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Abstract: Emergency calls are defined by an ever-expanding utilisation of information and sensing
technology, leading to extensive volumes of spatio-temporal high-resolution data. The spatial and
temporal character of the emergency calls is leveraged by authorities to allocate resources and in-
frastructure for an effective response, to identify high-risk event areas, and to develop contingency
strategies. In this context, the spatio-temporal analysis of emergency calls is crucial to understanding
and mitigating distress situations. However, modelling and predicting crime-related emergency
calls remain challenging due to their heterogeneous and dynamic nature with complex underlying
processes. In this context, we propose a modelling strategy that accounts for the intrinsic complex
space–time dynamics of some crime data on cities by handling complex advection, diffusion, reloca-
tion, and volatility processes. This study presents a predictive framework capable of assimilating
data and providing confidence estimates on the predictions. By analysing the dynamics of the weekly
number of emergency calls in Valencia, Spain, for ten years (2010–2020), we aim to understand and
forecast the spatio-temporal behaviour of emergency calls in an urban environment. We include puta-
tive geographical variables, as well as distances to relevant city landmarks, into the spatio-temporal
point process modelling framework to measure the effect deterministic components exert on the
intensity of emergency calls in Valencia. Our results show how landmarks attract or repel offenders
and act as proxies to identify areas with high or low emergency calls. We are also able to estimate the
weekly average growth and decay in space and time of the emergency calls. Our proposal is intended
to guide mitigation strategies and policy.

Keywords: Cox processes; crime data; diffusion; emergency calls; spatio-temporal point processes;
stochastic integro-differential equations; volatility

MSC: 60-01

1. Introduction

Emergency calls are considered a crucial tool to respond to incidents that require
immediate attention, including accidents, wildfires, crimes, and medical emergencies.
The information provided in these calls typically encompasses not only the description
of the incident, but also its location and time, which are vital elements for a prompt
response [1]. In order to ensure an effective response, authorities analyse the spatial and
temporal characteristics of emergency calls to allocate resources and infrastructure, identify
areas of high risk, and formulate contingency plans. In this context, emergency calls’ spatial
and temporal analysis is crucial to understanding and mitigating distress situations.

The spatio-temporal analysis of emergency calls is relatively modest. Some papers
employ GIS techniques to explore the spatial and temporal dynamics of emergency calls to
further improve emergency services [2,3]. Most works use statistical methods to forecast
future events and to determine emergency call driving factors [4], spatial and temporal
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clusters [5–8], or approximating population sizes [9]. In particular, Heaton et al. [10] and
Li et al. [11] apply spatial and spatio-temporal point processes, a discipline within spatial
statistics, to model the spatio-temporal characteristics of emergency calls. As emergency
calls often mirror crimes, these authors adapted popular point process methodologies for
crime data to analyse distress signals. For example, Li et al. [11] analysed emergency calls
in Montgomery County, Pennsylvania (2016–2017) using a non-parametric spatio-temporal
self-exciting point process model previously employed for crime data. The model captured
the clustering features in emergency calls and distinguished the areas with intrinsically
high emergency calls and those temporal intervals with higher peaks in the calls to direct
emergency interventions. For a neater exposition, a summarised version of previous works
can be found in Appendix A.

Spatial and spatio-temporal point processes define a suitable mathematical frame-
work to model location-based data in various scientific disciplines, including ecology,
epidemiology, and criminology. In particular, the pattern formed by the spatio-temporal
coordinates of a crime in a region or a city can be represented by a stochastic point process
that could be augmented with additional spatial or temporal covariate information. Point
processes to analyse crime data are frequent in the literature given the natural and context-
dependent tendency of crime to cluster [12]. Notably, many studies use Hawkes-type point
processes or log-Gaussian Cox processes (LGCPs, also called doubly stochastic Poisson
processes) for modelling crime event data since both techniques account for spatio-temporal
dependencies, covariate inclusion, and clustering phenomena [13,14].

Cox processes serve as suitable models for point process phenomena that are stim-
ulated by environmental factors. However, they are not as apt for phenomena that are
predominantly instigated by interactions among the points themselves. A particular prop-
erty in LGCPs is that the logarithm of the intensity surface is a Gaussian process. As noted
by Mohler et al. [12] and Diggle et al. [15], this produces a range of advantageous features
that simplify the estimation, interpretation, and simulation of the model. Additionally,
the stochastic nature of the intensity process enables the capture of spatio-temporal de-
pendencies [16]. In light of this, it can be challenging, or even unfeasible, to differentiate
empirically between processes that represent stochastic, independent fluctuations in a het-
erogeneous environment, and those that represent stochastic interactions in a homogeneous
environment [15]. In the same line, Hawkes point processes, being a type of self-exciting
processes, can model the space–time structure of events conditional on the history through
the specification of a triggering function.

Emergency calls are defined by an ever-expanding utilisation of information and
sensing technology, leading to extensive volumes of high-resolution data. These data are
typically heterogeneous and dynamic, characterised by intricate underlying processes in
conflict processes, such as diffusion, heterogeneous escalation, and volatility. Consequently,
the temporal dynamics of crime data recorded from emergency calls can not be trivially
handled by the triggering function in Hawkes processes or by classical formulations of
LGCPs. We note that the latter type of processes depend on a space–time covariance
structure which is difficult to handle against large datasets and complex non-separable
structures. This poses both a mathematical and a computational problem. In this line,
Hawkes processes cannot easily address complex dispersion processes such as advection
and diffusion [17,18] and these are basic characteristics associated with emergency calls,
which have to be prudently introduced into the modelling framework. To account for a
system’s complex temporal dynamics and to reinforce the discrete-time series definition
in LGCPs, Zammit-Mangion et al. [19] introduced stochastic integro-difference equations
(SIDEs) as a way to fill the existing gap in modelling complicated latent factors.

As many sorts of emergency calls (such as different types of crimes) share patterns
and trends in space and time as armed conflicts, and events are generally registered in
discrete-time format, we build upon the reasoning of Zammit-Mangion et al. [19] to study
the spatio-temporal dynamics of several emergency calls in Valencia, Spain, for ten years
(2010–2020). Our ambition is to model and predict the spatio-temporal behaviour of
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emergency calls in an urban environment to support criminal activity mitigation strategies
and policy responses. Our strategy differs from the existing literature on LGCPs and
Hawkes processes in the way we consider the transition from one time to the next one,
as rather than depending on covariance structures or triggering functions, we consider
integro-difference equations that are able to mimic complex latent processes, and, in turn,
are able to model fractional growth or decay. This paper indeed improves on Zammit-
Mangion et al. [19]’s proposal in several aspects. We consider crimes in much smaller
regions, such as the street network of cities, that make the spatio-temporal interaction
rather different from much larger regions. This is indeed a step forward as LGCPs are very
scarce for network data. We then consider an analytical procedure for parameter selection
rather than a more empirical-based approach. We finally make a finer and more friendly
implementation of the methodology. Our modelling strategy is able to account for the
intrinsic complex space–time dynamics of some crime data on cities by handling complex
advection and diffusion processes.

The structure of this paper is as follows. Section 2 presents the data and the motivating
problem and details the spatio-temporal point processes and SIDE methodology. Section 3
presents the data analysis, and Section 4 is devoted to conclusions.

2. Materials and Methods
2.1. Data

The dataset consists of the geocoded locations and times of the calls reported to the
112 emergency telephone number of the Valencian agency for security and emergency with
headquarters in the city of Valencia (Spain). The data relate to individual crime activities
from 1 January 2010 to 31 October 2020, in Valencia, Spain. Valencia, located on the
southeastern coast of Spain, is one of the most important cities in the Valencian community
of Spain. According to the national statistical records of Spain in 2018 (https://www.ine.es),
(accessed on 30 November 2022) the city has a population of around 0.8 million. We use
data from 2010 to 2019 to fit our model while holding out the first ten months of 2020 for
prediction purposes and model validation. We note that we also have access to data until
mid-2020. However, data from 1 March onwards cannot be used to validate the model
due to, first, the quarantine, and then the severe restrictions imposed in Spain due to the
COVID-19 epidemiological situation, which changed the natural effects and structure of
the calls and the criminal behaviour itself.

During these ten years, 83,379 calls were registered by the emergency number in
Valencia. These calls can be divided into four subgroups due to the nature and reason
of the call. Among them, we have 51,533 calls due to assaults, 23,282 due to robberies to
individuals in the streets, 388 due to aggression against women, and the remaining 8176
calls were due to a cause other than the previous ones but without specifying the reason
for the call.

Figure 1 shows weekly data from 2010 to 2020. We note that the first weeks of 2020
show a similar trend to previous years. However, from the ninth week (first week of March),
just when the mandatory quarantine for Spanish citizens was implemented, the number
of calls decreased considerably to reach levels well below the rest of the years. For this
reason, we work only with data until the end of February 2020 (so we only consider the first
eight weeks of 2020). Figure 1 highlights a slight upward trend and similar behaviour each
year. We note a rise in the intermediate weeks of the year corresponding to the summer
holiday period, which is somehow expected for a touristic city. Additionally, we observe a
constant peak around weeks 10–11 each year, corresponding to the weeks when the city’s
local festivities (well-known all over Spain) call for many tourists.

https://www.ine.es
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Figure 1. Time series by weeks of the 83,379 emergency calls in Valencia (2010–2019).

The city has been divided into 81 neighbourhoods or districts, and the spatial distribu-
tion of the calls per district is given in Figure 2. We note a higher number of calls in central
districts compared to others located outdoors of the city.

Figure 2. Map of total number of calls per district in Valencia.

With the idea of showing some underlying aspects of the number of calls, we now show
in Figures 3–5 the weekly number of calls in six selected districts that we will use in the rest
of the paper to show our analytical and prediction results. We show two neighbourhoods
in the centre of the city (with a higher number of calls), Russafa and Sant Francesc, two
neighbourhoods in the maritime east of the city, Cabanyal-Canyamelar and Malva-Rosa,
and two neighbourhoods located on the outskirts of the city, one in the north, Benicalap,
and one in the south, La Torre. Maritime districts highlight the effect of the arrival of
tourists in summer with an increase in the number of calls. In addition, the central districts
show a clear peak of calls in March due to the local festivities whose activities gather people
in downtown Valencia.
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Figure 3. Weekly calls distribution over time at central districts in Valencia, Russafa (top row),
and Sant Francesc (bottom row).

Figure 4. Weekly calls distribution over time at maritime districts in Valencia, Cabanyal-Canyamelar
(top row), and Malva-Rosa (bottom row).
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Figure 5. Weekly calls distribution over time at Benicalap, northern Valencia (top row), and at La
Torre, southern Valencia (bottom row).

To have a graphical idea of the spatial pattern of the calls due to the selected crimes,
we represent such point patterns for 2012 (see Figure 6). Here, we observe an increase in
calls in March and during the summer months. In addition, we can see that the increase in
March happens in central districts, while the increase in calls in the summertime is more
concentrated in maritime districts. For comparative purposes and to graphically analyse
the space–time interaction of the calls, we also show in Figure 7 the month of January
over the ten years. This graphical output shows an increasing number of calls per year for
January, giving light to such dynamics and interaction in space and time.

A final piece of information we have associated with the space–time locations of
the crime-related calls is based on several covariates that are minimum distances from
an event (a call) to a set of selected landmarks in the city. This is highly important as
different landmarks increase or decrease the number of calls, which means criminal activity
can be related to being closer or further from a particular landmark. In this line, we
considered the following selected landmarks or points of interest: ATMs, banks, bars, coffee
shops, industries, markets, nightclubs, police stations, pubs, restaurants, and taxi stops.
Furthermore, we have measured the nearest distance from a call to such landmarks. We
only show some distributions and corresponding patterns for some graphical testing for
brevity. Thus, on the one hand, we see how the minimum distances to restaurants or pubs
(Figure 8) are dominant in the lower values of the distribution of the distances. On the other
hand, in the cases of police stations or ATMs (Figure 9), the minimum distances are not that
short, indicating that crimes are happening much farther from these landmarks. Finally,
in the industries or markets (Figure 10), the distances seem equal or constant, indicating
these landmarks have no or little effect on crimes.
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Figure 6. Spatial point patterns of the emergency calls in Valencia for each month in 2012.

Figure 7. Spatial point patterns of the emergency calls for the month of January of each year between
2010 and 2019.
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Figure 8. Histogram and corresponding point patterns coloured by their minimum distances to
restaurants (top row) and to pubs (bottom row).

Figure 9. Histogram and corresponding point patterns coloured by their minimum distances to
police stations (top row) and to ATMs (bottom row).
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Figure 10. Histogram and corresponding point patterns coloured by their minimum distances to
industries (top row) and to markets (bottom row).

2.2. Methodology

We follow the logic of Zammit-Mangion et al. [19] to propose a suite of dynamic spatio-
temporal modelling tools to identify complex underlying processes of crime data coming
from calls to the emergency phone in an urban environment. Our modelling approach sits
in the family of LGCP as it provides great flexibility over the more simple inhomogeneous
Poisson process. Poisson point processes focus on modelling event-based data by assuming
a Poisson distribution to the probability of observing a particular number of events within
a defined area, D. The mean of this distribution is determined by the integral over D of an
intensity function, denoted as λ(s), which is dependent on the location vector s, belonging
to D. A doubly stochastic or Cox process is defined if the intensity function is assumed to
be a random function. In the case of a LGCP, the logarithm of the intensity is assumed to be
a Gaussian process (GP), defined as a latent structure.

Let us assume we have a discrete time series of continuous spatial LGCPs, since the
temporal range is discrete. Formally, let k ∈ K, K = {1, . . . , K} denote a discrete time
index set, and {zk(s)}, zk(s) ∼ GP

(
µk(s), σ2

k Ψk(s, r)
)
, a set of temporally correlated spatial

Gaussian processes, each with mean µk(s) and covariance function σ2
k Ψk(s, r). The intensity

function of the point process is represented by a exponential function of zk(s) for each k,
i.e., λk(s) = exp(zk(s)). To mitigate prediction uncertainty, the mean function of zk(s) can
be linked to explanatory variables. In this scenario, a vector of spatially referenced covari-
ates denoted as d(s) and its corresponding regression coefficients represented by bT can be
employed. As such, the intensity of the LGCP at time k is given by the exponential of the
sum of the regression coefficients and the mean function, i.e., λk(s) = exp

(
bTd(s) + zk(s)

)
.

In order to account for the intricate temporal dynamics of the intensity functions
through zk(s), we adopt the stochastic integro-difference equation (SIDE) framework.
This flexible modelling approach is capable of capturing dynamic temporal effects such
as diffusion and dispersal. Specifically, the SIDE relates the spatio-temporal dependent
variable zk(s) to zk+1(s) through the following integral equation:

zk+1(s) =
∫

D
kM(s, r) f (zk(r))dr + ek(s), (1)
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where kM(s, r) is the mixing kernel in the integral, and ek(s) ∼ GP(µQ(s), kQ(s, r)) is an
added disturbance, modelled as a Gaussian field with mean µQ(s) and covariance function
kQ(s, r), and D is the spatial domain under study. The non-linear mapping f (·) distorts
the field in the sedentary stage; in the absence of a priori knowledge, the identity map
f (zk(r)) = zk(r) can be adopted.

2.2.1. Correlation Analysis

We need to measure the correlation between the crime events within the same and
across subsequent time frames. In point process statistics, these are quantified through
the pair correlation function. Indeed, the pair auto-correlation function (PACF) gk,k(s, r),
and the pair cross-correlation function (PCCF) gk,k+1(s, r) quantify the probability of finding
an event at location r given that an event has occurred at s within the same time frame k or
at previous time frame k− 1. These functions are given by

gk,k(s, r) =
λ
(2)
k,k (s, r)

λ
(1)
k (s)λ(1)

k (r)
,

gk,k+1(s, r) =
λ
(2)
k,k+1(s, r)

λ
(1)
k (s)λ(1)

k+1(r)
,

where λ
(1)
k (s) = E[λk(s)] and λ

(2)
k,k (s, r) = E[λk(s)λk(r)] are real and positive. The PACF

determines qualitative characteristics of the events; if gk,k(s, r) = 1, no spatial pattern can
be inferred from the data; gk,k(s, r) > 1 and gk,k(s, r) < 1 indicate event clustering and
inhibition, respectively.

Given a spatial point pattern at time k, Pk, a realisation of a particular point process
model, a standard non-parametric kernel estimator of the first-order intensity λ

(1)
k (s) is

given by

λ̂
(1)
k (s) = ∑

si∈Pk

kb(‖s− si‖)
cD,b(si)

,

where ‖ · ‖ denotes the Euclidean distance on D, cD,b(si) is an edge-correction factor,
and kb(s) is here representing the Epanechnikov kernel.

Consequently, non-parametric estimators of PACF and PCCF for v = ‖s− r‖ are given
by

ĝk,k(v) =
1

2πvs.|D|

6=

∑
si ,sj∈Pk

kb(‖si − sj‖ − v)

λ̂
(1)
k (si)λ̂

(1)
k (sj)w(si, sj)

,

and

ĝk,k+1(v) =
1

2πvs.|D|

6=

∑
si∈Pk ,sj∈Pk+1

kb(‖si − sj‖ − v)

λ̂
(1)
k (si)λ̂

(1)
k+1(sj)w(si, sj)

,

where w(si, sj) is the fraction of the circle (in two dimensions) with centre si and radius
‖si − sj‖ lying in D.

If the processes are taken to be second-order stationary also in time, to smooth out
the non-parametric estimates an average over all K time steps may be taken so that
g̃k,k(v) = (1/K)∑K

k=1 ĝk,k(v) and g̃k,k+1(v) = (1/(K− 1))∑K−1
k=1 ĝk,k+1(v).

Finally, note that ln gk,k+1(v) = [kM ∗ ln gk,k](v), with * being the convolution oper-
ator. The above indicates that the kernel kM may be acquired by performing a decon-
volution on the previous equation, and conventional image processing methods such as
direct inverse filtering may be applied to achieve this. Furthermore, one can show that
kQ(v) = ln gk+1,k+1(v)− [kM ∗ kM ∗ ln gk,k](v). Note that if temporally averaged PACF/PC-

CFs are used, the inverse filter is given as k̂M(v) = F−1(
F (ln g̃k,k+1(v))
F (ln g̃k,k(v))

).
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2.2.2. Dimensionality Reduction

A computationally convenient truncated basis function representation of the spatio-
temporal field is considered to develop an inferential approach. The choice of basis
functions relies on the non-parametric estimation of the PACF. Specifically, we recall
here two results. In the fundamental lemma of LGCPs, the log PACF equals the field
auto-correlation function,

gk,k(s, r) = exp(σ2
k Ψk(s, r)),

The second result represents the auto-correlation theorem which indicates that the
spectrum of the signal is the Fourier transform of the auto-correlation function. This
connection between the frequency content of the point process and the PACF is employed
to pick a suitable collection of basis functions. Having the basis functions, the kernel,
the mean disturbance and the field can be decomposed as

zk(s) = φ(s)Txk,

µQ(s) = φ(s)Tϑ,

kM(s, r) = φ(s)TΣMφ(r),

kQ(s, r) = φ(s)TΣQφ(r),

where φ(s) ∈ Rn is the vector of basis functions, xk ∈ Rn and ϑ ∈ Rn are weights which
reconstruct the spatio-temporal field and the disturbance mean, respectively. Furthermore,
ΣM ∈ Rn×n and ΣQ ∈ Rn×n reconstruct the kernel covariance function and the distur-
bance covariance function, respectively. In this context, the SIDE of Equation (1) can be
rewritten as

xk+1 = A(ΣI)xk + wk(ϑ, ΣQ), (2)

In this equation, A(ΣI) ∈ Rn×n and wk ∈ Rn represents a Gaussian coloured noise
term with a mean of E[wk] = ϑ and a covariance of cov[wk] = ΣQ. The objective is
to estimate the unknown parameters θ = ϑ, ΣM, ΣQ−1 and the states X K = x0 : K =
xkk = 0K using the data YK = ykk = 1K, where each yk is a set of coordinates of the logged
events at the k-th time point.

Basis Function Selection

Based on the link between the Fourier transform of the PACF and the signal spectrum,
we select the collection of basis functions using a frequency-based approach. The Fourier
transform of the average PACF is computed, and a cut-off frequency of νc cycles/unit
is selected from it. Then, localised reconstruction kernels are placed at small regular
intervals throughout the spatial domain. The centres of the basis functions {ζi}n

i=1 equate
the sequence of vectors defining the regular partition of length ∆s over the spatial domain
D, so that

∆s <
1

2νc
=

1
2α0νc

where α0 is an oversampling parameter. Gaussianity makes mathematical development
easier while still producing flexible close forms. Thus, if basis functions are defined as
Gaussian radial basis functions (GRBFs) with functional form φ(s) = exp

(
−s2/2σ2

b
)
, their

Fourier transforms are also Gaussian radial functions

φ(ν) = F{φ(s)} =
√

2πσ2
b exp

(
−2π2σ2

b ν2
)

so that the spatial and frequency variances relate through the mappings

σ2
ν ←

1
4π2σ2

b
, σ2

b ←
1

4π2σ2
ν
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To ensure appropriate reconstruction, the frequency and spatial range of the basis
functions needs to exceed that of the field. This condition is addressed when σν = 1√

2
νc.

Given σν, the previously stated relation between σν and σb can be used to find the width
of the desired Gaussian radial basis functions (GRBFs), obtaining that σ2

b =
(
2ν2

c π2)−1.
The resulting basis functions are a set of GRBFs with parameter σb placed in the spatial
domain D centred on the coordinates {ζi}n

i=1. However, since the GRBFs are not of compact
support, a compact GRBF (CGRBF) is used instead, which takes the form

φ(s) =

{
(2π−τ‖s‖)(1+(cos τ‖s‖/2)+1.5 sin(τ‖s‖))

3π , ‖τs‖ < 2π

0, otherwise
(3)

for τ > 0, and where ‖ · ‖ denotes the Euclidean distance on D. The CGRBF is similar to
the usual GRBF with φ(s) = exp

(
−τ2‖s‖2/2π

)
but it is of compact support. The CGRBF

parameter τ can be estimated having the GRBF parameter σb, or a cutoff frequency νc,
as follows:

τ =
√

π/σb =
√

2ν2
c π3

The cutoff frequency of νc is selected from the Fourier transform of the average PACF.
The value corresponds to where the average PACF function decays abruptly towards zero.

2.2.3. Variational Bayesian Inference

We use the following likelihood function for inference:

p(yk|λk(s)) = ∏
sj∈yk

λk(sj)exp
(
−
∫

D
λk(s)ds

)
,

where each λk(s) is approximated using the same basis representation

λk(s) = exp(bTd(s) + zk(s)) ≈ exp(bTd(s) + φ(s)Txk).

The full posterior distribution is approximated through the variational Bayes method,
and takes the form

p(XK, θ, b | YK) = p(XK, ϑ, ΣM, Σ−1
Q , b | YK) ≈ p̃(XK) p̃(ϑ) p̃(ΣM) p̃(Σ−1

Q ) p̃(b)

with p̃(·) being the variational marginals. The variational marginals inform about important
properties of the crime events’ progression. XK reconstructs the spatio-temporal field at
every time point, ϑ shows the spatially varying escalation in events, ΣM displays the extent
of the spatial dynamics, and Σ−1

Q informs about the volatility of the event occurrences.
The number of unknown parameters in the reduced model scales as D(n2), where n is the
number of basis functions retained.

The variational Bayes marginals for the unknown states XK and parameters θ =
(

ϑ, Σ−1
Q

)
and b = [b1, b2, . . . , bd], with d denoting the number of covariates, can be estimated by finding
the lower on the marginal likelihood. We then have

p̃(XK) ∝ exp
(
Ep̃(θ)p̃(b)[ln p(YK,XK, θ, b)]

)

p̃(ϑ) ∝ exp
(
Ep̃(XK) p̃(θ/ϑ) p̃(b)[ln p(YK, XK, θ, b)]

)

p̃
(

Σ−1
Q

)
∝ exp

E
p̃(XK) p̃

(
θ

/Σ−1
Q
)

p̃(b)
[ln p(YK, XK, θ, b)]
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p̃(bi) ∝ exp
(
Ep̃(xK) p̃(θ) p̃(b′bi )

)
[ln p(VK, XK, θ, b)]), i = 1 . . . d

where θ/θ denotes the set of variables θ without θ and Ep̃(·)[·] is employed to compute
expectations with respect to the distribution in question.

In the upcoming section, we present the method utilised to deduce the unknown
variables. It should be noted that the notation i|j denotes the estimate at time i based on
the data observed until time j. For the sake of clarity, we have reformulated the model as
follows: xk + 1 = xk + ϑ + w̃k, where w̃k has a zero mean.

Parameter Estimation

Starting with the state inference, the distribution p̃(XK) can be computed by an ap-
proximate variational Kalman smoother. Let x0 ∼ Nx0(µ0, Σ0). Considering the variational
forward α̃(xk) = p̃(xk | y1:k) and backward β̃(xk) = p̃

(
yk+1:K | xk

)
messages, and using

the Laplace method approximation, we can further write α̃(xk) → Nxk

(
x̂k|k, Σk|k

)
and

β̃(xk)→ Nxk

(
x̂k|k+1:K, Σk|k+1:K

)
.

The two messages are then combined to give the smoothed estimate

p̃(xk | y1:K) ∝ p̃(xk | y1:k) p̃
(
yk+1:K | xk

)
= α̃(xk)β̃(xk)

= Nxk

(
x̂k|K, Σk|K

)
In relation to escalation inference, and considering the prior p(ϑ) ∼ Nϑ

(
ϑ̂p, Σϑ,p

)
, its

posterior p̃(ϑ) can be written as

p̃(ϑ) ∝ p(ϑ) exp

(
−1

2
E

p̃(XK) p̃
(

Σ−1
Q

)[K−1

∑
k=0

(xk+1 − xk − ϑ)T × Σ−1
Q (xk+1 − xk − ϑ)

])

Considering now volatility inference, let the prior p
(

Σ−1
Q

)
= W iΣ−1

Q

(
V p, dp

)
where

W iΣ−1
Q
(V , d) denotes a Wishart distribution with V a positive definite, symmetric scale

matrix and d degrees of freedom. The variational posterior can be then written as

p̃
(

Σ−1
Q

)
∝ p
(

Σ−1
Q

)
exp

(
K
2

ln
∣∣∣Σ−1

Q

∣∣∣− 1
2

tr
(

ΓΣ−1
Q

))
where the evaluation of Γ requires evaluation of the cross-covariance matrix in addition
to the usual posterior covariance matrices. The computation of the cross-covariance also
requires Laplace approximations.

Finally, in terms of the regression parameters, under the variational Bayes approach,
we let p̃(b) = ∏d

i=1 p̃(bi), and set the prior p(bi) ∼ Nbi

(
b̂i,p, σ2

bi ,p

)
. Its variational posterior

p̃(bi) is then given by

p̃(bi) ∝p(bi) ∏
k∈K

{[
∏

sj∈yk

exp
(
Ep̃(XK) p̃( b ′bi )

[
b Td

(
sj
)

+φ
(
sj
)Txk

])]
exp

(
Ep̃(XK) p̃( b ′bi )

[
−
∫

D
exp

(
b Td(s)

+φT(s)xk

)])
ds
} Laplace→ Nbi

(
b̂i, σ2

bi

)
, i = 1 . . . d

Note, finally, that the estimation of p̃(XK), p̃
(

Σ−1
Q

)
, p̃(bi) requires the Laplace approx-

imation. We refer to Zammit-Mangion et al. [19] in their supplementary information for
further technical details.
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2.2.4. Prediction

Assuming a linear relationship from t to t + 1, the prediction of number of events
Ŷi,t+1 for i = 1, ..., L neighbourhoods and target time t + 1 immediately posterior to time t
is given by

Ŷi,t+1 =
Ni,t+1

Ni,t
Yi,t (4)

where Ni,t+1 and Ni,t are the estimated number of events derived from the predictive
Algorithm 1, and Yi,t corresponds to the number of reported events for time t and neigh-
bourhood i.

Algorithm 1 Prediction algorithm for time t + 1
Number of iterations is set to L

Monte Carlo estimation of the intensity
for iteration N = 1 to L do

1: Sample the trajectory zk through p̃(XK) in t
2: Forward simulate each trajectory for t + 1 using the generative model with pa-

rameters ϑ, ΣQ and b, set to Ep̃(ϑ)[ϑ],
(
E

Σ−1
Q

[
Σ−1

Q

])−1
and Ep̃( b )[ b ], respectively.

3: Integrate the interpolated sample over each i neighbourhood to obtain ẑk,i.
4: Estimate the intensity λ̂k,i, and average over fixed predefined intervals to obtain λ̂t,i
and λ̂t+1,i
5: Generate two samples Ni,t+1 and Ni,t from Poisson random variables with intensity
parameters λ̂t,i and λ̂t+1,i
6: Predict Ŷi,t+1 using Equation (4)

end for

Computation of statistics
Calculate mean, median, and standard deviations out of the L estimations of Ŷi,t+1.

2.2.5. Experimental Set-Up

The VB algorithm (Algorithm 2) was assumed to have converged when the change in
ϑ̂ and bi, i = 2, 3, . . . , 5 in subsequent iterations was less than 0.005, and when all diagonal
elements in E

[
Σ−1

Q

]
= d̂V̂ changed by less than 1%. Note that the prior scale matrix V p

and the background rate b1 arise from the observed data itself. V p was chosen such that its
mean is 16I; this value is the squared reciprocal of the standard deviation of the week with
the highest variance in the Levene’s test for homoscedasticity. In particular, b1 was set to
−4.0, indicating the expected weekly events per year. The coefficients of the covariates bi
and their variances were initialised in 0. We set the VB algorithm to run for 200 interactions;
however, it usually converged between the 50th and 65th iterations.

The exploratory analysis, VB algorithm, and predictions were implemented entirely
in MATLAB R2020a. We employed parallel computing, statistics and machine learning,
optimisation and mapping toolboxes, and customised functions for most of the above-
mentioned methods. Further details about functions and parameters can be found in the
code documentation at https://github.com/DavidPayares/ValenciaCallsSIDE (accessed
on 17 January 2022). The VB algorithm was trained in a Windows CPU equipped with
16 GB RAM and 11th Gen Intel(R) Core(TM) i7 processor. Overall, the training time of the
VB algorithm was 8 h and 32 min. Other methods’ computational time was negligible.

 https://github.com/DavidPayares/ValenciaCallsSIDE


Mathematics 2023, 11, 1052 15 of 28

Algorithm 2 VB-Laplace smoothers (adapted from Zammit-Mangion et al. [19]).
Time interval ∆t = 1 is assumed throughout.
Expectations are taken with respect to the relevant distributions
Input: Data set YK, parameters b, µ0, Σ0 and parameter distributions p̃(ϑ), p̃

(
Σ−1

Q

)
= p̃(Q).

Forward message
Set x̂0|0 = µ0 and Σ0|0 = Σ0
for k = 1 to K do

Σ∗k−1 =
(

Σ−1
k−1|k−1 +E[Q]

)−1

Σ̃k =
(
E[Q]−E[Q]Σ∗k−1E[Q]

)−1

x̃k = Σ̃k

[
E[Q]Σ∗k−1

(
Σ−1

k−1|k−1 x̂k−1|k−1 −E[Q]E[θ]
)
+E[Q]E[ϑ]

]
x̂k|k = arg maxxk ∑sj∈yk

(
E
[

b Td(sj)
]
+ φ

(
sj
)Txk

)
−

∫
D E
[
exp

(
b Td(s)

)]
exp

(
φT(s)xk

)
ds −

1
2 (xk − x̃k)

TΣ̃
−1

(xk − x̃k)

Σk|k =
(

Σ̃
−1
k +

∫ x
D φ(s)φ(s)T exp

(
φ(s)Txk|k

)
E
[
exp

(
b Td(s)

)]
ds
)−1

end for

Backward message
Set Σ−1

K|k+1:K = 0 (ignore estimate of end condition)
for K = (K− 1) down to 0 do

x′k+1 = arg maxxk+1 ∑sj∈yk+1

(
E
[

b Td(sj)
]
+ φ

(
sj
)Txk+1

)
−
∫

D E
[
exp

(
b Td(s)

)]
exp

(
φT(s)xk+1

)
ds −

1
2

(
xk+1 − x̃k+1|K+2:K

)T
Σ̃
−1
(

xk+1 − x̃k+1|K+2:K

)
Σ′k+1 =

(
Σ−1

k+1|k+2:K +
∫

D φ(s)φ(s)T exp
(
φ(s)Tx′k+1

)
E
[
exp

(
b Td(sj)

)]
ds
)−1

Σk|k+1:K =

(
E[Q]−E[Q]

(
Σ′−1

k+1 +E[Q]
)−1

E[Q]

)−1

xk|k+1:K = Σk|k+1:K

(
−E[Q]E[θ] +E[Q]

(
Σ′−1

k+1 +E[Q]
)−1(

Σ′−1
k+1x′k+1 +E[Q]E[ϑ]

))
end for

Smoothed estimate
for k = 0 to K do

Σk|K =
(

Σ−1
k|k + Σ−1

k|k+1:K

)−1

x̂k|K = Σk|K

[
Σ−1

k|k x̂k|k + Σ−1
k|k+1:K x̂k|k+1:K

]
end for

Computation of cross-covariance {Mk}K
k=1

for K = (K− 1) down to 0 do
Mk|K = Σ∗k−1E[Q][Σ−1

k|k+1:K +E[Q] +
∫

D φ(s)φ(s)T exp
(
φ(s)Txk | K

)
E
[
exp

(
b Td(s)

)]
ds

−E[Q]Σ∗k−1E[Q]−1.
end for

Output:
{

x̂k|K, Σk|K

}K

k=0′

{
Mk|K

}K

k=1
. . .
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3. Results
3.1. Temporal Analysis

One of the main premises of the SIDE-driven LGCPs methodology to model the
temporal dynamics is that the increments between two consecutive times are normally
distributed, and thus, the system can be expressed as a Geometric Brownian motion (GBM).
The GBM is redefined in terms the mean µQ(s) and covariance function kQ(r,s) as in
Equation (1). One obtains the random walk model in Equation (2) by decomposing the
field zk+1(s). Indeed, considering that the intensity of the LGCP at time k is given by
λk(s) = exp

(
bTd(s) + zk(s)

)
, we have dλk(s) = R(s)λk(s)dk + λk(s)dWk(s), with the

increment dWk(s) a Gaussian process with zero mean and covariance function kQ(r,s),
and R(s) a spatially varying drift.

We analysed the weekly number of emergency calls in Valencia between January 2010
and December 2019. As mentioned in the data description section, the weekly behaviour
is similar yearly with a general increasing trend throughout the studied period. When
we examined the increments between week N and N + 1, we found that the data’s 2.9%
(12 weeks) were outliers. After removing these data, we confirmed that the increment
rates between adjacent weeks were normally distributed. Figure 11 shows the distribution
of the increments as well as their normal probability plot, suggesting normality in the
temporal increments.

Figure 11. Analysis of the temporal increments. The left panel displays the temporal distribution
of the emergency calls over the study period (2010–2019); the central panel shows the normally-
distributed weekly increments; the right panel is the normal probability plot corroborating normality
in the weekly increments.

3.2. Basis Function Selection

In order to select a set of basis functions that describe the spatio-temporal field of
the LGCP, non-parametric estimations of both the PACF and PCCF were conducted (see
Section 3.1). Furthermore, the relationship between the PACF and PCCF is essential to
determine the mixing kernel kM(s, r) and the noise kernel kQ(s, r) (see Algorithm 3).

Algorithm 3 Analysis for dynamic, homogeneous, isotropic spatiotemporal point processes

1: Estimate λ
(1)
k (s)∀k using λ

(1)
k = Nk

|D| for stationary systems or simple regression where
clear trends are evident. Nk is the cardinality of a spatial point process Pk at point k.

2: Estimate ĝk,k(ν), ĝk,k+1(v)∀k.
3: Estimate kM(v) using ḡk,k(v) and ḡk,k+1(v)
4: Estimate k̂Q(v) using kM and ḡk,k(v).

Figure 12a shows the non-parametric estimations of both the average of lngk,k(s, r)
(PACF) and the average of lngk,k+1(s, r) (PCCF) in terms of υ = ‖s− r‖ using the expres-
sions in Section 3.1. Note that υ corresponds to approximately 270 m. Both functions are
symmetric concerning zero (υ = 0).
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We also note that the behaviour of lngk,k(s, r) and lngk,k+1(s, r) are almost identical;
property also noticed in Zammit-Mangion et al. [19]. Once lngk,k(s, r) and lngk,k+1(s, r)
have been estimated, the mixing kernel kM(s, r) and the noise kernel kQ(s, r) can be inferred
using the exact inverse filter. Figure 12b shows the estimated mixing kernel of the process.
This kernel should closely resemble the true underlying kernel.

Figure 12c displays a positive cross-section of lngk,k(s, r) and its corresponding con-
fidence interval and that of the isotropic basis function selected for the modelling. φ(ν)
directly comes from Equation (3) with the cut-off value νc obtained from the average PACF.
We chose a cut-off frequency of νc = 0.22 cycles/units giving a basis parameter τ ≈ 1.7325
and an oversampling parameter of α0 = 1.2 for the placement of the CGRBFs across the
study area.

(a) (b) (c)

Figure 12. Average natural logarithm PACF and average natural logarithm PCCF ((a), left plot), kM(v)
((b), centre plot), cross-section on the positive real line of natural logarithm PACF, and corresponding
chosen basis function ((c), right plot).

As in Zammit-Mangion et al. [19]’s scheme, 256 basis functions were placed on
a 16 × 16 grid covering Valencia. The centre of the basis functions was separated by
∆s = 1.9 grid units. The functions were then filtered out to remove non-representative
areas having sparse events. Only basis functions whose intensity was above a constant
background event rate of b1 = − 4 (approximately five reported events per year with a
distance of 450 m from its centre) and whose centre does not exceed 300 m beyond Valen-
cia’s boundary were chosen. Figure 13 shows the distribution of reported emergency calls
across Valencia and the basis functions selected for the study. In total, 129 basis functions
meet the criteria; they cover the areas with high rates of emergency calls. Some areas in the
northern and southern areas of the city do not have a basis function representation, given
their low event rates. Nonetheless, we assigned to these areas the baseline background rate
b1 to ensure identifiability.

Figure 13. Spatial locations of logged events (2010–2019), and 118 basis functions placement in the
city of Valencia.
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3.3. Fixed Effects

Crimes vary significantly in space and time within a region due to many demographic
and economic factors, and while it is known that the combined effect of these factors
favours criminal behaviour, their geographical character defines crime locations. Typically,
crimes occur in business sectors within low and middle-income neighbourhoods. These
sectors concentrate most of the facilities (e.g., banks, ATMs, restaurants) that compose
neighbourhoods’ economic activity. Offenders target victims close to locations that can
maximise their profit and reduce the risk of apprehension [20,21]. In this context, we
have included putative geographical variables into the spatio-temporal point process
modelling framework to measure the effect deterministic components exert on the intensity
of emergency calls in Valencia.

We introduced ten covariates in the form of distances to relevant landmarks in Valencia.
The landmarks included financial facilities such as banks and ATMs, and leisure places
such as bars, pubs, restaurants, cafes, and nightclubs. We also included industrial areas,
taxi stop areas, and markets. We measured the degree of correlation between the landmarks’
distances and the intensity of the 112 calls. Half of the covariates displayed evidence of
association with the emergency calls: distance to banks, ATMs, bars, cafes, and restaurants.

Figures 14 and 15 display the spatial distribution of distances to landmarks within
Valencia and their relationship to the 112 calls’ intensity values. Overall, short distances
to landmarks occur primarily in the city centre and densely populated neighbourhoods;
facilities, shops, and venues are located strategically to provide location advantages (e.g.,
access to services and amenities) for residents and tourists. Distances to restaurants are short
throughout the city except in the northern and part of the southwestern neighbourhoods.

Emergency calls, which in our case reflect criminal behaviour, are known to occur
frequently near facilities with features that offenders find attractive [20]; for example, places
with multiple or desired targets, and our results corroborate this assumption; while the
correlation between the emergency calls log intensity and the distances vary differently
for each landmark, the behaviour of these relationships is relatively similar. One would
expect many emergency calls in locations close to banks, ATMs, bars, cafes, and restaurants.
Figure 14 shows that high intensities concentrate in a radius of approximately 1 km to
1.5 km centred in the facilities; beyond these distances, the emergency calls’ intensity
decreases. We notice that the standard deviations of the correlation functions (red dotted
lines) widen with distances exceeding 2 km. This occurs given the sparse number of
emergency calls in low crime incidence areas.

Figure 14. Maps of fixed effects and empirical relationship between distance-based fixed effects
(banks) and the log spatial intensity.
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Figure 15. Maps of fixed effects and empirical relationship between distance-based fixed effects (atms,
bars, cafes and restaurants) and the log spatial intensity.
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In order to account for the factors contributing to the spatial intensity of emergency
calls in Valencia, the distances to various amenities, including banks, ATMs, bars, industrial
areas, markets, taxi stops, cafes, pubs, nightclubs, police stations, and restaurants were
considered as the deterministic component of the intensity function λk(s). This was due
to the observed strong association between these distances and the average intensity of
emergency calls in the region, while we introduced eleven covariates as fixed effects in the
intensity function, six presented a regression coefficient of zero. Our model could identify
covariates with no quantitative influence over the emergency calls intensity. Following
Algorithm 2 for inference, we found the regression coefficients for only five of the distance
covariates we introduced in the intensity function; the distance to banks and ATMs pa-
rameters confidence intervals were −1.9 × 10−2 ± 1.2 × 10−11 and −3.4 × 10−2 ± 6.8 ×
10−11, respectively. The results indicate that emergency calls tend to occur in proximity
to economic facilities. This proximity suggests that potential perpetrators may identify
victims in these areas, potentially leading to some financial gain. The regression parameters
and the confidence interval for distances to bars and cafes were 0.5 × 10−2 ± 7.3 × 10−11

and 1.3 × 10−2 ± 7.7 × 10−11, respectively. In this case, emergency calls are located far
from these places. It is important to note that while these types of landmarks attract a
large number of potential victims, they also increase the likelihood of apprehension by
law enforcement. For example, bars and cafes often have enhanced security systems due
to their elevated risk of crimes, such as robbery and assault Weisburd et al. [21]. The co-
efficients for the distance to restaurants were found to be negative, with a magnitude of
4.0 × 10−2 ± 6.2 × 10−11. This suggests that emergency calls tend to occur in proximity to
restaurants. This is particularly worrying, as restaurants are often targeted by criminals for
robbery, burglary, and theft, due to the accumulation of significant amounts of cash during
daily operations.

These results show how landmarks, to some extent, attract or repel offenders and act
as proxies to identify areas with high or low emergency calls.

3.4. Heterogeneous Growth and Decay

A spatio-temporal analysis of events is concerned with identifying high-intensity spots
and their evolution over space and time, and while traditional cluster analysis excels in
determining hotspots, it cannot portray the temporal characteristics that govern advection
and diffusion processes. Our methodology allows us not only to locate hotspots but also to
determine their behaviour over time.

Figure 16 presents the weekly average fractional growth and decay of emergency calls
in Valencia. As anticipated, the majority of the city has experienced a rise in the frequency
of emergency calls. However, Sau Pau, Malilla, and La Torre neighbourhoods display
the highest increments over the years. For example, Sau Pau is a neighbourhood prone
to robbery; by 2015, it had accumulated approximately 9% of all robberies in Valencia
Las Provincias [22]. Despite the fact that the central neighbourhoods of the city have the
highest incidence of events, they did not exhibit a marked increase in the number of emer-
gency calls. Conversely, areas with fewer events, such as the Quatre Carreres district, have
experienced an increase in emergency call hotspots over the course of the study period.
The spatial intensity of emergency calls has shown a decrease in certain areas throughout
Valencia. An interesting finding is the decay in the Benicalp neighbourhood. It is consid-
ered one of the most notorious neighbourhoods in Valencia due to high poverty levels,
illegal occupation, and drug traffic, and while criminal activity has grown consistently
in this neighbourhood over the last few years, the number of reported emergency calls
has decreased. A possible explanation is that victims or witnesses do not report crimes as
they are afraid of repercussions by organised crime. Other neighbourhoods, such as La
Punta and El Castellar, also display a reduction in hotspots. However, volatility (Figure 17)
suggests that the data in these areas are not very reliable.
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Figure 16. Posterior mean fractional growth (left panel) and (right panel) decay of emergency calls
per week in Valencia (2010–2019).

3.5. Volatility

The volatility (ΣQ) in the SIDE-driven LGCP allows us to measure the accuracy of
future intensity estimations. The lower the value in the diagonal of ΣQ, the more accurate
the predictions are, and conversely. Figure 17 shows the volatility map for emergency calls
in Valencia. High volatility is present in the neighbourhoods of La Punta, Benimamet, La
Llum, and Castellar-L’Oliveral. In both Banimamet and La Llum, the volatility is high as
the neighbourhoods reported zero emergency calls in most of the weeks of the study. This
produces a volatile temporal trend fluctuating between zero and the number of logged
events (e.g., La Llum reported a maximum of four events per week) that the model cannot
capture, while La Punta and Castellar-L’Oliveral also report many weeks with zero obser-
vations, high volatility results from scattered events in both time and space. For example,
emergency calls in La Punta are primarily located close to the boundary with adjacent
neighbourhoods. The majority of the city displays low volatility values, particularly areas
with generous data, such as the city centre and surrounding neighbourhoods. The volatility
map suggests that we will obtain less accurate predictions as we move from the city centre
towards the suburbs.

Figure 17. Volatility map in emergency calls in Valencia (2010 to 2019).
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3.6. Model Fitting

We perform model parameter estimation through Bayesian inference as detailed in
Section 2.2.3, and using Algorithm 2. In particular, we estimate the intensity quartiles
through the posterior smoothed estimate, the smoothed covariance matrix, and the effect
of the covariates. Figure 18 shows the fitted model for five different neighbourhoods in
Valencia. Overall, the model fits the data well. Real values are essentially contained in the
90% confidence intervals except in weeks when the number of reported emergency calls
drops down to zero, as in La Malva-Rosa neighbourhood. The model also captures the
temporal trend of the events, in some cases, even when abrupt spikes occur. An example is
the neighbourhood of Arrancanpins, whose events count shot up from 9 calls in week 376
to 66 in week 377. The model accurately imitates this peak.

How accurately the model fits the data varies according to the weekly changes and
the overall temporal trend. The larger the shifts from week to week are, the narrower the
bandwidths become. Nonetheless, generally, the model fairly reconstructs the spatial and
temporal character of the reported emergency calls in Valencia.

Figure 18. Model fitting for five different neighbourhoods in Valencia. For each neighbourhood,
the left panel shows the spatial distribution of the emergency calls with a buffer of 100 m, and the
right panel displays the weekly counts (black) with their corresponding 90% fitted confidence
intervals (green).
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3.7. Prediction

One of the key strengths of our methodology is its ability to make predictions. Given
that we have accurately modelled the spatio-temporal dynamics of emergency calls in
Valencia, we can now forecast their future behaviour. To evaluate the predictive capability
of the model, we used Algorithm 1 to estimate the number of emergency calls in Valencia for
the first 40 weeks of 2020 (Figure 19). We selected this period aiming to assess our model’s
predictive robustness. The emergency calls recorded in 2020 contrast with the training
data (i.e., calls from 2010 to 2019) due to the implementation of containment measures in
response to the COVID-19 pandemic. As seen in Figure 19, there was a significant decrease
in emergency calls between weeks 532 and 543, which coincided with the quarantine and
isolation policies imposed by the Spanish government. However, there was an increase in
calls as measures were relaxed. We expect our method to be robust enough to effectively
model these variations based on past data, covariates, and the interaction of space and time.

Figure 19. Time series of the weekly calls of the first 40 weeks of 2020 in Valencia.

To stabilise the variance, we first transformed the counts into logarithms. Table 1
displays the Pearson correlation coefficients between the predicted and actual counts and
log counts. These coefficients demonstrate a strong correlation between the predicted
and actual values (0.87 for counts and 0.89 for log counts), indicating the model’s strong
predictive ability.

Table 1. Pearson correlation coefficients between the count and log predictions of the SIDE model
and the actual values for the first 40 weeks of 2020.

Prediction ρ p-Value

counts vs. predicted counts 0.8724 <0.001
log counts vs. predicted log counts 0.8994 <0.001

The scatter plot depicted in Figure 20 presents a comparison between the logarithmic
median prediction of the model and the logarithmic reported cases for the year 2020.
The concentration of points around the ideal prediction line demonstrates the high level of
correspondence between the predicted data and the observed data. However, it should be
noted that the error bars display significant uncertainty in the median estimates for some
neighbourhoods, such as Castellar-L’Oliveral and Ciutat De Les Arts I de Les Ciences. This
higher level of uncertainty is likely due to the presence of multiple zero observations in
these areas.
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Figure 20. Scatter plot and error bar plot between the log median predictions and log real values
for 2020. The circles in the scatter plot represent individual neighbourhoods in Valencia, and the
red line refers to the ideal prediction. The error bars represent the 99% confidence intervals for the
predicted values.

We cannot only predict the number of emergency calls per week but also estimate their
growth and decay over space and time. Figure 21 shows the histogram of the percentage
of growth and decay of emergency calls for 2020. We can see that the predictions of the
growth/decay rates are remarkably accurate in La Vega Baixa, Favara, La Carrasca, Ciutat
Fallera, Sani Isidre, L’Hort de Senabre, and La LLum; the estimated percentage is almost
identical to the observed one. These neighbourhoods are characterised by low volatility
values that range from 0.01 to 0.12. The model predicts the changes with higher uncertainty
in those areas with excessive zero counts (e.g., Carpesa, Exposicio, Castellar LÓliveral, and
Cami Real) and, naturally, with more considerable volatility.

Figure 21. Normalised histograms of log counts in 2020 per province as obtained from MC simulations
with true change (circle in blue) and sample median (circle in red). The closer the blue circle is to the
red circle, the most accurate is the median prediction.

While the predicted counts and change rates may vary, and in some cases, differ
considerably, from the ground truth values, the model is rather accurate as (i) the predicted
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values are always contained in the 99% confidence intervals, (ii) the predicted log counts
exhibit high correlation with the actual log counts, (iii) the distributions between the
observed and predicted changes are virtually analogous, and (iv) predicted values come
with a measurement of uncertainty.

Comparison with Alternative Benchmark Models

In order to evaluate the predictive capability of our model, a comparison was con-
ducted between using its logarithmic predictions and those generated by three conventional
and known point process modelling methods:

(i) A spatial point process with a deterministic intensity function λk(s) = exp(bTd(s)),
where d(s) is a vector of spatial covariates and bT is the vector of corresponding
regression parameters.

(ii) A spatio-temporal point process with a separable and deterministic intensity function
λ(s)µ(t), where λ(s) follows the above-mentioned structure and µ(t) is a log-linear
regression model in the form

log(µ(t)) = α1 cos(ωt) + β1 sin(ωt) + α2 cos(2ωt) + β2 sin(2ωt) + γt

with α1, β1, α2 and β2 as regression parameters, ω = 2 ∗π/52 corresponding to annual
periodicity, and γt the slope parameter overall trend.

(iii) A spatio-temporal log-Gaussian Cox processes (LGCPs) with intensity function
λ(s)µ(t)exp{Y(s, t)}, where λ(s) follows the specification in (i), µ(t) is defined as
in (ii), and Y(s, t) is a second-order stationary Gaussian process with a minimally-
parametrised exponential covariance function.

The results of this comparison provides valuable insights into the strengths and
limitations of our model, as well as its overall performance in the prediction of point
process data. Further details on the models are described in [15,23,24].

We assessed the four models using the mean squared prediction error (MSPE) and
the Pearson correlation (ρ) between the log predicted counts and the log real counts.
The results are presented in Table 2. Note that the spatio-temporal LGCP coupled with
the SIDE framework displays the lowest MSPE and the highest ρ. As expected, the purely
spatial point process model displayed the poorest assessment metrics, due to the absence
of the temporal component in the intensity function modelling. The spatio-temporal point
process model and the spatio-temporal LGCP model showed similar metrics, with the latter
being a superior alternative. Despite the relatively good performance of the benchmark
models, they were unable to compete with our approach.

Table 2. MSPE and Pearson correlation coefficients between the log real counts and log predictions of
benchmark models and our method for the first 40 weeks of 2020.

Method MSPE ρ

Spatial point process 102.56 0.32
Spatio-temporal point process 99.86 0.53

Spatio-temporal LGCP 93.75 0.64
Spatio-temporal LGCP + SIDE 62.25 0.89

The computation of models (i) and (ii) was straightforward as did not entail the use of
Monte Carlo simulations. The estimation of model (iii), on the other hand, was performed
using the lgcp R package, with a processing time of 3 h and 45 min. Despite the prolonged
processing time of our approach compared to other available models, the results exhibit
a substantial increase in prediction accuracy. This trade-off between processing time and
accuracy is justified, as the primary objective of point process models is to accurately
forecasts future events in space and time.



Mathematics 2023, 11, 1052 26 of 28

4. Conclusions and Discussion

Nowadays, technology makes enormous amounts of data readily available to re-
searchers, and being able to handle such large quantities of information provides a step
forward in many societal problems. One such problem is considered here as emergency calls
in an urban context. Authorities must allocate resources and infrastructure for an effective
response, identify high-risk event areas, and develop contingency strategies. We highlight
that such emergency calls’ spatial and temporal analysis is crucial to understanding and
mitigating distress situations.

We have proposed a modelling framework to handle heterogeneous, dynamic, and
complex underlying processes to observe crime-related emergency calls. Our strategy can
account for the intrinsic complex space–time dynamics by handling complex advection,
diffusion, relocation, and volatility processes. This is shown by analysing the dynamics of
some emergency calls in Valencia, Spain, for ten years (2010–2029), and we believe this is
a case study that can be an excellent example for many similar emergency calls in other
urban contexts.

For example, other more complex scenarios can be idealised in our framework by
considering SIDE with a non-linear transformation of the random field at time k in the
integrand of our SIDE equation. This would complicate the model while providing a more
flexible case. A combination with some deep learning methods could be imagined here.
This can be the motivation for further research.

There are, however, some limitations due to the baseline assumptions imposed in the
modelling approach. Note that the SIDE-driven LGCPs methodology sits on the assumption
that the increments between two consecutive times are normally distributed, and thus,
the system can be expressed as a Geometric Brownian motion. This must be verified a
priori, and thus we can not expect that all types of data behave this way. Another sort
of computational disadvantage is that the procedure involves a large number of matrix
inverse calculations that can bring trouble in cases where the determinants are close to zero.

The code used in this paper has been made publicly available on the authors’ Github
repository (https://github.com/DavidPayares/ValenciaCallsSIDE) (accesed date on 17 Jan-
uary 2022). The authors have translated the LGCP + SIDE methodology into easily under-
standable and executable scripts, which not only replicate the results reported in this paper
but also facilitate its implementation with similar datasets. The availability of the code
enhances the reproducibility and transparency of the research findings.
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Appendix A. Literature Review Table

Table A1. Literature review of spatio-temporal models for analysing and predicting emergency calls.

Authors Method Contribution

Hashtarkhani et al. [2] GIS Spatial and temporal analysis
of emergency calls in Iran

Sabet et al. [3] GIS and Kernel estimation
Spatio-temporal insights of
emergency response by fire

departments in Canada

Towers et al. [4] Linear regression

Forecast of future emergency
events and determination of
driving factors in Chicago,

USA

Cramer et al. [5]
Hotspot analysis and

Geographically weighted
regression

Spatio-temporal analysis of
911 calls in Oregon, USA

Chohlas-Wood et al. [6] Rolling Forecast Prediction
Model

Temporal analysis and
forecasting of 911 calls in New

York City

Marco et al. [7] Poisson log-linear mixed
model

Spatio-temporal mapping of
suicide-related
emergency calls

Robles et al. [8]
Bivariate–Gaussian kernel,

decision tree learning, random
forest, and logistic regression

Spatio-temporal relations to
predict 911 events in Cuenca,

Ecuador

Zhou et al. [9] Geographically weighted
regression

Estimation of the spatial
distribution of urban

populations based on first-aid
calls based in Shanghai, China

Heaton et al. [10] Inhomogeneous Poisson point
process

Inference of number and type
of 911 calls in Houston, USA

Li et al. [11] Non-parametric self-exciting
point processes

Spatio-temporal modelling of
emergency calls in
Pennsylvania, USA
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