research 40h

Writing the memory 40h

Preparing presentation 10h

Technical proposal 5h

Modeling the assets 120h

Creating materials and texturing 50h

Arranging the scene 25h

Testing the scene and interactivity 10h

TOTAL 300h

2 PLANNING AND RESOURCES EVALUATION

2.1 PLANNING

Table 1. Initial Planning

The	final	degree	work	has	12	credits	assigned,	which	translates	to	300	hours.	As	the	objective	
is	to	present	it	on	the	first	call,	they	will	be	spread	over	the	course	of	three	months.	The	Table	
1	shows	how	the	different	tasks	will	be	organized	regarding	the	time:

Table 2. Initial Gantt diagram

In the Table 2, a Gantt diagram can be seen to represent better the organization of tasks,
although it is possible that some of the work (especially the modeling and texturing) overlap.

10

2.2.2 Salary

Based	on	different	statistics	about	 the	salary	of	3D	artists	 in	Spain,	 the	average	salary	 is	
about 12 euros per hour[4][5]. Taking this into account, 300 hours of work will result in around
3.600 euros for the whole project.

2.2.3 Conclusions

Adding both the salary and hardware would result in a cost of 4600 euros approximately. It
can be interesting to compare this with what would cost to use the alternative versions that
require a license:

• Substance Suite: 19.99€/month[6]

• 3ds Max: 279€/month[7]

• Zbrush: $43.05 /month[8]

• Agisoft Metashape (photogrammetry): 179€, single payment[9]

• 3D Coat (retopology): 379€, single payment[10]

• Photoshop: 36,29 €/month[11]

2.2 RESOURCE EVALUATION

In	this	section,	the	total	cost	of	the	project	will	be	analyzed.	This	depends	on	different	factors,	
as the salary of the worker or the price of the hardware. In this case, the advantage is that the
cost of the software will be 0.

2.2.1 Hardware

The general and most important pieces of hardware for this kind of project are the CPU, the
graphics card and the RAM memory. For this work, the following hardware has been used:

• 16Gb	of	RAM	≈	70€	[1]

• NVIDIA	GeForce	GTX	1070	8Gb	≈	379€	[2]

• Intel	Core	i7-6700	3.40Ghz	≈	255€	[3]

Adding to this around 250 euros for the rest of the components like the motherboard or the
storage, will result in about 1000 euros. For this price it will be just enough to be able to work,
although	it	is	recommended	to	have	better	specifications	to	be	able	to	use	multiple	programs	
at the same time.

11

Before starting with the development of the project, it will be
necessary to organize how the work is going to take place (Fig.
1). First of all, a research of several topics regarding the software
and techniques must be made. Unreal is an engine that has not
been used in any of the subjects of the degree, so it will require
some experience, being it using the program or learning about
it. Quixel Mixer, on the other hand, is a new software, and as
with all the new technologies, it needs to also be learned. It has
an	official	YouTube	channel	regarding	this	information	that	will	be	
useful[12]. Finally, photogrammetry is also a technology that has
not been practiced on the degree, so it will need research like the
other topics mentioned.

Once all the important information has been gathered, it will be the
moment to collect all the references. As the topic is Cyberpunk,
which will be explained later why, and it is quite popular at the
moment, there will be no problem when looking for inspiration.

After having the references needed, a blockout will be made with
Blender, not only to get a glimpse of the structure and placement
of the objects, but also to see if the references have been enough
or if it is needed to add more elements to the scene that require
more images to take inspiration from[13].

When	 the	 blockout	 is	 finished,	 the	modeling	 and	 texturing	 can	
begin.	Depending	on	the	type	of	model,	different	techniques	will	
be used. For this step, Blender, Quixel Mixer, Meshroom and
Instant Meshes will be used.

After getting all the models needed, they can be exported to use
in the Unreal Engine. There, the meshes can be arranged as
intended	and	the	materials	configured.	Besides	that,	other	aspects	
have to be taken care of, like the illumination, Post-Processing or
the creation of FX[14]. While using Unreal in the development, it is
expected	the	need	to	research	again	for	specific	topics.

Fig 1. Analysis scheme

As stated before, the developement time planned for the project will be three months. Taking
this into account, the total cost of the software would be: Substance Suite (19.90€ x 3) = 60€
+ 3DS Max (279€ x 3) = 837€ + ZBrush (43.05€ x 3) = 130€ + Agisoft Metashape = 179€ +
3D Coat = 379€ + Photoshop (36,29€ x 3) = 109€ = 1.694 €.	It	is	a	considerable	difference.

3 SYSTEM ANALYSIS AND DESIGN

Here will be explained the general approach taken into account for the development of the
project, based on the available resources and the objectives of it. In addition to that it will
elaborate on the artistic and technical decisions.

3.1 SYSTEM ANALYSIS

12

3.2.1 Game Atmosphere

Usually, when photorealism is used in video games it is to make the players more immersed
in the atmosphere they are trying to create. In this case there is also an intention to do so. In
this scene, the objective is to achieve the feeling of the Cyberpunk aesthetic, with a lonely,
saturated atmosphere, based on the moodboard shown in Fig 2.

Fig 2. Atmosphere moodboard

As this project will serve more like a technical demonstration than a videogame per se, the
programming involved will be mostly regarding the movement of the player. On top of that,
Unreal allows the use of what they call Blueprints,	which	greatly	simplifies	the	implementation	
of interaction.

The last step is to build the level and check that everything works as expected.

3.2 DESIGN

The theme chosen for the project is the Cyberpunk aesthetics. This aesthetic has been chosen,
on the one hand, because it allows to explore the new Lumen technology from Unreal Engine,
which performs a dynamic global illumination with a low cost, so the illumination of all the
neons work in real-time without baking and with amazing looks[15]. On the other hand, usually
Cyberpunk is stripped of the “punk” part, meaning that its original political statements are
despised only to be left with the visuals. In its origins, it is a critique and an hyperbolization of
capitalism and its tendency to monopolize everything, which is really pertinent to this project,
as the trigger for this idea was seeing how a lot of the software frequently used by artists were
all being bought by large companies like Adobe. Ultimately, this project takes both aspects
into account.

13

Figs 3 (top left), 4 (top right) and 5 (bottom). Scene sketches

To	achieve	this,	different	resources	will	be	used,	not	only	the	visuals,	but	also	the	sound	and	
other	effects.

3.2.2 Game Concept

The game will consist in what is usually known as a “walking simulator”, as the point of
the	project	is	solely	to	show	the	graphics.	The	player	will	take	control	of	a	character	in	first	
person and they will be able to explore the scenes as they please, making it more similar to
a technical demonstration.

3.2.3 Scene Design

The	scene	will	 be	a	Cyberpunk	 inspired	street,	as	 it	 is	a	perfect	way	of	 showing	artificial	
lightning interacting with the materials with its neons and wet alleys. Some quick sketches
with	a	top-down	view	and	some	of	the	views	of	the	scenery	can	be	seen	in	figures	3,	4	and	5.

14

3.2.4 Blockout

The	blockout	will	be	useful	 to	get	an	 idea	of	how	many	buildings	will	be	needed	to	fill	 the	
scene, their height (because they can’t be taller than the highway if they are below) and some
other objects like the garbage containers. It is also a good way to know approximately the
measures	of	the	street,	etc.	In	short,	it	is	the	first	step	to	organize	the	work	that	will	take	place	
later on[13]. The initial blockout that has been made can be seen in Fig 6:

Fig 6. Blockout made in Blender

4 DEVELOPMENT

4.1 WORKFLOW

With	all	the	different	software	available	for	free,	it	has	been	possible	to	use	different	techniques	
to achieve the desired result, be it a quick way to model something, a certain appearance, etc.
For	the	most	part,	a	general	workflow	has	been	followed	to	obtain	the	majority	of	the	models,	
but in some cases, alternative ways of modeling have made the job faster and easier, and
even with greater results.

A breakdown of each method is provided below:

It will be a little street with a highway on top, some cars parked at the side of the street and
a	cul-de-sac	at	the	corner.	The	street	will	be	all	surrounded	by	buildings	of	different	types.	
Behind the shorter buildings the city will be able to be seen in the distance.

15

4.1.1 General Workflow

As stated before, this has been the method used for most of the models for this project. Fig 7
shows	the	flow	of	the	work	starting	from	the	image	references.

Fig 7. General workflow diagram

4.1.1.1 From references to modeling in Blender

Fig 8. References to Blender diagram

The steps followed in this part can be quickly seen in the diagram shown in Fig 8:

16

First of all, a “moodboard” with all the image references for each object or building is made.
After getting an idea of how the model is going to look, the modeling process in Blender can
start.	Everything	has	been	kept	low	poly	for	the	final	result,	even	though	the	new	technology	
from Unreal, Nanite, allows an enormous amount of polygons while keeping the performance
stable[16].

In Fig 9, an example of one building can be seen. After looking at the references, the idea
of making a garage came up, so a moodboard with all the images with similar concepts was
made. Based on that, a model of the garage was created.

Fig 9. Model obtained based on the moodboard

Once the model has been created, it will be required to have the ’s ready. This will be
made using the orthodox method: creating seams on the edges of the mesh and then using
the Unwrap	 option.	This	 however	will	 be	 for	 the	 general	workflow,	 as	 later	 on	 alternative	
methods will be shown.

If the model is complex, extra steps are needed. First of all, the high poly mesh is made, and
after that, based on that mesh, the low poly one (made by hand in this case). It is required
to have both meshes in the same position, as the next step is to create the maps for the low
poly mesh. An example can be seen in Fig 10 with a trash bin that had too many faces, so a
low poly version was needed.

Fig 10. Low poly model at right (356 faces) obtained from the high poly one at left (1.696 faces)

17

To get the intended output, it will be necessary to have the Normal map projected from the
high poly version to the low poly one to make it look like it has more detail than it really has.
For this, an image will be created in the material of the latter to store the Normal map. This
image has to be set to Non-Color.

After the rendering of the Normal map	 has	 finished,	
It will be needed to check if everything has gone as
expected, since occasionally some artifacts can appear
if	there	is	a	lot	of	difference	between	one	mesh	and	the	
other. If this is the case, it is possible to make some
tweaks to the available options (Fig 11). These options
are: changing the amount of extrusion applied to the

model, the maximum ray distance or creating manually a cage, which works as a bounding
box that limits the rays. This is usually made by using the low poly mesh and scaling it up
along the normals. If a high poly mesh has not been used, all these steps can be disregarded.

Other maps needed before exporting the model to Quixel Mixer are the Curvature, Ambient
Occlusion and ID maps[17]. The Curvature map highlights the edges of the models, and this
can be really useful for materials like metals, as usually, in real life, metallic objects are more
damaged along the edges. For the Smart Materials this map is also essential, as otherwise
it would not work[18]. The Ambient Occlusion map adds shadows that are self generated, like
the ones that can be seen in objects with cavities. Finally, the ID map creates a texture with
the	different	colors	assigned	to	each	face	of	the	model[19].

Getting the Ambient Occlusion map is simple: after creating a new image in the same material,
Blender takes care of rendering the Ambient Occlusion in the new image after changing the
option to the aforementioned. It is also possible to bake it from a high poly mesh as explained
before, and change the number of samples if the quality of the render was not enough[17]. Fig
12 shows how the model of the garage looks with Ambient Occlusion and the resulting map.

Fig 11. Selected to Active menu

For the Curvature map, some extra steps will be needed. First of all, as always, a new image
will be created. After that, a Geometry and ColorRamp node will be added to the material. The
Pointiness attribute will be connected to the ColorRamp, and this one to the Emission of the
material, as it can be seen in Fig 13. The goal is to adjust the parameters of the ColorRamp to
reach	a	point	where	the	model	(seen	from	a	rendered	preview)	has	its	edges	clearly	defined.	
When this is achieved, it is the moment to render it to the image, this time using the Emit
option from the rendering menu[17].

Fig 12. Creating the Ambient Occlusion map

18

Fig 13. Configuration of the Curvature map in Blender

Fig 14. Materials used for the model and the resulting map

The last step is to create the ID map. This will be used to texture the model easier in Quixel
Mixer, as explained later. It is desirable to have only one material for the model, therefore it
is better to make a copy of the mesh, as several materials will be needed to render the map.
To do so, one material will be necessary for each color (and thus, each texture), and then
assign the corresponding materials to the faces of the mesh. After doing this, another image
texture	will	be	created	to	bake	in	it	the	diffuse	color,	excluding	the	direct	and	indirect	lightning	
contribution[17].	 In	Fig.	14,	all	 the	different	materials	and	how	they	have	been	used	 for	 the	
garage can be seen along with the resulting ID map.

All this process has been repeated for most of the meshes. In Fig 15, some of the models
made	usign	the	general	workflow	can	be	seen.	Most	of	them	have	been	buildings,	although	
some	other	objects	have	been	made	using	this	workflow	as	shown	in	the	image.

19

4.1.1.2 Texturing in Quixel Mixer

Fig 16. Texturing in Quixel Mixer diagram

Quixel Mixer is a program used for texturing that uses what they call Megascans, which is
the	result	of	a	large	group	of	their	employees	that	travel	the	world	and	photograph	different	
textures they encounter along with photogrammetry of certain objects. The textures available
are what they have photographed converted to a seamless image, which gives it a realistic
appearance, as it is taken directly from reality[20]. The downside of these materials is that, as
they are photographs and not made procedurally, it is harder to modify them to adapt them
to the models. There are also Smart Materials, which are customizable and work in the same
way as in other programs like Substance Designer.

The	steps	that	will	be	followed	can	be	seen	in	Fig	16.	The	first	step	after	opening	the	program,	
is to import the mesh. This is made by going to the Setup menu and choosing Custom Model
in the Type section. After choosing the location of the model, the next step is to import all
the maps created in Blender for this model by going into Window > Texture Sets Editor or
pressing Control + Shift + T. It is possible to import extra maps if needed like the Albedo,
Metalness,	etc.	When	finished	with	this,	the	texturing	can	begin.

Fig 15. Some models made using the general workflow

After all these steps are completed and the mesh with a single material is exported as an .fbx
or	.obj	file,	everything	is	ready	to	begin	with	the	texturing	using	Quixel Mixer.

20

Before starting with the texturing it has to be clear that there isn’t any error in the mesh, this
being	flipped	normals	for	example,	which	makes	the	model	in	Quixel	to	look	different,	as	the	
faces are only shown in the direction they are pointing to. If this or any other mistake has been
made,	it	is	easily	fixable.	It	is	simply	modified	in	Blender	and	then	exported	as	the	same	name	
as before. After that, just pressing the Reimport Model in the Setup menu	fixes	the	problem.

The	best	practice	is	to	organize	everything	in	folders,	one	for	every	part	that	will	be	different	in	
the	model.	Inside	the	folder	can	be	stored	the	different	materials	that	will	compose	that	part.	
This is where the ID map takes part. Instead of having to manually paint and create masks
by painting the texture itself, it is possible to just assign each folder or individual material to
a color. This color corresponds to the color chosen when creating the ID map. Moreover,
additional	masks	can	be	added	on	top	of	the	color	mask,	to	combine	different	materials	or	
make them more interesting[18]. One of the buildings already textured can be seen in Fig 17,
and its materials organized in folders along with the ID masks, in Fig 18.

Fig 18. Materials with their masks

4.1.1.3 Importing to Unreal Engine

Fig 19. Importing to Unreal diagram

Each	material	can	be	modified	to	adapt	to	the	desired	results,	changing	the	rotation,	scale	or	
type	of	projection.	On	top	of	that,	each	of	the	maps	composing	the	material	can	be	modified,	
changing its opacity, type of fusion, contrast, and even the option to adapt to the material
below it, so that it can blend better with the look up until that point. For the Albedo it is possible
to also change its “tint”, although depending on the material, as it is based on photographs,
it	may	result	in	an	undesirable	look,	making	it	difficult	to	use	some	complex	materials	unless	
looking	for	that	specific	appearance.

After	the	texturing	has	been	finished,	all	that	is	left	to	do	is	export	the	maps.	It	is	possible	to	
select which ones are needed to export and their resolution. In this case all the displacement
maps	have	been	discarded	as	the	models	are	low	poly	and	it	would	not	make	any	difference.

Fig 17. Textured building

21

Now having the model as well as the texture it is the moment to import them to the game
engine.	Following	 the	diagram	 in	Fig	19,	first	 it	 is	desirable	 to	 import	 the	model,	as	 it	will	
be imported along with the material created for it in Blender. After that, the textures will be
imported	to	the	engine	so	that	the	material	can	be	modified	to	look	as	expected.	Preparing	
the material is as easy as double-clicking it to open the material interface and dropping
the textures to the Material Graph. Afterwards, it is necessary to link each map into their
corresponding node in the material output (Fig 20). Finished this, the only thing left is applying
and saving the material.

Fig 20. Example of a material graph with its maps connected

Now it is possible to drop the fully textured model into the scene. As the illumination along
with	other	factors	can	make	the	model	look	different	from	what	has	been	seen	up	until	now,	it	
is the right moment to see if the model inside the scene looks as expected, comparing it to the
references. If not, it being by the mesh itself or its textures, the corresponding adjustments
can be made using Blender, Quixel or even some other image editing software like Krita to
make any changes necessary to the textures. As Quixel does not have an emission channel,
every Emission map has been made in Krita while checking in Unreal that everything is
correct.

After	verifying	that	everything	is	as	expected,	the	placement	of	the	model	can	finally	begin.	
Based on the references or the blocking made in Blender, it is just a matter of using the
Gizmo to move the mesh to its corresponding position. This procedure is shown in Fig 21,
where the design and positioning of the models are based on one photograph[14].

22

Fig 21. Reference compared to final result in Unreal

4.1.2 Modeling From Texture

An alternative form of modeling can be possible instead of the usual one, which commonly
follows the next structure: Modeling > Unwrapping > Texturing. This one is inspired by the
widely	 known	artist	 Ian	Hubert,	which	also	has	a	 series	 of	 quick	 tutorials	 in	 his	YouTube	
channel[21]. The method he follows is diagrammed in Fig 22. He starts with a texture, usually
a photograph, and then adapts the form of the mesh to the one in the texture[22]. This method
makes it hard to make more complex models, but it allows to make simple ones much quicker
and also make it look realistic, as it is taken directly from the real world.

The	first	step	is	to	choose	the	texture	from	which	the	mesh	will	be	modeled	from.	To	illustrate	
it, the procedure for the modeling of one of the expending machines will be shown.

After having the texture stored in the computer, a basic shape along with a material have to be
created in Blender, in this case a cube. Within the Shading interface, there must be created
an Image Texture node, loaded with the texture chosen and linked to the Base color output.

Now, from the UV editing tab,	the	mesh	must	be	modified	to	have	a	shape	according	to	the	
texture.	First,	the	object	must	be	scaled	to	resemble	its	figure	approximately.	Then,	each	one	
of the faces must be unwrapped by selecting it and, from an orthogonal perspective, and
looking directly at the camera, choosing the Project From View option. As there is only one
face in the texture, the rest will be projected on the parts where there is nothing on it, like the
gray part at the bottom. In this case those faces will not be seen because of the placement
of	the	object,	but	it	is	advisable	to	have	different	textures	for	each	face.	This	is	easier	if	the	
textures had been photographed personally, but it also works with free images on the internet.

Fig 22. Modeling from texture diagram

23

Fig 23. Projecting each face into the texture

After having every face projected (Fig 23), the dimensions of the shape can be adjusted to
make sure that there is no stretching in the texture as seen in Fig 24.

Fig 24. Correcting the dimensions of the model to avoid stretch

When everything is well proportioned, the modeling can begin. This is so the mesh is not just
a simple plane with a texture projected, but a 3D model that resembles the original object. To
do so, several loops and extrusions will be made along the cube, making sure that the texture
is not distorted by moving the vertices along the edges (pressing G two times in Blender). In
case that some part has a distorted image, either because of moving a vertex incorrectly or
by doing an extrusion with a straight angle, it can be reprojected into the texture.

24

After having the desired mesh, there are still some steps that need to be done. So far there
is just one map, the Albedo, whose only function is to show the color, but it is also important
to have other maps like the Metallic or Roughness map. To do so, the same steps needed to
render the ID map will be repeated, but this time with just the main material. This will have as
a result an Albedo map, which will be imported to Quixel Mixer along with the model.

Having our model in Quixel Mixer, a basic material can be created to add the Albedo map
and the rest of the maps can be disabled. To add the Roughness, Metallic and even Normal
maps, the best idea is to choose one material that is similar to the one in the reference and,
using a paint mask, paint over it, and then disable its color, so that only the original color is
shown (Fig 25). Using this method the material has a more realistic look, as the light interacts
with it in an accurate way.

When	the	texturing	is	finished,	the	final	results	can	be	seen	importing	the	mesh	and	textures	
to Unreal as usual. Fig 26 shows the process of the vending machine from the model to the
textured	model	and	finally	how	it	is	seen	in	the	engine.

Fig 25. Adding additional maps in Quixel to obtain more details

25

4.1.3 Photogrammetry

Fig 26. Model from texture (left), textured model (center) and final result (right)

Photogrammetry is the science of obtaining reliable information about the properties
of surfaces and objects without physical contact with the objects, and of measuring and
interpreting this information. The input is characterized by obtaining reliable information
through processes of recording patterns of electromagnetic radiant energy, predominantly
in the form of photographic images[23].	Comparing	different	points	 in	 the	 images	and	 their	
distances, it is possible to extract a 3D mesh along with its texture. The process that will be
followed can be seen in Fig 27.

The software used for this project is Meshroom, which is a completely free photogrammetry
software, along with Instant Meshes, a software used to retopologize that is also free. As the
model obtained from Meshroom has a really high amount of polygons, it will be necessary
to decimate it.

For this example, 24 photographs have been taken with a high resolution camera. The object
of the photograph was some kind of electrical or ventilation box seen in Valencia. Having a
drone would have greatly increased the possibilities of scanning, but being limited to a hand-
held camera, only small enough objects that allowed to make photographs from above have
been possible to scan.

Once Meshroom is open, all the photographs must be imported into the Images tab. After
that, in the graph editor below it can be seen that there are a lot of nodes. They can be
modified,	 but	 usually	 all	 of	 them	 can	 be	 left	 as	 they	 are	 except	 the	 last	 three:	Meshing,
MeshFiltering and Texturing (Fig 28).

Fig 27. Photogrammetry diagram

26

It	 is	 better	 to	 see	 the	 results	with	 the	 default	 options	 first	 and	 then	 try	 to	modify	 them	 if	
the result is not satisfactory. Once the images have been imported, the Start button can be
pressed. The process can take a while, especially the FeatureExtraction one.

First, all the points are extracted and all the positions from where the photographs have been
taken	are	shown.	In	Fig	29,	all	the	points	extracted	along	with	the	cameras	from	the	different	
positions can be seen

Fig 28. The three most important nodes to modify

Fig 29. Cameras detected and points extracted

Based on those points, the mesh is generated. Some adjustments had to be made in the
Meshing and MeshFiltering nodes to	try	to	get	the	best	result	in	this	case.	The	final	result	can	
be seen in Fig 30.

27

And	finally,	the	texturing	process	takes	place.	In	Fig	31	the	mesh	can	be	seen	already	textured	
based on the photographs.

Fig 30. Mesh extracted from the photographs

Fig 31. Texture taken from the images applied to the model

A lot of tweaking was made especially in the Meshing node, and a custom bounding box was
made, but it can be seen that 24 photographs were not enough to get a satisfactory result.
However, as the result was not excessively bad, and as the illumination is important in this
case and it has to be the same, instead of taking more photographs, the decision made was
to	just	fix	the	mesh	in	Blender.

28

After the process has been completed, double clicking the Texturing node opens the folder
with the textured mesh. This mesh is then exported to Blender to give it the right orientation.

In Blender, the mesh must be rotated to give it the desired orientation and then it has to be
exported	again.	This	will	be	the	high	poly	mesh.	The	reason	as	to	why	 it	 is	rotated	first	 is	
because	now	a	second	mesh	is	needed	to	be	on	top	of	the	first	one,	and	it	has	to	be	in	the	
same position and orientation[24],	like	explained	in	the	general	workflow.

Now, using Instant Meshes, the high poly mesh is imported into the program. It allows to
choose a desired amount of vertices so, in this case, as it is for a videogame, around 2k is a
good amount[25].

After	that,	the	orientation	field	must	be	solved	by	pressing	the	Solve button (Fig 32). Normally
it is recommended to use the Orientation Comb tool to make adjustments in the orientation of
the	field,	but	this	being	a	fairly	simple	mesh,	it	is	not	necessary.

Fig 32. Orientation field solved

Finally,	 the	position	field	 is	 ready	 to	be	solved.	After	solving	 it,	adjustments	can	be	made	
again using the Edge Brush tool. If everything is correct, the mesh can be exported. For this
model the option for Pure Quad Mesh has been checked and the Smoothing Iterations have
been set to 1, as it can be seen in Fig 33.

Once both the high and low poly meshes are available, it is time to return to Blender. The low
poly mesh must be imported while the high poly mesh is selected, this way both of them will
be in the same place and orientation. Now some adjustments can be made. With this model it
was necessary to use the sculpting tools with the high poly mesh and to move some vertices
in	the	low	poly	one	to	fix	some	of	the	artifacts.	

When everything is correct, the low poly mesh has to be UV mapped, and then the maps
are	rendered	as	usual,	following	the	same	steps	as	the	general	workflow,	projecting	from	the	
high to the low poly. This is necessary because the maps generated by Meshroom are bits of
polygons scattered throughout the texture, so it would be impossible to reuse those textures
for the low poly one. After that, the mesh and textures can be imported in Unreal, and when
the material is created, the model is ready to be used.

29

Fig 33. Position field solved and mesh extracted

Fig 34. From extracted mesh (left) to textured mesh (center) to final low poly result (right)

4.1.4 Neon Workflow

Fig 35. Neon workflow diagram

The Cyberpunk aesthetic is well known for having a lot of neons, so this project would not
be	different.	To	create	the	neons,	a	different	approach	has	been	given.	There	are	also	two	
types	of	neons,	the	ones	that	have	text,	and	the	ones	that	represent	a	figure,	both	being	fairly	
similar, as it can be seen in the diagram in Fig 35.

Fig	34	shows	the	process	and	the	final	low	poly	result	inside	the	Unreal engine.

30

For the ones with text, it is possible to start either with Blender[26] or a software that allows
converting	text	into	a	.svg	file	and	then	importing	it	into	Blender.	As	the	first	method	is	simpler,	
it will be the one used. To do so, a Text object will be created. It can then be edited to show
whatever text is needed and to choose which Font will be used, selecting it from the fonts
folder. Once everything is ready, some adjustments have to be made before exporting it.

First of all, the Fill mode must be changed to None, so that only the edges are visible. Then,
a bevel is added with the Depth that better suits it, but always with a resolution of 0, as more
polygons	will	not	make	any	difference	in	the	final	result.	In	addition	to	that,	the	Resolution U
has to be reduced to a point where the mesh still holds its shape but does not have that many
polygons. Finally, the text can be converted to a Mesh object. Depending on the use of the
model, the vertices in the back of the mesh can also be deleted if they are not going to be
seen, thus reducing the number of faces. Fig 36 shows how the Text object is transformed
into a Mesh object able to be used.

Fig 36. Converting a text object to a mesh object

As the neon is only going to have emission, it is not necessary to unwrap the mesh, so it can
be exported as it is. Once in the engine, the mesh is imported into its corresponding folder
and then a material is created. This material only needs one Color node with the desired
color that is linked to the Base Color and then to a Multiply node. The latter is to increase the
intensity of the light, meaning that the higher the value, the higher the brightness, and it will
be linked to the Emissive Color.	The	final	step	is	to	save	the	material	and	everything	will	be	
ready. One of the materials and its resulting looks can be seen in Fig 37.

Fig 37. Emissive material and neon with the material applied

31

If the neon is not a text, the process is very similar,
but instead of using a Text object in Blender, it is
possible to use a Curve object[26]	or	import	an	.svg	file	
into the project. After that, in the curve options, the 3D
one in the Shape section has to be selected, and then
the procedure is exactly the same as with the text.

With	this,	 it	 is	possible	to	create	different	signs	with	
custom shapes, such as the neon sign made for the
garage shown in Fig 38.

Fig 38. Neon made with vectors

4.1.5 Background Buildings

To	give	the	impression	that	the	city	is	not	empty,	it	will	be	necessary	to	fill	the	gaps	shown	
above	 the	shorter	buildings,	but	making	enough	buildings	with	 their	own	texture	 just	 to	fill	
those	gaps	would	take	a	lot	of	time	that	could	be	used	in	other	aspects.	Inspired	by	a	YouTube	
video by Ian Hubert[27], a similar approach has been taken.

To get a clutter of buildings, all there will be needed is an image and a bunch of cubes. First,
a cube is created along with a material and a TextureImage node attached to the BaseColor.
Then, the TextureImage node is loaded with a high quality photograph of some city at night
that	can	be	found	easily	on	the	internet.	Finally,	after	creating	several	cubes	with	different	
sizes and orientations, their UV’s are projected from view while in the Orthogonal mode.
Following the shapes of the photograph, it is only necessary to move each UV island into the
building	that	fits	it	better.

Then, the buildings are imported into Unreal Engine along with the photograph, and the
material will only have the image connected to the Albedo and Emission inputs, as well as a
parameter set to 0 for the roughness to simulate the windows of the buildings.

In Fig 39 the buildings can be seen in the distance on the left looking like they are real
buildings whereas on the right, it can be seen how it really looks.

Fig 39. How the buildings are seen versus what they look like

32

4.2 UNREAL ENGINE

In	this	section	all	the	different	aspects	that	have	taken	place	inside	the	engine,	and	that	are	
beyond the modeling, will be described. This can be the editing of materials, creation of
particles, among others.

4.2.1 Raining Effect

To make the game look like it is
raining, a Niagara System object
with the Fountain template is
created[28]. This works like a particle
system: it spawns sprites randomly
following certain conditions.

To get it to look like it is raining,
it can not be left with the default
options, so some adjustments will
have to be made.

First, the Add Velocity in Cone and
Sphere Location properties are
deleted. Then, a Box Location will
be added, which will be adjusted
to cover all the visible parts of the
map with its volume.

After that, the particles will need
velocity, so the property Add
Velocity will be added, changing its
values to make it fall more rapidly.

To make it look more like rain, the particles’ shape have to be changed into an elongated
form, so it will be necessary to modify the Sprite Size in the Initialize Particle section and to
change the form to Non-Uniform. The angle has to follow the direction of the particle too, and
that option will be found in Sprite Renderer.

The only thing left is to change the Opacity in the Color Mode and the Spawn Rate to look like
desired.	Fig	40	shows	the	looks	of	the	final	Niagara System	configured.

Fig 40. Niagara System configuration for the rain

4.2.2 Creating Wet Materials

To create the wet materials, two materials have been combined with a parameter that
determines the “strength” of one or the other, being this parameter the Red channel of the
Vertex Colors,	which	will	be	modified	using	the	Vertex Paint function[29].

33

First of all, the desired textures are added into the material graph. For this example, the
texture for the asphalt has been taken from Quixel Bridge.

After that, a Lerp node has to be created for every parameter of the textures. For now, only
4, one for the Base Color, another one for the Roughness, one more for the Specular and
a last one for the Metallic output. The textures will then be linked to the A input, whereas on
the B, a parameter will be created. This parameter will represent the “wet” part, and will be
a parameter so that it is easily customizable. Once everything is linked, each Lerp node is
connected to its corresponding output in the material node.

Now, a Vertex Color node is created and its Red value is linked to every Alpha input of the
Lerp nodes. This means that depending on the value of the Red for each vertex, between 0
and 1, it will determine how much of the second material (the wet one) is shown. In Fig 41,
the full graph to obtain the wet asphalt can be seen.

Fig 41. Material graph for the wet asphalt

After this, the material can be saved to test it. As it works with the color of the vertices,
a simple plane can not be used, because it would only show any changes at its corners.
Instead, a subdivided plane will be created in Blender to be exported into the program. After
painting a zone using the Mesh Paint Mode with red in the plane with the material (Fig 42),
the parameters can be adjusted to get the look intended.

Fig 42. Painted plane and how it looks ingame

34

The material could be left like that, but as there is rain in the environment it would be a good
option to add a bit of movement to the water. To do so, it will be necessary to return to the
material graph.

To	create	 the	effect	of	 rain	hitting	 the	surface	 it	will	only	be	necessary	 to	use	 the	Normal
maps. First, the Normal map is copied, and linked to the UV input will be a Panner. The
Panner will receive Texture Coordinates that are multiplied by a parameter to make it larger
or	smaller,	depending	on	the	desired	effect,	and	a	Speed parameter, that will determine how
fast the texture is panned. Then, each Normal map will be linked to a FlattenNormal node with
another parameter that will control how “deep” the normal is, and those nodes will be linked
to another Lerp with the Red value linked into the Alpha input. Finally, the Lerp node is linked
to the Normal output. Fig 43 shows all the elements used in the material graph to make the
water look like it is moving.

Fig 43. Part of the wet material graph to make the water dynamic

Finally, After editing the parameters, the wet areas will look like the rain is hitting them.

4.2.3 Milky Glass

At some point during the development, there appeared the necessity to have blurred or
“milky” glass. This type of glass became useful in conjunction with emissive objects or lights
that otherwise would look unappealing.

To obtain this, the SpiralBlur node was used in the material graph[30]. The Base Color is set
to black, the output of Result from the SpiralBlur node is connected to Emissive and the
SceneColor clamp to 0 to the Opacity. What this node does is stated in its name: it creates a
blur	effect	in	a	spiral	motion,	which	is	what	it	is	looked	for.	After	creating	a	window,	it	will	be	
necessary to make some adjustments depending on the preferred appearance. In this case,
modifying the Distance and Radial Steps	attributes	was	enough,	and	two	different	materials	
were created to use depending on the case. Fig 44 shows the material graph of one of the
materials used to obtain a milky glass and how it looks at its right.

35

Fig 44. Material graph for the milky glass and results

4.2.4 Neon Flickering

To	 create	 the	 effect	 of	 a	 flickering	 light,	 a	 really	 simple	 method	 was	 used.	 Instead	 of	
programming externally a function that changes the emission value of some material, it is
made inside said material[31]. For this, a Time node is multiplied by a parameter that can
be	modified	depending	on	how	fast	the	flickering	is	desired.	Then,	the	result	 is	 linked	to	a	
Sine node to create a continuous wave, and what it is obtained from that is only left with its
fraction, or in other words, a value between 0 and 1, thanks to a Frac node. The emission is
then	multiplied	by	this,	so	in	the	final	result,	it	will	appear	as	a	flicker.	The	resulting	material	
can be seen in Fig 45.

Fig 45. Material graph to make the light flicker

36

4.2.5 Interior Cubemap

Some of the buildings’ windows are just a plane with its UV projected into a photograph with
windows	on	it	and	with	emission.	This	makes	it	on	some	occasions	to	look	too	flat.	Another	
way	of	filling	the	windows	without	making	them	directly	black,	is	to	use	Interior Cubemaps.

There are some developers that have prepared cubemaps made by hand able to be used,
making a cube with a texture for each of the faces except the front one and also some planes
in between the cube that use an opacity mask (Fig 46). With this, when looking through the
window,	it	seems	like	a	3D	room	creating	a	parallax	effect	with	the	planes	in	the	middle.	Two	
different	rooms	have	been	used	in	the	project.

Fig 46. Planes that compose the interior cubemap and how it looks from the exterior

There is another way of doing so, as seen in the technical demo that Unreal Engine has
recently released: Matrix Awakens. In that demonstration, it can be seen that the rooms seen
from	the	windows	of	the	buildings	have	a	3D	effect.	To	recreate	it,	an	HDRI of an interior has
been used along with the InteriorCubemap node in the material graph.

First of all, a parameter of value 1 has to be attached to the Tiling value of the node, as it
allows to create a large cube with several rooms, but only one is needed to make a single
room. Then, when trying to join directly the output of the InteriorCubemap to the texture, it
returns an error, as the coordinates trying to be sent are a Vector3, when the texture can only
take a Vector2	value.	Because	of	this,	it	has	to	first	be	transformed	into	an	allowed	value,	so	
a LongLatToUV	has	to	be	used	first.	After	being	converted,	the	texture	can	be	used,	in	this	
case in the Emissive Color input (Fig 47).

When trying this texture with a cube, however, the results are not really satisfactory, as there
is a lot of stretching in the texture (Fig 48). Unfortunately there is not a lot of documentation
for this aspect. Many things have been tried, and there is not a lot of understanding of how
this	node	works,	so	at	the	end,	the	flat	windows	have	been	left	as	they	were.	Probably	in	the	
future more information is shared, but for now, being this version of the program certainly
new, there is not a lot to investigate. Maybe the problem has more to do with the textures
used, but in any case making custom ones would result in having to render (and model and
texture) several rooms and making after that the cubemap textures, so in this case, having
limited time, it was not possible to.

37

Fig 47. Material graph configured to create an Interior Cubemap

Fig 48. Unfavorable result for the Interior Cubemap

38

4.2.6 Decals

Unreal Engine has an add-on called Quixel Bridge, that has a collection of all the megascans
from Quixel, this being models, textures and decals. It allows the user to download them in
the chosen quality and use them directly in the program after importing them. A couple of
models and materials have been added to the project, but what has been the most used are
the decals.

They work like a volume that can be moved, scaled and rotated, and everything that enters
that volume will have the decal projected into it in the direction it is facing (shown by an
arrow). If there is the need for one object to not receive decals, that option is available in the
object properties. The strength of the decals is that they can be placed in any area and allows
to create some variation to the textures. Some models, for example, are symmetric, so if a
graffiti	is	added	in	the	texture,	it	would	not	look	natural,	as	there	would	be	one	graffiti	and	the	
same one but inverted next to it. Using decals, a symmetric model can be made and there
could still be added details that otherwise would make the symmetry noticeable. It is also
possible to create custom decals as sometimes the Bridge catalog can be limited.

In	Fig	49,	a	couple	of	graffiti	decals	are	applied	to	the	wall	in	the	back.	As	it	can	be	seen,	one	
of	the	decals	should	go	over	the	traffic	cone,	as	it	is	in	the	same	zone	of	the	wall,	but	to	avoid	
that, the option Can recieve decals of the cone has been disabled.

Fig 49. Graffiti decals projected into a wall

39

4.2.7 Video Textures

In order to add video adverts like the ones seen in Blade Runner for example, it was necessary
to create Video Textures[32].	To	do	so,	first	of	all	a	File Media Source had to be created, with its
File Path with the direction of the desired mp4, which will be old advertisements in this case.
After that, a Media Player will be created, along with a Media Texture. The Media Player will be
loaded with the desired File Media Source and the option Loop checked, as the objective is to
have the video always playing. When that is done, the Media Texture can be dropped directly
into the target object, and a new material with that texture will be automatically created.

Now, the material needs some changes. First of all, the Video Texture will also be used as
an Emissive Color, as it represents an LED screen. Because of this reason, a mask is also
needed, so the parts that are shown are composed of little dots to make it look more realistic.
For this to be possible, the material Blend Mode will have to be changed to Masked.

When	 all	 this	 is	 finished,	 the	
material will be ready, but if
the level is played it will be
noticeable that the videos are
not playing and all there is is a
static	 image.	 To	 fix	 this,	 it	 will	
be necessary to open the Level
Blueprint. Once there, a couple
of nodes have to be added. The
first	one	is	the Event BeginPlay,
which will play an actor once the
game starts.

That node will be linked to an Open Source node, that will have connected to it a Media
Player object reference node. The Media Player object reference will have in its Default Value
the Media Player	required	to	load.	In	case	more	than	one	video	is	going	to	be	played,	different	
Open Source nodes can be linked, as the Event BeginPlay one can only be linked to one
single node. Fig 50 shows the Blueprint used to load both of the videos used.

Once the Blueprint	has	been	configured,	the	videos	will	be	played	in	loop	when	the	game	
starts. Fig 51 shows one frame of each of the videos used for the advertising signs.

Fig 50. Blueprint used to play the videos at the start of the game

Fig 51. Finished luminous adverts

40

4.2.8 Subsurface Scattering

After	finishing	the	texturing	of	some	japanese	paper	lanterns,	the	intention	was	to	make	them	
look like the real ones when they have a lightbulb inside. Using an Emission map would only
make them look like that on one side. For this reason, an Opacity mask was created in Krita
making darker spots where the wires would be, meaning that less light will pass through it,
the same way it happens in real life. When placing the lantern and a light inside it in Unreal
Engine, several options were tried: changing the Blend Mode to Masked, to Translucent,
trying	different	Lighting modes, making it Two Faced, and even changing the Shading Mode
to Subsurface and Subsurface Profile.

After some research, other people from the Unreal forums[33] said that they faced the same
problems. It seemed like it was a bug in the Early Access version of the engine, and that the
correct mode was indeed the Subsurface shading mode.	The	way	to	fix	it	was	to	disable	the	
option Cast Shadows in any object that used Subsurface Scattering. In the later versions of
the	program	this	error	has	been	fixed.

The	final	result	can	be	seen	in	Fig	52.	The	japanese	paper	lanterns	behave	as	expected:	there	
is a white light placed inside each one of them that changes its color to red when passing
through the “paper”. It also shows a glowing sphere inside that changes when changing
perspective	like	it	would	in	real	life	with	a	lightbulb	and	it	shows	the	effect	of	the	“wires”	inside	
thanks to the Opacity mask.

Fig 52. Effect of the subsurface scattering on the paper lanterns

41

Fig 53. Color bleeding effect can be seen on the white walls

As stated before, a lot of neons have been used for this project. Lumen allows the objects
to emit light in a dynamic way without having to make any kind of baking, and also at a low
performance cost, so this technology has been useful especially for the models that have
overlapping UVs.

To	give	the	lights	a	volumetric	effect,	an	ExponentialHeightFog object has also been used.
This	effect	is	the	same	that	occurs,	for	example,	in	a	concert	when	smoke	is	used	so	the	light	
rays can be seen. The fog has a considerable customizability and has been adjusted to be
at a certain distance from the player along with its Density, Color and Opacity, as well as the
Volumetric Fog option to make it work as intended.

In	Fig	54,	the	difference	between	having	the	ExponentialHeightFog off	(left)	and	on	(right)	is	
noticeable.	Apart	from	the	effect	of	the	fog	itself,	the	light	rays	can	be	appreciated.

4.3 ILLUMINATION

Unreal Engine 5	uses	a	new	dynamic	global	illumination	and	reflections	system	technology	
called Lumen. It is a combination of the Voxel lighting system and Raytracing but much
cheaper	in	terms	of	computational	load	than	the	last	one,	and	allows	rendering	through	infinite	
bounces	and	indirect	specular	reflections	in	big	and	heavily	detailed	areas[15].

Lumen	solves	what	is	usually	known	as	the	color	bleeding	effect.	If,	for	example,	a	white	light	
hits	a	red	object	that	is	next	to	a	white	wall,	the	light	picks	the	color	of	the	object	and	reflects	
it into the white wall, coloring it red (Fig 53). This along with the indirect shadows create a
realistic behavior of the lighting.

42

4.4 POST-PROCESSING

Post-Processing is a technique that allows to modify the render in numerous ways before
drawing	 it	 on	 screen.	This	means	 that	 all	 the	 process	 configured	 to	 obtain	 the	 desirable	
result will be repeated each frame, in this case 60 times every second. To modify the scene
in a certain way, it will be necessary to place a PostProcessVolume and adjust it to get the
intended result. Multiple volumes can be placed in the scene, meaning that depending on
where	 the	player	 is	 standing,	different	effects	will	 be	applied.	There	are	different	 kinds	of	
“filters”	 that	produce	diverse	 results,	and	some	of	 them	have	been	used	 in	 this	project	 to	
enhance the looks of the environment[34]:

• Exposure:	The	exposure	has	been	modified	to	make	the	level	look	darker	as	well	as	the	
Min Brightness to create better contrasts of the light and get the light signs to look more
realistic (Fig 55).

Other lights have been added in certain locations on top of the emissive objects, as it can be
noticeable that when those objects can not be seen, neither the light they emit. If it made a
great	difference	when	the	objects	were	occluded,	a	light	imitating	those	properties	has	been	
added, otherwise it has been left like they were.

Fig 54. Comparison between the fog deactivated and activated

Fig 55. Scene before and after the exposure has been modified.

43

• Bloom:	The	bloom	effect	is	used	to	give	the	light	a	mellow	look	and	to	expand	it	over	the	
edges of the objects. This recreates a real artifact that happens with real cameras when
pointing to a really bright area (Fig 56).

Fig 56. Comparison of lighting with and without bloom

• Chromatic Aberration: This is also an artifact that can happen to real cameras when
failing to focus all colors to the same point. When this happens, it makes the colors to
be	on	top	of	each	other	but	displaced,	creating	an	effect	that	is	usually	associated	with	a	
futuristic or “glitch” look (Fig 57), which is adequate for this scene.

Fig 57. Chromatic aberration effect on two basic shapes

• Color Grading: There are several options to modify the colors of the image. Tint and
Temperature have been used to make the scene more “warm” and then some small
modifications	in	the	Global, Shadows, Midtones and Highlights, based on what is usually
used	in	the	modification	of	photographs	with	programs	like	Lightroom. The objective was
to achieve a more “pinkish” look, as it can be seen in Fig 58.

44

• Lumen Scene Detail: The detail has been increased to have greater detail when the
Lumen technology calculates the lighting.

• Motion Blur: To simulate the human eye when it sees movement, motion blur has been
added	to	recreate	it.	When	the	camera	moves	around,	a	blur	effect	in	the	direction	of	said	
movement is applied (Fig 59).

Fig 59. Motion blur effect can be seen on the cars passing by

Fig 58. Street before (left) and after (right) color grading

4.5 MOVEMENT

To move the player, Unreal’s Blueprints have been used. The player is simply composed of
a camera and a CapsuleCollider that will detect the collisions with the environment.

In order to look around with the camera, there has been used the InputAxis Turn and InputAxis
LookUp nodes to get the amount of movement of the mouse, in the horizontal and vertical
axis respectively. Those inputs are then connected to the Add Controller YawInput and Add
Controller Pitch Input nodes, that will rotate the target (in this case the player) around itself in
said axes according to the value of the input.

45

Fig 60. Blueprint used for the movement of the player

For the movement it works in a similar way, in this case using as inputs the InputAxis
MoveForward node to move forward and backwards, and the InputAxis MoveRight to move
right and left. Those inputs are both connected to an Add Movement Input node, but the
difference	is	that	one	takes	as	a	reference	for	the	direction	the	Forward Vector, meaning that
the movement will apply in that direction, and the other one a Right Vector, so it will move to
its right and left depending on the value of the input.

To make the character jump, an InputAction Jump node is linked to a Jump one through the
Pressed attribute. A Stop Jumping node can be added and linked to the Released boolean,
but it is only necessary if the height of the jump is determined by how much time the jump
key	has	been	pressed.	All	the	different	aspects	implemented	in	the	Blueprints are shown in
Fig 60.

As it can be seen, the Blueprints from Unreal make the job of adding mechanics to the game
much easier, but it can be limited in some occasions if the mechanics needed are really
complex.

5 RESULTS

At the end of this project, a Cyberpunk scene has been successfully created using only free
software. Excluding the props inside the garage, which have been downloaded form the
Bridge addon, every mesh in the scene has been manually created, modeled and textured,
using	 all	 the	 different	 techniques	 explained	 through	 this	 document.	 Shown	 below	 in	 the	
different	figures	from	61	to	65,	can	be	seen	the	results	obtained	over	the	course	of	this	work.

46

Fig 61. Screenshot of the street from one end.

Fig 62. Screenshot taken from the exit of the vending zone

47

Fig 63. Screenshot of the building with the vending machines

Fig 64. Screenshot from the other end of the street

48

5.1 TIME BALANCE AND DEVIATIONS

At	first,	when	making	the	technical	proposal,	the	idea	was	to	make	two	scenes,	one	that	is	
the scene made in this project, and another one that would have been a room taken directly
from reality and made completely with photogrammetry. As time advanced it became clear
that it would not be possible to make the other scene, so the decision taken was to add at
least	photogrammetry	to	the	first	one.	

In general, time has been miscalculated, as the development of the scene has taken much
more time than expected. Part of the problem is the lack of experience making big projects
where a lot of modeling and texturing is involved, and it became clear that big scenes in video
games take a lot of time to make if none of the usual techniques are used like procedural
modeling or the reusing of textures and models. Even though the scene has a lot of elements,
it is not big enough to repeat models without it being noticeable.

Another	part	of	 the	problem	is	that	there	has	not	been	enough	effort	put	 into	planning	the	
different	aspects	of	the	work.	This	has	been	taken	into	account	for	future	projects.	“Modeling	
the assets” or “Creating materials and texturing” was too general to make conclusions, and
probably breaking it down into more steps would have helped to calculate better the amount
of work.

To make the work more dynamic, the method of working has been, for each building, getting
the	references	>	modeling	the	building	>	texturing	it	>	placing	it	in	unreal.	At	first	each	building	
was	finished	with	all	the	props	related	to	it,	and	later	on	in	the	project	just	the	buildings,	and	
then,	at	the	end,	the	props.	It	may	have	been	better	to	have	first	an	idea	of	all	the	buildings	
that would be needed instead of making them one by one completely, and after modeling
them all, start to texture them. This way, some textures could have been reused and in
general	it	could	have	been	more	efficient.

Fig 65. Screenshot of the dead end

49

In the initial idea of the project, the intention was to also include a futuristic car in the scene.
Even though it was modeled, the results were not satisfactory, so at the end, the idea was
discarded, as it probably needed much more time to design a car from scratch that looked
good. This resulted in wasted time.

Something positive about the managing of time is that the project followed a constant pace
of	more	or	less	the	same	hours	every	day,	although	maybe	not	completely	efficient,	as	those	
are the disadvantages of working one by themself if there is not a good organization.

Tables 3 and 4 show the real hours spent on the project and the actual organization that has
been followed.

TASK ESTIMATED REAL

Research 40h 20h

Writing the memory 40h 30h

Preparing presentation 10h 10h

Technical proposal 5h 5h

Modeling the assets 120h 200h

Creating materials and texturing 50h 70h

Arranging the scene 25h 45h

Testing the scene and interactivity 10h 10h

TOTAL 300h 390h

Table 3. Planning compared to real time spent

Table 4. Gantt diagram with the real organization

50

5.3 DOWNSIDES OF THE FREE SOFTWARES

The point of this project is to show that using only free software, it is possible to obtain
good results, thus proving that it is not necessary to spend a lot of money buying expensive
software to be able to work or practice one by themself. But nonetheless, not everything has
been perfect, and comparing it to their substitutes show that there is still a long way to go,
especially with Quixel Mixer, which is still in its beta version.

With Blender there has been no problem, and as an open source it has shown to be up to
the task when compared to other well known programs. The proof of it is that now a lot of
companies are starting to request Blender experience.

Meshroom and Instant Meshes can not be compared to other paid software due to the lack
of experience in any of those. Krita, on the other hand, has not shown any problem compared
to other programs when doing all the tasks required for this project.

Here	below	will	be	enumerated	the	difficulties	faced	with	Quixel Mixer compared to other
programs like Substance Painter:

1. Quixel does not have auto-unwrap, which is the reason why every map had to be rendered
in Blender. It does not take a lot of time for each model, but when doing several objects,
it is much more comfortable to just use that option that at the end saves a lot of time.

2. There are no polygon masks (which is why ID maps are needed). In Substance Painter,
it is possible to just select the faces from the program to create the mask, whereas in
Quixel it is needed to import an ID map rendered beforehand.

3. The Paint masks are extremely slow when painting, and usually requires lowering the
resolution to be able to paint. This is due to the way it works, as it runs real-time curvature
calculations	every	time	something	is	modified,	so	if	it	has	a	lot	of	layers,	it	becomes	slow.

4. Sometimes the Control + Z command has not worked properly when painting a mask,
meaning	that	if	an	error	was	made,	it	had	to	be	fixed	by	hand	again.

5.2 ACHIEVING THE OBJECTIVES

Taking into account the objectives mentioned in the technical proposal, most of the objectives
have been completed:

• A lot of important aspects regarding visual realism have been learned over the course of
this project, like the use of Lumen, Nanite, Photogrammetry, etc.

• All of said aspects have been put into practice in the scene and have been understood
throughout the use of them, but the scene has not been made interactive.

• Having achieved a desirable result, that is comparable to one that could have been
obtained using expensive software, it could be said that the objective has been completed.

51

Fig 66. Objects with Nanite activated changing their materials randomly

5. Any kind of mask can not be copied and pasted, so if the intention is to make a layering of
several materials in a concrete zone, it would have to be painted every single time.

6. The selection of brushes is much more limited.

7. Sometimes the Smart Materials do not work as they should, and it just shows a repetition
of what seems like a tiny texture.

8. Sometimes adding a Smart Material to a custom model made the program completely
crash,	and	even	restarting	the	program	would	not	fix	it,	so	that	model	would	be	permanently	
excluded from using a Smart Material.

9. It has less customization compared to the programs that use procedurally generated
materials

The process with Unreal Engine started when it was still in the Early Access of the 5.0
version,	but	the	official	version	released	in	the	middle	of	the	project,	so	most	of	them	have	
been	fixed:

1. When enabling the Nanite option to the meshes, sometimes the models would swap
their	materials,	but	would	return	to	normal	once	selected.	This	has	been	fixed	in	the	last	
version.

2. When using the Bridge interface inside Unreal, it would make everything go extremely
slow.	This	has	been	fixed,	but	it	still	makes	it	rather	slow.

3. Subsurface Scattering	did	not	work	correctly,	so	after	trying	different	options,	the	solution	
was to disable the Cast Shadow	option.	This	has	been	fixed.

52

6 CONCLUSIONS

After	the	project	being	finished,	and	taking	into	account	that	it	has	not	been	by	a	professional	
3D	artist	with	years	of	experience,	the	final	result	has	been	satisfactory.	For	this	reason,	the	
point of all this work has been proven: it is possible to create a photorealistic scene for a
videogame using only free software.

On the other hand, Quixel Mixer for example is free, but only if it is used with Unreal Engine,
so at the end the motivation behind it is merely economic, as, although the software is free,
publishing a game made with Unreal has a cost for the developer depending on how much
money they make, so the company is interested in having a lot of games made with Unreal.
At the end companies like these can not be trusted, as one strategy that is usually used is to
have something free or at a low price to eradicate the competitors and then raise the prices
again.

A good example of the way to go is Blender. It is completely free, without conditions, and
open source, and its community is bigger each day and is constantly improving aspects of
the program. It has new updates constantly, and has reached a point where it is at the level
of other programs like 3DSMax. A lot of developers and artists are changing from those
softwares to Blender, even professional ones that have worked in important projects, as they
are too punishing for people with less resources.

The bigger the community the better, and free software help to democratize the work. Starting
to model from scratch is now as easy as downloading Blender for free and watching the
millions	of	 tutorials	available	at	no	cost	made	by	 the	enormous	community	at	YouTube	or	
other platforms. Programs like Substance Designer or Substance Painter make the job
much easier, so not being capable of paying for them is a huge disadvantage for a small
developer.

On top of this, it is not only positive for small developers, but also for big companies and its
workers. When taking into consideration how much money it is spend on licenses for each
worker and every program they use, having the option to spend it somewhere else is a huge
change. It could make it possible to hire more workers, thus reducing the amount of work
for the employees and the infamous “clutches”, and also reducing the time needed for the
developement.

Techniques used in this project like the photogrammetry also show a huge potential, which
is already being exploited by Quixel. It creates totally realistic models that can also have its
texture	changed,	so	a	single	mesh	could	be	transformed	into	other	objects	or	with	different	
styles while maintaining its shape. Along with the Nanite technology, it could be the future of
the video game and 3D industry as a whole.

53

6.1 FUTURE WORK

The work presented in this document is one that does not have an end. Technologies are
constantly evolving, and so is the video game industry, as both things are linked together. It
is	essential	for	the	workers	in	this	field	to	constantly	experiment	and	research	to	keep	up	with	
the emerging technologies.

Video games are not immutable, and the concept itself has been in constant change thanks
to	 the	 possibilities	 that	 the	 new	 technologies	 offered,	 making	 it	 possible	 to	 create	 new	
mechanics, visual representations, etc. For this reason, it is also necessary to make those
technologies available to everyone, as collectively the knowledge and development of them
are much greater and allows them to evolve much faster. This is why part of the future work
is to also keep supporting free and open source software.

As much as it may seem, 300 hours is not enough time to really comprehend all the
technologies used in this project, so further research will be needed to achieve better results
and	more	efficient	ones,	taking	into	account	the	experience	acquired	during	the	development.

54

7 BIBLIOGRAPHY

1. PC Componentes. (n.d.). RAM Memory Search. PC Componentes. Retrieved May 12,
2022, from https://www.pccomponentes.com/buscar/?query=ram&

2. Benchmarks. (n.d.). NVIDIA GeForce GTX 1070 Review. UL Benchmarks.
Retrieved May 12, 2022, from https://benchmarks.ul.com/hardware/gpu/
NVIDIA+GeForce+GTX+1070+review

3. PassMark Software. (n.d.). PassMark - Intel Core i7-6700 @ 3.40GHz - Price performance
comparison. CPU Benchmarks. Retrieved May 12, 2022, from https://www.cpubenchmark.
net/cpu.php?cpu=Intel+Core+i7-6700+%40+3.40GHz&id=2598

4. Talent. (n.d.). Salario para Artista en España - Salario Medio. Talent.com. Retrieved May
12, 2022, from https://es.talent.com/salary?job=artista

5. Glassdoor. (2022, May 9). Sueldo: 3D Artist (Mayo, 2022). Glassdoor. Retrieved May 12,
2022, from https://www.glassdoor.es/Sueldos/3d-artist-sueldo-SRCH_KO0,9.htm

6. Adobe. (n.d.). Plans and pricing for Creative Cloud apps and more. Adobe. Retrieved May 12,
2022, from https://www.adobe.com/creativecloud/plans.html?filter=3dar&plan=individual

7. Autodesk. (n.d.). Comprar 3ds Max. Autodesk. Retrieved May 12, 2022, from https://www.
autodesk.es/products/3ds-max/overview?term=1-MONTH&tab=subscription

8. Maxon. (n.d.). Planes y precios. Maxon. Retrieved May 12, 2022, from https://www.maxon.
net/es/buy#monthly

9. Agisoft Metashape. (n.d.). Online Store. Agisoft Metashape. Retrieved May 12, 2022,
from https://www.agisoft.com/buy/online-store/

10. 3DCoat. (n.d.). Licencia permanente, Alquiler con opción de compra, Opciones de
suscripción. 3DCoat. Retrieved May 12, 2022, from https://3dcoat.com/es/buy/

11. Adobe. (n.d.). Plans and pricing for Creative Cloud apps and more. Adobe. Retrieved May
12, 2022, from https://www.adobe.com/es/creativecloud/plans.html

12. Youtube.	 (n.d.).	Quixel.	 YouTube.	 Retrieved	May	 12,	 2022,	 from	 https://www.youtube.
com/c/quixeltools

13. Ahearn, L. (2017). 3D Game Environments: Create Professional 3D Game Worlds. CRC
Press, Taylor & Francis Group.

14. Evans, D. (Ed.). (2013). Digital Mayhem 3D Landscape Techniques: Where Inspiration,
Techniques and Digital Art Meet. Focal Press.

15. Fabián, A. (2021, June 1). Conoce todo sobre Lumen en Unreal Engine 5. UT-HUB.
Retrieved May 12, 2022, from https://www.ut-hub.com/lumen-unreal-engine-5/

55

16. Fabián, A. (2021, June 1). Descubre la importancia de Nanite. UT-HUB. Retrieved May
12, 2022, from https://www.ut-hub.com/nanite-unreal-engine-5/

17. Quixel. (2020, August 21). Baking and Exporting Custom Assets in Blender.	YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=dmoy1p9z8vY

18. Quixel. (2020, August 5). Mixer Fundamentals: Smart Materials.	YouTube.	Retrieved	May	
12, 2022, from https://www.youtube.com/watch?v=9pFjAlU2gQw

19. Flipped Normals. (2019, February 20). Texture Maps Explained - Essential for All
Texture Artists.	 YouTube.	 Retrieved	 May	 12,	 2022,	 from	 https://www.youtube.com/
watch?v=ZOHNRlrd1Ak

20. Quixel. (n.d.). Megascans. Quixel. Retrieved May 12, 2022, from https://quixel.com/
megascans

21. Youtube.	(n.d.).	Ian Hubert.	YouTube.	Retrieved	May	12,	2022,	from	https://www.youtube.
com/c/mrdodobird

22. Hubert, I. (2019, August 16). Making Pipes in Blender - Lazy Tutorials.	YouTube.	Retrieved	
May 12, 2022, from https://www.youtube.com/watch?v=vTADG1omjVY

23. Schenk, T. (2005). Introduction to photogrammetry. The Ohio State University, Columbus,
106.

24. Aunmar, M. (2022, January 16). How to Improve Your 3D Modeling with Photogrammetry.
YouTube.	Retrieved	May	12,	2022,	from	https://www.youtube.com/watch?v=0ohnayBu8SE

25. Prusa, J. (2021, July 1). Meshroom to Blender Low-Poly - Clean up photogrammetry
Tutorial.	 YouTube.	 Retrieved	 May	 12,	 2022,	 from	 https://www.youtube.com/watch?v=-
dc4KN2bdrw

26. Hubert, I. (2020, January 5). Make Neon Signs in Blender - Lazy Tutorials.	YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=8eNN2Ep3Rqs

27. Hubert, I. (2019, October 11). Make Cities with Blender - Lazy Tutorials.	 YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=JjnyapZ_P-g

28. Code Like Me. (2021, November 1). Unreal Engine Rain Particle with Splashes using
Niagara FX System.	YouTube.	Retrieved	May	12,	2022,	from	https://www.youtube.com/
watch?v=qmZCW7eQ6rc

29. Quixel. (2020, October 13). Megascans Plugin for Unreal Engine: Vertex Blend Material.
YouTube.	Retrieved	May	12,	2022,	from	https://www.youtube.com/watch?v=j_3_lYyydgA

30. Marvel Master. (2018, January 14). UE4 Tutorial: Milky Glass - fastest and easiest way -
aka frosted glass [Unreal Engine 4.18].	YouTube.	Retrieved	May	12,	2022,	from	https://
www.youtube.com/watch?v=527ZcxYnf_s

56

31. 3D Asset Library. (2021, October 4). How To Create A Simple Neon Light Flicker In
Unreal Engine.	 YouTube.	 Retrieved	 May	 12,	 2022,	 from	 https://www.youtube.com/
watch?v=XCycpz0V-Rg

32. Jayanam. (2017, June 5). UE4 Media Player to Render a Media Texture.	 YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=7OEbO353_GM

33. Unreal Engine. (n.d.) Subsurface Scattering is broken in UE5. Unreal Engine. Retrieved
May 12, 2022, from https://forums.unrealengine.com/t/subsurface-scattering-is-broken-
in-ue5/241244

34. Gonçalves, S. D. G. (2021, Nov 25). Post-Processing para videojogos. uBibliorum. https://
ubibliorum.ubi.pt/handle/10400.6/12016

35. Quixel. (2018, October 18). Leveraging Decals with Mixer.	YouTube.	Retrieved	May	12,	
2022, from https://www.youtube.com/watch?v=wq8dr5FNIhs

36. Quixel. (2020, July 8). Mixer Fundamentals: Painting.	YouTube.	Retrieved	May	12,	2022,	
from https://www.youtube.com/watch?v=Yt78oTprWjY

37. Faucher, W. (2022, February 22). Lighting a NIGHT-TIME exterior in Unreal.	YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=1LfiYtKDsac

38. Unreal Engine. (2019, September 27). Materials - Tinted Glass Part 2 | Tips & Tricks
| Unreal Engine.	 YouTube.	 Retrieved	 May	 12,	 2022,	 from	 https://www.youtube.com/
watch?v=XRwFh6s5wqE

39. Unreal Sensei. (2021, June 3). Unreal Engine 5 Beginner Tutorial - UE5 Starter Course!
YouTube.	Retrieved	May	12,	2022,	from	https://www.youtube.com/watch?v=gQmiqmxJMtA

40. Urschel, J. (2020, April 8). Make a funky Japanese vending machine in Blender.	YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=4C0g64nQIwU

41. Wicked Engine. (2017, August 30). Voxel-based Global Illumination – Wicked Engine Net.
Wicked Engine Net. Retrieved May 12, 2022, from https://wickedengine.net/2017/08/30/
voxel-based-global-illumination/

42. Coronado, C. (2021, June 2). Tutorial Unreal Engine 5 para principiantes en Español
(Básicos,	Lumen,	Nanite	y	Quixel	Megascans).	YouTube.	Retrieved	May	12,	2022,	from	
https://www.youtube.com/watch?v=OxzkkbpuxLA

43. The	CRYER.	(2021,	January	9).	Ue4 Niagara Steam Smoke tutorial.	YouTube.	Retrieved	
May 12, 2022, from https://www.youtube.com/watch?v=cuQyeQxO0Kk

44. Lucas, J. (2019, August 30). Cyberpunk Street in UE4 - Extended Breakdown.	YouTube.	
Retrieved May 12, 2022, from https://www.youtube.com/watch?v=mVyXGmgb9lk

45. Martín, A. (2019, June 26). Las Claves del Fotorrealismo - Conceptos básicos de
iluminación.	 YouTube.	 Retrieved	 May	 12,	 2022,	 from	 https://www.youtube.com/
watch?v=w_lIiGTI6cY

57

8 LIST OF FIGURES

Fig 1. Analysis scheme……………………………………………………………………………11
Fig 2. Atmosphere moodboard……………………………………………………………………12
Fig 3, 4 and 5 Scene Sketches……………………………………………………………………13
Fig 6. Blockout made in Blender…………………………………………………………………14
Fig		7.	General	workflow	diagram.…………………………………………………………………15
Fig 8. References to Blender Diagram……………………………………………………………15
Fig 9. Model obtained based on moodboard..……………………………………………………16
Fig 10. Low poly model (356 faces) obtained from the high poly one (1.696 faces).……16
Fig 11. Selected to Active menu.…………………………………………………………………17
Fig 12. Creating the Ambient Occlusion map..…………………………………………………17
Fig	13.	Configuration	of	 the	Curvature	map	 in	Blender………………………………………18
Fig 14. Materials used for the model and the resulting map ………………………………18
Fig	 15.	Some	models	made	 using	 the	 general	workflow……………………………………19
Fig 16. Texturing in Quixel Mixer diagram..……………………………………………………19
Fig 17. Textured building…………………………………………………………………………20
Fig 18. Materials with their masks………………………………………………………………20
Fig 19. Importing to Unreal diagram……………………………………………………………20
Fig 20. Example of a material graph with its maps connected……………………………21
Fig	 21.	 Reference	 compared	 to	 final	 result	 in	 Unreal………………………………………22
Fig 22. Modeling from texture diagram..………………………………………………………22
Fig 23. Projecting each face into the texture..………………………………………………23
Fig 24. Correcting the dimensions of the model to avoid stretch………………………23
Fig 25. Adding additional maps in Quixel to obtain more details………………………24
Fig	 26.	 Model	 from	 texture	 (left),	 textured	 model	 (center)	 and	 final	 result	 (right)……25	
Fig 27. Photogrammetry diagram.………………………………………………………………25
Fig 28. The three most important nodes to modify…………………………………………26
Fig 29. Cameras detected and points extracted.……………………………………………26
Fig 30. Mesh extracted from the photographs.………………………………………………27
Fig 31. Texture taken from the images applied to the model..……………………………27
Fig	 32.	 Orientation	 field	 solved.…………………………………………………………………28	
Fig	 33.	 Position	 field	 solved	 and	mesh	 extracted……………………………………………29
Fig	 34.	 From	 extracted	mesh	 to	 textured	mesh	 to	 final	 low	 poly	 result…………………29
Fig	 35.	 Neon	 workflow	 diagram…………………………………………………………………29
Fig 36. Converting a text object to a mesh object.…………………………………………30
Fig 37. Emissive material and neon with the material applied……………………………30
Fig 38. Neon made with vectors..………………………………………………………………31
Fig 39. How the buildings are seen versus what they look like…………………………31
Fig	 40.	 Niagara	 System	 configuration	 for	 the	 rain..…………………………………………32
Fig 41. Material graph for the wet asphalt……………………………………………………33
Fig 42. Painted plane and how it looks ingame..……………………………………………33
Fig 43. Part of the wet material graph to make the water dynamic……………………34

58

Fig 44. Material graph for the milky glass and results……………………………………35
Fig	 45.	 Material	 graph	 to	 make	 the	 light	 flicker..……………………………………………35
Fig 46. Planes that compose the interior cubemap and how it looks from the exterior…36
Fig	 47.	Material	 graph	 configured	 to	 create	 an	 Interior	Cubemap…………………………37	
Fig 48. Unfavorable result for the Interior Cubemap…………………………………………37
Fig	49.	Graffiti	 decals	 projected	 into	 a	wall……………………………………………………38	
Fig 50. Blueprint used to play the videos at the start of the game………………………39
Fig 51. Finished luminous adverts………………………………………………………………39
Fig	 52.	 Effect	 of	 the	 subsurface	 scattering	 on	 the	 paper	 lanterns..………………………40
Fig	 53.	 Color	 bleeding	 effect	 can	 be	 seen	 on	 the	 white	 walls……………………………41
Fig 54. Comparison between the fog deactivated and activated…………………………42
Fig	 55.	 Scene	 before	 and	 after	 the	 exposure	 has	 been	 modified.………………………42
Fig 56. Comparison of lighting with and without bloom………………………………………43
Fig	57.	Chromatic	aberration	effect	on	 two	basic	shapes……………………………………43
Fig 58. Street before (left) and after (right) color grading……………………………………44
Fig	59.	Motion	blur	effect	can	be	seen	on	the	cars	passing	by...……………………………44		
Fig 60. Blueprint used for the movement of the player………………………………………45
Fig 61. Screenshot of the street from one end..………………………………………………46
Fig 62. Screenshot taken from the exit of the vending zone………………………………46
Fig 63. Screenshot of the building with the vending machines……………………………47
Fig 64. Screenshot from the other end of the street..………………………………………47
Fig 65. Screenshot of the dead end……………………………………………………………48
Fig 66. Objects with Nanite activated changing their materials randomly…………………51

9 LIST OF TABLES

Table 1. Initial Planning..……………………………………………………………………………9
Table 2. Initial Gantt diagram………………………………………………………………………9
Table 3. Planning compared to real time spent…………………………………………………49
Table 4. Gantt diagram with the real organization..……………………………………………49

