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A B S T R A C T   

Our interaction with materials occurs through their surfaces whose properties are strongly dependent on 
morphology, structure, and atomic arrangement. Unfortunately, obtaining a detailed correlation between the 
surface morphology with its properties is not straightforward. SnO2 is a multifunctional semiconductor ceramic 
that is exploited in several technological devices from sensor to energy storage, water splitting, and solar to fuel 
photocatalysis. This work focused on the structural, energetic, and electronic properties of low and high index 
surfaces of SnO2 semiconductor and assessed the morphology-dependent process via first-principles calculations, 
at the density functional theory level. Importantly, our explicitly dynamic approach elucidates the atomic ar
rangements and stability of the exposed surfaces to provide a close match between experimental field emission 
scanning electron microscopy images and computational simulation. These findings can potentially set a foun
dation for establishing synthesis techniques for drive the morphology evolution through the control of tem
perature/pressure, and/or based on surface interactions of the selective adsorption of solvents/surfactants.   

1. Introduction 

The crystal structure and morphology of the multifunctional semi
conductors are the most important characteristics that dictates its 
physical–chemical properties, for properties directly related to the sur
face. Crystal facet engineering is an important issue in inorganic mate
rials that provides the control of morphology, composition, structure, 
and atomic arrangement, endowing them with distinct and intensified 
development of technological applications (in optics, sensor, catalytic, 
photocatalysis, and so on) [1–6]. 

The specific atomic configurations at the surface of metal oxides, i.e., 
the local coordination of the exposed cations (clusters), have a very 
significant effect on the surface chemistry [7–10] responsible for the 
formation of reactive oxygen species and their interaction with possible 
adsorbates and microorganisms, involved in the photocatalytic and 
biocide activity, respectively. However, it has been a challenge to 

explicitly understand both the surface configuration and the structure- 
dependent properties, at the atomic level, due to their complex nature. 
Therefore, a complete understanding of the structural, energetic, and 
electronic differences between the exposed surfaces at the morphology 
is essential to identifying (the best suited surface for different desired 
applications) which surface is best suited as a desired application. Atoms 
located at the surface of solids are undercoordinated, comparing with 
bulk atoms, thus they are the active sites where the corresponding 
chemical/physical process, i.e., sensor activity, adsorption of molecules 
from the environment, chemical reactions, and so on, take place. 

Since the adsorption and desorption of molecules depend strictly on 
the surface atomic arrangement, different orientations result in distinct 
local properties and provide different catalytic activities and chemical 
reactivity [11]. In particular, the sensing mechanism is controlled by the 
structure and the electronic properties of the sensor surfaces where the 
chemical reactions are carried out, which are highly dependent on the 
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exposed surface [12–15]. With the development of advanced electron 
microscopy, impressive images can, in principle, be gained at atomic 
spatial scale [16]. However, the evolution of the morphology and 
exposed surfaces of materials is sensitive to experimental conditions 
such as temperature and gaseous type and pressure, which brings about 
a great experimental challenge to obtain this information. On the other 
hand, first-principles calculations based on the density functional theory 
(DFT) provide a versatile method that makes up for the lack or com
plement of experimental surface studies. The combination of both tools 
has the advantage of identifying the corresponding atomic and elec
tronic structures and has great potential in exploring the underlying 
activity. Consequently, establishing realistic and reliable material sur
face models is undoubtedly the first step and the most important link 
connecting the images of the morphology provided by advanced field 
emission scanning electron microscopy (FE-SEM) and theoretical cal
culations [17]. 

Tin dioxide (SnO2) based materials have attracted comprehensive 
interest for their wide range of functional applications due to the n-type 
wide band gap (3.6 eV at 300 K) [18], high charge carrier density, stable 
crystal structure, controllable vacancies sites creation, and abundant 
chemical properties [19,20]. The formation of SnO2, as in any inorganic 
oxide, involves three processes: nucleation, growth, and morphology 
evolution. Among them, the latter is less understood because the 
morphology of SnO2-based materials depends on several factors which 
include synthesis method and reaction conditions such as solvents, 
surfactant, temperature, and so on. These factors are responsible for the 
change in growth of different morphologies of SnO2-based materials and 
some of them are shown in Fig. 1. 

1.1. How SnO2 works as a gas sensor? 

Metal semiconductor oxides have been widely studied as gas sensors 
for the selective detection of various gases with trace concentrations. 
The identification of the reaction mechanism associated to the gas 
sensing response is crucial for further development; however, the 
mechanism of gas sensing is still controversial. The current state of 
knowledge of the gas sensing mechanism of metal oxides is based on the 
modulation of the conductivity of active materials through the forma
tion/removal of surface O-related acceptors. However, the exact nature 
of species behind the sensing response remains obscure and their char
acterization at the surface reactions are more difficult than initially 
assumed [27,28]. It is very important to highlight that the electronic 
conduction mechanisms are affected not only by the nature of the 
semiconductor but also by the specific exposed surfaces of the material 
that determine the type and amount of adsorbed oxygen. 

SnO2, as a gas sensor, detects changes in a gaseous atmosphere due to 
variations in electrical resistance. This arises from charge transfer due to 
chemical interaction at gas–solid interfaces. The chemical interaction 
between the adsorbed gas and the semiconductor surface modifies the 
charge density at the semiconductor, directly impacting the material’s 
charge transport. The semiconductor gas sensor relies on the receptor 
function and the transducer function to generate the gas-sensing 
response. The receptor function is related to how the sensor recog
nizes or identifies chemical substances such as gas molecules, and the 
transducer function concerns how the sensor converts chemical signals 
into output signals [29–32]. This property is due to the electrical con
ductivity of SnO2, being sensitive to the gas environment [33]. Also, 

Fig. 1. Different morphologies of SnO2: (a) nanowires [21], (b) microcube [22], (c) nanobelts [23], (d) octahedral [24], (e) elongated-octahedral [25], and (f) lance- 
shaped [26]. Reprinted from [21], Copyright 2022; [22], Copyright 2008; [23], Copyright 2021; [24], Copyright 2015; [25], Copyright 2020, with permission from 
Elsevier. Reprinted from [26], Copyright 2009, with permission from John Wiley and Sons. 
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Choi et al. investigated the gas sensor of the SnO2 nanosheets to sense H2 
gas in terms of the variation in their resistance and, according to the 
results, the response of the sensor exhibited linear increase with 
increasing square root of the partial pressure of H2 gas. This result 
indicated the applicability of the prepared sensor structure for the real 
field application [34]. Choi et al. also investigated the SnO2 nanosheets 
with the (101) crystal face mainly exposed for selective alkene gas 
sensing, and it was found a remarkable selectivity to alkenes gases that 
can be related to the high HOMO energies [35]. 

Recently, Desimone et al. evaluated the power − law response and 
how it depends on the surface chemistry of the SnO2 nanostructured 
sensors in the presence of oxygen and reducing gases. Theoretical and 
experimental results suggest that oxygen is adsorbed/desorbed neutral, 
as predicted by the Wolkenstein theory of chemisorption, and ionosorbs 
doubly charged [36]. The doubly charged species of ionized oxygen 
were also proposed by Li et al. [37]. They have proposed that the 
dissociation and ionization of oxygen molecules occurs when molecular 
oxygen are adsorbed above the in-plane oxygen vacancy vertically on 
SnO2 (110) and charge transferred were both the maximum, which 
further verified the spontaneous adsorption of O2 molecule and the 
assumption for O− or O2− species. In this case they consider the band 
bending presence for the applied conduction model. 

On the other hand, Zhao et al. proposed a sensing model for the 
SnO2-based sensors based on experimental and theoretical results to 
understand the effect of oxygen partial pressure on their sensitivity 
where the O2− species was determined to be the main oxygen species 
[38]. Very recently, one of us analyzes the basic gas detection mecha
nisms proposed in such a work. The consequence of these presented 
mechanisms leads to inconsistencies that are also regularly found in the 
literature [39]. 

Very recently, Wang et al. published a complete review in which the 
preparation method of the SnO2 nanostructure, the types of gas detec
ted, and the improvements of their gas-sensing performances are pre
sented as well as the future development of SnO2 is discussed [40]. In 
fact, the details of the basic mechanisms that take place in sensing with 
metal oxides are still controversial after decades of active research in the 
field. There are two widely accepted models to explain the sensor 
behavior. In the first model, the one described above, the ionosorption 
model, considers that oxygen chemisorbs trapping electrons from the 
bulk of the grains. This alters the electronic density of the semiconductor 
directly affecting the film conductivity. The second model (the vacancy 
model) explains sensing by changes in the concentration of the surface 
oxygen vacancies and their ionization. Since oxygen vacancies behave 
electrically as donors, they would contribute to increasing the film 
conductivity [41]. 

Within the vacancy model, Blackman have recently proposed a sur
face conductivity model suggesting that the origin of gas sensitivity in 
the common n-type gas sensing oxides is unlikely to be ionosorbed ox
ygen species but is rather more likely due to the presence of a surface 
conductivity layer formed due to surface oxygen vacancies. This model 
should explain the dependency of the sensor conductance and electrical 
capacities on the pressure of different gases [42]. 

Other studies showed that the exposed surfaces and morphology play 
crucial role in its performance in different technological applications 
[43–48]. Therefore, understanding of surface characteristic is key to 
rationalize the action mechanism in catalysis and gas sensor 
[19,20,49–54]. Different theoretical studies reported the surface 
dependent properties of SnO2 [55–58]. By using DFT calculation, the 
adsorption processes of CO on the (110), (100), (101), and (001) 
surfaces have been analyzed and the results showed that the (101) and 
(001) surface orientations gathered more electrons and then better 
performance for CO gas sensing [55,56,59]. The adsorption of the NO 
and NO2 molecules at the SnO2 (110), (101), and (221) surfaces were 
also investigated. Based on the determination of the adsorption energies 
and the analysis of the electron transfer, the adsorbed NO molecules in 
the nitrogen orientation were more stable than in the oxygen orientation 

on the (101) surface and this surface showed to be the most beneficial 
for both NO and NO2 gas sensing performance [56]. The application of 
SnO2 as gas sense of the volatile organic compounds, such as CH3OH and 
CH3COCH3, was investigated at the (110) and (101) surfaces and the 
results showed that the mechanism can be explained by direct adsorp
tion on the surfaces. The authors also reported that due to the bipolar 
nature of the − OH presented on CH3OH, the adsorption in this molecule 
is generally stronger than for the CH3COCH3 [59]. 

Feng et al. find a relationship between exposed surface at the 
morphology and the humidity sensing property of SnO2 was investigated 
with an experimental and theoretical approach. The DFT results indi
cated that the (101) surfaces adsorbed more H2O molecules than the 
(110) surfaces, in which was consistent with the experimental data. 
According to the authors, these results demonstrated that it is possible to 
improve the humidity-sensing properties of the SnO2 semiconductor by 
tuning the morphology and the exposed surfaces [60]. 

Computational studies have been performed to provide detail in
formation about the gas sensing action of SnO2 on its surfaces [61–67]. 
Habgood and Harrison in a seminal work an ab initio study of O2 
adsorption on SnO2 (110) surface. To this end, the authors modelled 
four scenarios for the placement of also four adsorbate species of oxygen 
on the surface and, they have hence proposed geometries and some 
electron distributions for those species [62]. Gurlo emphasized the key 
role of crystal shape on the nanosensor behavior of SnO2, In2O3, ZnO, 
and WO3 [65,66] and offers a description of the history of development 
of ionosorption theory [68]. Kucharski and Blackman reviewed the 
proposed models of adsorption and reaction of oxygen on SnO2, and they 
conclude that the majority of evidence points to the mechanisms are 
center around the oxygen vacancies (Vo), being the SnO2 surface an 
exchange zone between the bulk and the gas-phase oxygen. Therefore, 
the sensors response of the SnO2 can be seen as resulting from the 
change in the position of this exchange equilibrium [63]. 

In addition, Barsan et al. reported the modeling of sensing and 
transduction for p-type semiconducting metal oxide based gas [69], 
while Degler et al. identified the active oxygen species in SnO2 based gas 
sensing materials by an operando infrared spectroscopy [70]. Anpo et al. 
characterize the reactivity of oxygen species at the surface of metal 
oxides [71] while Salvini et al. employed the DFT calculations to 
investigate how the selectivity and reactivity of SnO2 surfaces toward 
the CO2 reduction revealed to formic acid change at varying surface 
stoichiometry (i.e., reduction degree) [72]. 

As we can see, SnO2 sensing properties are directly affected by the 
exposed surfaces with distinct density of unsaturated Sn atoms with 
dangling bonds, which are results of the synthesis [63,73]. These zones 
are defect regions that can interact with the air or can provide extra 
electrons during the gas sense activities. According to DFT calculations, 
prior to the dissociation, the interaction of the O2 with the unsaturated 
Sn atoms occurs at end-on and side-on configurations correspond to 
superoxide and peroxide species, respectively [61]. Yuan et al. pre
sented a new strategy to enhancing sensing performance of SnO2 
nanocrystals by increasing the density of unsaturated Sn atoms with 
dangling bonds at the SnO2 surface through hydrogenation. These au
thors propose a concept of the surface unsaturated Sn atoms, as active 
sites for the sensing and catalytic reaction mechanisms and designing 
advanced sensing sensors, catalysts and photoelectronic devices. Fig. 2 
displays a schematic representation of SnO2 sensing mechanism [74]. 

1.2. Exposed surface and morphology 

The surface structure is primarily determined by the specific exposed 
surface. Surface energetics of materials determines their structure, 
properties, and occurrence of morphology. One of the rational ways of 
designing high-performance catalysts or gas sensors, therefore, is to 
engineer the exposed surface where the presence of catalytic active sites 
strongly enhances reactivity. Using a combination of experimental 
techniques and Wulff construction, we investigated the thermodynamics 
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to understand and predict the morphologies of materials [8,75–79]. It is 
based on the surface energy (Esurf ), as a fundamental quantity to un
derstand surface-related phenomena, to characterize the surface stabil
ity and can help understand the growth of crystals. Their value is 
dependent on the surface atomic arrangements and trap states/defects, 
the effective mass of hole/electrons, thus affecting the key factors such 
as molecule adsorption and activation, electronic band structure, and 
charge transfer processes [1]. More specifically, the energy and stability 
of the exposed surfaces are usually the primary concern, and the more 
stable and unstable surfaces remain and disappear along the growth 
process, respectively. Unfortunately, this criterion does not provide 
details about the morphology evolution and cannot answer why cubes 
can evolve into rods along the time progress of a given synthesis, for 
example. 

It is well known that many properties of solid materials are controlled 
by the presence of defects and imperfections in their crystal structure. 
They are intrinsic or extrinsic imperfections in materials, which are not 
always negative and have many positive impacts on material properties. 
On one hand, they often display a higher reactivity proportional to the 
number of surface states and defects, on the other hand the same surface 
states and defects control the global efficiency of the process [80–82]. A 
comprehensive understanding of the corresponding mechanisms thus 
entails a description of the defective states in terms of their concentration, 
local structure and spatial distribution, since all of these affect the 
response and the chemistry that the material is able to drive [83–85]. 
Characterization techniques based on positron annihilation lifetime 
spectroscopy (PALS) is extremely powerful in defining the structural and 
spatial aspects of defects in materials. PALS allows to identify and 
quantify different types of defects and the corresponding Doppler 
broadening provides information not only about the defects but also on 
the atomic species that decorate the positrons trapping sites (i.e., chem
ical environments) [86]. 

The focus of this theoretical work is the investigation of the exposed 
surfaces at the morphology of the SnO2 semiconductor to rationalize the 
properties and application as a multifunctional material. The aim of the 
present study is five-fold: (i) to assess the surface properties of low and 
high index surfaces of SnO2 semiconductor using first-principles calcu
lations, at the DFT level; (ii) to provide further detailed analysis on the 
relationship between the surface structures and their stabilities; (iii) to 
obtain the available morphologies of SnO2 from the calculated surface 
energy values using the Wulff construction; (iv) to design the reaction 

path along the synthesis progress to match the experimental morphol
ogies, observed in the images of electron microscopy, with those theo
retically predicted; and (v) to rationalize the growth mechanism 
associated to a given morphology. 

2. Theoretical methods and model systems 

All calculations were carried out with the Vienna ab initio Simulation 
Package (VASP) [87–90]. To determine the electron exchange and cor
relation contributions to the total energy, the Kohn–Sham equations 
were solved using the generalized gradient approximation in the Per
dew–Burke–Ernzerhof functional [91,92]. The conjugate gradient en
ergy minimization method was used to obtain the minimum (relaxed) 
energy state of the SnO2. Atoms are considered fully relaxed when the 
Hellmann ¡ Feynman forces converge to less than 0.005 eV Å− 1 per 
atom. 

In this work, the low index of Miller ((001), (101), (110), (100) 
and (111)) surfaces and high index of Miller ((210), (102), (201), 
(211), (112), and (221) surfaces) have been investigated. These SnO2 
surfaces models were constructed from the data of the optimized bulk by 
considering stoichiometric models with thickness of up to ~20 Å. This 
thickness was used to reach an adequate convergence on the corre
sponding Esurf values, and then, obtain an accurate description of the 
surfaces. A vacuum spacing of 15 Å was introduced in the z-direction 
toward the surfaces so they do not interact with each other. During the 
optimization calculation, all atoms were allowed to relax. 

A plane-wave basis set was used to describe the electron–ion inter
action by the projector augmented wave method [93]. For the modeling 
of bulk and surfaces the plane-wave expansion was represented by 520 
eV cut-off. The Brillouin zones were samples using (4 × 4 × 4) and (4 ×
4 × 1) Monkhorst-Pack special k-points grid for bulk and surfaces, 
respectively. Previous tests have been carried out to verify that the 
chosen cut-off, vacuum spacing, and dimensions of Brillouin zone is 
sufficient, thus ensuring accurate and consistent results. 

The Esurf values, defined as the total energy per replicating cell on the 
surface, were calculated for all surfaces models using the equation: 
Ei

surf = Ei
slab − nESnO2

bulk /2A, where Ei
surf is defined as the total energy per 

replicating cell on the surface, Ei
slab is the total energy of the corre

sponding slab (i), n is the number of molecular units present on the slab, 
ESnO2

bulk is the energy of the perfect crystal per molecular unit and 2A 

Fig. 2. Schematic diagrams of sensing mechanism. (a) Hydrogenation reaction of SnO2 nanocrystals. (b–d) Sensing reaction mechanism of the hydrogenated 
SnO2 nanocrystals at atomic and molecule level. The black e – and red e – represent the absorbed electrons by O2 and free electrons, respectively [74]. Reprinted from 
[74], under the terms of the Creative Commons CC BY license. 
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corresponds to the surface area per repeating cell of the two sides of the 
slab. The surface broken bonds density (DB) it was also calculated for all 
surfaces models by using the equation: Di

B = nB/A, where nB is the 
number of broken bonds at the top of each slab (i) and A is the area of the 
slab. In order to know the composition of the morphology, it was also 
calculated the polyhedron energy (Epolyhedron) and the percentage of 
contribution of each surface present in the morphology. Epolyhedron is 
calculated by means of: Ei

polyhedron =
∑

iCi × Ei
surf , where Ci is the per

centage contribution of the surface area to the total surface area of the 
polyhedron Ci = Ai/Apolyhedron. 

Using the values of Ei
surf for the all surfaces and the Wulff construc

tion, as it was proposed by our research group [75–77], we are capable 
to obtain the available set of morphologies of SnO2, as it is schematically 
illustrated in Fig. 3, in which the crystal morphology depends on the 
ratios between the values of the surface energies and the symmetry and 
crystal structure [75,94]. 

In addition, the calculated and available experimental morphologies 
were compared and matched. For other experimental observed mor
phologies, we present necessary modifications to the values of Esurf and 
the reaction path, through the values of Epolyhedron, along the synthesis 
progress are theoretically predicted. The results are expected to be 
helpful in choosing surface-specific interactions in synthesizing SnO2 
crystals with targeted morphologies. 

3. Results and discussion 

3.1. Bulk and surfaces 

The crystallographic unit cell of SnO2 is shown in Fig. 4(a). The 
tetragonal rutile SnO2 structure is fully determined by the lattice pa
rameters a = b and c and is formed by two-unit formula per cell (Z = 2), 
belongs to P42/mnm space group [95]. In this structure, the Sn cations 
have a coordination number of 6, which means that they are surrounded 
by an octahedron of 6O anions, while the O anions have a coordination 
number of 3, resulting in a trigonal planar coordination. Therefore, the 
tetragonal SnO2 structure has the [SnO6] clusters as building blocks, as 
illustrated on Fig. 4(a). 

To investigate the exposed surfaces at the morphologies of the as- 
synthetized SnO2 samples, low and high index of Miller were selected 
(see Fig. 4). As can be observed on the surfaces models showed on Fig. 4 
(b, c), the surfaces presented different kinds of [SnOx] clusters, i.e., the 
Sn atoms were coordinated by a different number of O anions, pre
senting breaking bonds when compared to the bulk which is formed by 

[SnO6] clusters. These [SnOx] clusters are the places where the perfect 
periodic arrangement is disrupted or broken, and they can be considered 
as the active sites controlling the activity performance. 

The top of the surface’s models with low index of Miller (Fig. 4(b)) 
are mainly formed by [SnO5] clusters and in the (111) surface is also 
present the [SnO3] cluster, except the (001) surface model which is 
constituted by [SnO4] clusters. On the other hand, in the surface’s 
models with high index of Miller, all surfaces present the [SnO4] and 
[SnO5] clusters in the top of the surfaces, with exception of (221) sur
faces that are only the [SnO5] clusters. The surface with high index of 
Miller (210), (102), (201), (211), (112), and (221) as can be seen in 
the Fig. 4(c), where these models presented antisymmetric surfaces. 

From the results of the slab models’ calculations, Esurf and DB values 
were obtained for all surfaces; they are listed in Table 1. 

As can be observed, the stability order of the low index surfaces is: 
(110) < (100) < (101) < (001) < (111), while for the high index is: 
(201) < (211) < (221) < (210) < (102) < (112). In the set of all 
surfaces, there are surfaces with high index of Miller that are more stable 
than some surfaces with low index of Miller. Therefore, the stability 
order for all calculated surfaces is: (110) < (100) < (201) < (211) <
(101) < (221) < (210) < (001) < (111) < (102) < (112). Some 
theoretical investigations have been discussed about the stability of the 
SnO2 surfaces applying different functionals (see Table 2). By employing 
the B3LYP functional, our research group obtained the following sta
bility order (110) < (100) < (101) < (201) < (001) [51]. Using the 
DFT with the generalized gradient approximation (GGA), the Esurf , 
calculated by Oviedo and Gillan, increased in the order (110) < (100) <
(101) < (001) [96]. Mulheran and Harding using the local-density 
approximation (LDA) obtained the following surface stability: (110) <
(210) < (101) < (100) < (310) < (321) < (211) < (301) < (111) <
(001) [97]. Also using the LDA, Slater et. al. reported the Esurf value 
order as (110) < (210) < (101) < (100) < (310) < (321) < (211) <
(301) < (311) < (111) < (001) < (212) < (221) < (112) [98]. In 
Fig. 5 a schematic representation of the values for energy surfaces 
calculated with different functionals is depicted. An analysis of the re
sults renders that LDA gives higher values than B3LYP and GGA for the 
low index of Miller surfaces: (001), (101), (110), (100). 

As can be observed in the Table 1, the order of the DB values are not 
completely consistent with the stability order for all calculated surfaces. 
This is due to the existence of dangling Sn–O bonds in the exposed 
surfaces and, as a consequence, the presence of incomplete octahedral 
[SnO6] clusters, as can see in Fig. 4(b,c). The morphology of SnO2 with 
surface unsaturated Sn cations (clusters) serve as signature of the surface 
stability, which could be responsible for the properties and growth 

Fig. 3. Illustration of the step for the modeling of crystal morphology by applying the forward and inverse Wulff construction.  
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crystal mechanism. More importantly, these defects could induce extra 
electronic energy levels above the top of the valence band (VB) or below 
the bottom of the conduction band (CB), generating new intermediate 
energy levels in the prohibited zone (band gap). These discrete levels are 
the key for the multifunctional properties and applications of semi
conductors. Along the photocatalytic process, they act as trapping cen
ters of the CB for releasing electrons in the excited state and in the VB for 
trapping electrons for the photogenerated charge carriers, resulting in 
the effective variation of the charge density at the surface of the semi
conductor. As a result, the highest photocatalytic activity is achieved. 

At this point, it is possible to emphasize the importance of the study 

Fig. 4. (a) The unit cell of the tetragonal SnO2 structure, with the [SnO6] clusters, bond distances and angles between the Sn and O atoms. (b) The low index of Miller 
surfaces: (001), (101), (110), (100), and (111). (c) The high index of Miller surfaces: (210), (102), (201), (211), (112), and (221). 

Table 1 
Surface energy values (Esurf , J/m2) and surface broken bonds density (DB,nm− 2) 
for all investigated SnO2 surfaces.  

Low index Esurf DB High index Esurf DB 

(001)  1.84  8.57 (210)  1.60  11.43 
(101)  1.44  10.68 (102)  2.05  8.13 
(110)  1.00  9.03 (201)  1.42  10.24 
(100)  1.08  6.39 (211)  1.43  7.13 
(111)  1.97  3.11 (112)  2.15  5.81    

(221)  1.59  4.00  

Table 2 
Surface energy value (J/m2) for a set of surfaces reported by several published papers.  

(001) (101) (110) (100) (111) (112) (201) (210) (211) (212) (221) (310) (301) (321) (311) Functional Ref.  

1.84  1.43  1.20  1.27  –  –  1.63  –  –  –  –  –  –  –  – B3LYP [51]  
1.72  1.33  1.04  1.14  –  –  –  –  –  –  –  –  –  –  – GGA [96]  
2.366  1.554  1.380  1.664  2.217  –  –  1.487  1.821  –  –  1.679  1.860  1.758  – LDA [97]  
2.363  1.554  1.401  1.648  2.209  3.677   1.480  2.135  2.351  2.280  1.973  1.824  1.731  2.051 LDA [98]  
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not only of the surfaces and the morphologies of a given semiconductor, 
but also the arrangement of the atoms on the exposed crystal shape. In 
the case of SnO2, these atoms constitute clusters with vacancies, which 
we will name Vo. In this way, it is possible to write the clusters present at 
the surfaces as a function of the number of Vo using the Kröger-Vink 

notation, as can be seen in Fig. 6. The Sn cations at the surfaces can be 
also called as Sn5c, Sn4c, and Sn3c according to the number of Vo (one, 
two, or three, respectively) in the undercoordinated Sn clusters. 

From this analysis, the defect regions of the material at the surfaces 
can be described with undercoordinated clusters having oxygen va
cancies as [SnOx•6-xVo], where x represents the Vo numbers (x = 3, 4 or 
5). These vacancies can have two paired electrons (high electron den
sity, HED), no paired electrons (low electron density, LED) or one 
electron in the excited state (EES) with alpha or beta spin. Therefore, 
there is the probability of transferring an electron from HED to LED or 
EES. 

3.2. Positron annihilation lifetime spectroscopy 

PALS, utilizing positron–electron pair annihilation, is a powerful 
technique for the probing and characterization of the electronic and 
atomic structures at polar regions in condensed matter, such as point- 
defects, voids, interfaces and surfaces, among others, providing infor
mation about their size, concentration, and chemical environment [99]. 
The advantages of the use of PALS to study defects lie in the fact that 
positrons are prone to be localized and annihilated in sites with greater 
electronic density (i.e., more negative) than the average electronic 
density of the crystal lattice, allowing positron annihilation processes to 
take place in these sites, which act as positron traps with an associated 
specific open volume. Analysis of the PALS results have demonstrated to 
be a powerful tool to investigate the presence of vacancy-like defects in 
semiconductors [100]. From the positron lifetime spectra decomposi
tion, several lifetime components can be extracted; each of them is 

Fig. 5. A comparative diagram depicting the values of surface energy calcu
lated by different levels of theory for the low index of Miller surfaces: (001), 
(101), (110), (100), and (111). 

Fig. 6. Surfaces models with the Kröger-Vink notation for the (b) low index of Miller surfaces: (001), (101), (110), (100), and (111), and for the (c) high index of 
Miller surfaces: (210), (102), (201), (211), (112), and (221). 
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characterized by a lifetime τi and an associated intensity Ii. The state i 
can be the delocalized one in the crystal lattice (free positron state) or 
localized states at different defect sites where positrons become trapped 
and annihilated. The presence of more than one lifetime indicates that 
the studied sample is not defect-free, which is common in semiconductor 
oxide samples. 

There are several published papers that used this technique to 
investigate the defects in different semiconductors such as silica glass 
[101], β-Cu-Zn-Al alloys [102], BaTiO3 [103], UOx (x = 2.2–3.5 range) 
[104], ZnO-based varistors [105], α-Ag2WO4 [106], among others 
[107–110]. In the case of SnO2 semiconductors, Macchi et al. reported 
the characteristics of vacancy-like defects in nanocrystalline commercial 
high-purity powders and the influence of the annealing treatment under 
different atmospheres by applying the PALS analysis [110]. According to 
the authors, it was detected in all samples two types of vacancy-like 
defects: i) vacancy clusters formed by Sn and O vacancies (at the sur
face of the grains), and ii) Sn-based vacancies associated with small open 
volumes (typically, mono- or di-vacancies inside the grains). 

At this point, it is important to remark that deepening of future 
experimental studies will lead to elucidate, for each exposed crystalline 
plane, the corresponding conduction mechanisms that explain the 
variation in electrical resistance when exposed to different gaseous 
atmospheres. 

3.3. Theoretical morphologies 

From the Esurf values and the association to the Wulff construction 
some morphologies for the SnO2 with the low Miller indices were ob
tained, as illustrated in Fig. 7. 

Considering the theoretical calculations with low index of Miller and 

using the Wulff construction, the equilibrium morphology was achieved 
(in the center of the Fig. 7) and this result suggests that the (101), (110) 
and (100) surfaces are predominated and correspond to 36.4%, 40.7%, 
and 22.9%, respectively. To obtain the others morphologies present in 
Fig. 7, the Esurf value of the equilibrium morphology in a determinate 
surface direction was decreased, which means a stabilization of this 
surface. The stabilization/destabilization of the surface simulates the 
process that can occur during the syntheses of the semiconductor and 
the change in the final morphology and, consequently, in the exposed 
area. 

In the case of the SnO2, it was seen that some surfaces with high 
index of Miller present a higher stability in respect to the low index of 
Miller. Therefore, it was constructed a map of morphologies with the 
present of all calculated surfaces, as illustrated in Fig. 8. 

In the Fig. 8, the equilibrium morphology (a) is presented in the 
center of the figure. This crystal is formed by low and high index of 
Miller and is formed by the (101), (110), (100), (201), and (211) 
surfaces. Here, with the presence of the high-index surfaces, there is a 
decrease in the area of the (101), (110), and (100) surfaces to 29.3%, 
37.7%, and 21.5%, respectively, with 4.3% and 7.1% for the (201) and 
(211) surfaces, respectively. Nonetheless, the three low index (101), 
(110), (100) surfaces are still dominating in the Wulff shape and make 
up almost 88.6% of the total crystal surface area. The Esurf values with 
each percentage contribution for each morphology from Fig. 8 are listed 
in Table 3. 

The morphologies presented in Fig. 8 were obtained also by 
decreasing the Esurf value towards all surfaces, where the orange and 
blue arrows mean that this decrease is in direction of the low and high 
index of Miller, respectively. The orange arrows give origin to the first 
circle of morphologies in the map. The stability of the (110), (101), 

Fig. 7. Map of morphologies for the tetragonal SnO2 structure with the low index of Miller surfaces: (001), (101), (110), (100), and (111). Esurf in J/m2.  
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(100), (001), and (111) surfaces formed the morphologies (b), (c), (d), 
(e), and (f), respectively. How it is possible to observe, these morphol
ogies are also presented in the Fig. 7. The second circle of morphology 
(blue arrow direction) are constituted by the (112), (211), (102), 
(201), (210, and (221) surfaces which originate the morphologies (g), 
(h), (i), (j), (k), and (l), respectively. As we can see in Fig. 8 and Table 3, 
the most stable (110) surface is present in 66.7% of the morphologies, in 
which the responsibility for the properties of the semiconductor is 
assigned. 

3.4. The way to morphology-controlled synthesis: How far do we need to 
go? 

One of the recent trends in semiconductors investigation is the 
control of material morphology due to the significant effect on their 
electronic, (photo)catalytic, and electrical properties. The final 
morphology of material is governed by the preferred growth regime of 
the synthesis reaction process. The first important aspect is the choice of 
the method of synthesis, following by several critical parameters such as 
type and concentration of the reactants, the kind of the solvent, time, 
and pressure of the reaction, and also the applying of surfactants. 
Therefore, the final morphology will be composed by different exposed 
surfaces, resulting in several shapes with difference electronic density. 
These aspects are summarized in Fig. 9. 

A wide range of morphology-controlled synthesis of SnO2-based 
materials have been reported in the literature under different reaction 
conditions. Shen and co-authors investigated the influence of the SnO2 
morphologies on the H2 sensing properties. They fabricated the SnO2 as 

Fig. 8. Map of morphologies for the tetragonal SnO2 structure with the low index of Miller: (001), (101), (110), (100), and (111) surfaces and with the high index 
of Miller: (210), (102), (201), (211), (112), and (221) surfaces. 

Table 3 
Surfaces with its surface energy value (Esurf , J/m2) and its percentage of 
contribution for the morphology (in parentheses, %).  

Crystal shape 
Surface = Esurf (contribution) 

(a) 
(101) = 1.44 
(29.3) 
(110) = 1.00 
(37.7) 
(100) = 1.08 
(21.5) 
(201) = 1.42 
(4.3) 
(211) = 1.43 
(7.1) 

(d) 
(101) = 1.44 
(21.7) 
(100) = 0.61 
(78.3) 

(g) 
(110) = 1.00 
(35.2) 
(100) = 1.08 
(23.8) 
(112) = 1.15 
(41.0) 

(j) 
(110) = 1.00 
(10.4) 
(201) = 0.80 
(89.6) 

(b) 
(101) = 1.44 
(24.3) 
(110) = 0.67 
(75.7) 

(e) 
(001) = 0.90 
(36.4) 
(110) = 1.00 
(38.9) 
(100) = 1.08 
(24.7) 

(h) 
(211) = 0.78 
(100.0) 

(k) 
(101) = 1.44 
(28.1) 
(210) = 0.80 
(71.9) 

(c) 
(101) = 0.60 
(89.2) 
(110) = 1.00 
(10.8) 

(f) 
(110) = 1.00 
(29.0) 
(100) = 1.08 
(21.4) 
(111) = 1.18 
(49.6) 

(i) 
(110) = 1.00 
(39.8) 
(100) = 1.08 
(23.6) 
(102) = 1.20 
(36.6) 

(l) 
(221) = 0.67 
(100.0)  
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nanofilms by the sputtering methods and nanorods and nanowires by the 
thermal evaporation method, showing that the morphology and struc
ture of semiconductor materials plays in determining its gas-sensing 
properties [111]. Xu and co-authors synthetized an ultrathin SnO2 
nanosheets with dominant high-energy (001) surface for low tempera
ture formaldehyde (HCHO) gas sensor [112]. The ultrathin SnO2 
nanosheets were obtained by a facile hydrothermal method with the 
assistance of any template, surfactant, or organic solvent. According to 
the authors, the good performance of the ultrathin SnO2 nanosheets as 
HCHO gas sensor is due to the high percentage of the (001) surface with 
the undercoordinated atoms on the surface which improved the catalytic 
activity of the surface atoms [112]. 

The tetragonal rutile structure of SnO2 were synthetized by a simple 
hydrothermal route by Xing and co-authors [113]. The SnO2 nano
particles were tested for enhanced photocatalytic activities and the re
sults of degradation of several kinds of organic dye molecules showed 
that eosin red solution is almost completely degraded after 18 min under 
ultraviolet light irradiation. The study of cyclic stability results 
demonstrated that the SnO2 nanoparticles possess still excellent photo
catalytic activity after 5 times cycles, revealing its potential applications 
in eliminating the organic contaminants in wastewater. According to the 
authors, the SnO2 nanoparticles are constituted by the (110) surfaces. 

The effect of different morphologies of the SnO2 nanostructured on 
its photocatalytic activities were investigated by Kar et al. According to 
the authors, the modulation of the morphology changes the surface area 
and levels of surface defects in which reflected in the photocatalytic 
degradation of the methylene blue dye [114]. 

3.4.1. Reaction path along the synthesis progress and the polyhedron energy 
SnO2 particles with different shapes (octahedral, elongated- 

octahedral and lance-shape) were obtained by Han and co-authors 
[26] in a hydrothermal route at 200 ◦C for 12 h in an appropriate 
acidic environment (with hydrochloric acid, HCL, and poly(vinyl pyr
rolidone, PVP). Theses morphologies are mainly formed by the high- 
index (221) surfaces which enhanced the SnO2 gas-sensing properties, 
and this morphological change was controlled by changing the amount 
of HCl. From the Esurf values for all investigated SnO2 surfaces (see 
Table 1), we were able to design a possible reaction path along the 
synthesis progress to match the theoretical and experimental morphol
ogies. To this end, it was calculated the Epolyhedron for the octahedral (1b), 

elongated-octahedral (2b) and lance-shape (3b), passing through the 1a, 
2a and 3a, respectively, from the equilibrium morphology, as illustrated 
in Fig. 10. According to the authors, the SnO2 octahedral (1b) exhibit far 
better gas-sensing performance over ethanol than those morphologies 
that mainly have the (110) exposed surfaces, and, from the theoretical 
point of view, this morphology also present higher Epolyhedron value. 
Therefore, these results shown that the gas-sensing is facet-dependent 
according to the exposed surfaces and atomic arrangement. 

3.4.2. Growth mechanism to modulate the surface termination of SnO2- 
based materials 

The crystal growth mechanism is an important issue mainly due to the 
interest in controlling particle size and morphology. It is possible to 
predict the particle growth mechanism by using the degree of solubility 
and the particle size by the Ostwald − Freundlich equation or, in a 
colloidal system at room temperature, the grain − rotation − induced 
grain coalescence mechanism can be applied [52]. On the other hand, the 

Fig. 9. Schematic illustration for the factors that influence in the final morphology.  

Fig. 10. Polyhedron energy value and the reaction path along the synthesis 
progress to obtain the experimental morphologies: octahedral (1b), elongated- 
octahedral (2b) and lance-shape (3b), passing through the 1a, 2a and 3a, 
respectively, from the equilibrium morphology, 
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well-known Wulff construction provides a convenient method to evaluate 
the formation of macroscopic facets B of orientation (h2k2l2) on a surface 
A of orientation (h1k1l1). The relative energy (ΔE) can be calculated by the 
following expression: ΔE = EA

surf (h1k1l1)cosθ − EB
surf (h2k2l2) where EA

surf is 
the surface energy (per unit area) of the surface A (in the (h1k1l1) orien
tation), EB

surf is the surface energy (per unit area) of the surface A (in the 
(h2k2l2)orientation), θ is the angle between the planes and the factor cos θ 
takes into account the change in the surface area if the facets were formed 
[51]. According to this expression, if ΔE it is negative, the surface B can 
grow stably on surface A. Using this approach and associating with pre
vious experimental results, our research group modelized the preferential 
growth directions of the SnO2 nanobelts, as illustrated in Fig. 11 [51]. We 
also performed an ex-situ observation of the orientated attachment 
crystal growth process of SnO2 nanocrystals at room temperature using 
the high-resolution transmission electron microscopy [52]. Cheng et al. 
also explained the SnO2 nanorods growth by combining the theoretical 
results of the Esurf values with the transmission electron microscope image 
[115]. 

Using this strategy, it was calculated the formation energy of all the 
possible facets B on all surfaces A presented in the map of available 
morphologies of SnO2 depicted in Fig. 8 and the values is presented in 
the Table 4. 

As it is possible to observed in the Table 4, the formation of a stable 
facet depends on the growth direction. For example, if the growth di
rection is [101] for the morphology (b), the formation of the plane 
(110) on the (101) is more stable (ΔE = − 1.65) than if is change the 
direction for [110], where the formation of the plane (101) on the 
(110) is less stable (ΔE = − 0.09). If we go to the morphology (c), where 
is formed by the same surfaces ((101) and (110)) but with different Esurf 
values, the formation of the plane (110) on the (101) continues stable 
(ΔE = − 1.41). However, for the growth direction [110], the formation 
of the plane (101) on the (110) is unstable (ΔE = 1.08). As it is possible 
to see, the angle between the planes does not change and only the 
change in the surface values, i.e., the stabilization of a surface, alters the 
growth direction of the morphology by changing the formation energy. 

This strategy, based on first-principles calculations, allowed us to 
understand and interpret, at the atomic level, the effects of morphology 

control on the synthesis of semiconductors. Fine-tuning of the desired 
morphologies can be achieved by controlling the values of the surface 
energies, which leads to the formation of morphologies that the classic 
growth process does not allow [116–118]. In particular, we reported a 
detailed characterization of an anomalous oriented attachment behavior 
for SnO2 nanocrystals [119]. In addition, this procedure is a useful 
approach for faceted nanocrystal shape modeling and indirect quanti
tative evaluation of dopant spatial distribution, which are difficult to 
evaluate by other techniques [58,120]. In this context, we describe a 
simple approach to control the oriented attachment process through 
selective ligand scavenging from the (100) facets of CeO2 nanoclusters 
with desired sizes and shapes [121]. This methodology for the synthesis 
of CeO2 may be relevant for the investigation of self-assembly processes 
of other metal oxides as well as for other types of inorganic nano
particles, which brings new insight for nanostructure design and 
controlled synthesis [122–128]. 

Toku et al. proposed a new crystal plane control technique to obtain 
of single crystal SnO2 nanobelts by thermal sublimation. The authors 
observed that the grow direction was different by synthesis pressure: 10 
kPa or less results in the growth direction to [301], changing to [101] 
over 20 kPa (see Fig. 12) [23]. As can we have seen in the results of 
Table 4, the change in the growth direction is directly related to the Esurf 
stabilization. 

Recently, Masuda have investigated the facet-controlled growth 
mechanism of SnO2 (101) nanosheet assembled film via cold crystalli
zation for devices such as chemical sensors. Their TEM results revealed 
that the predominate branch angles between any two connected nano
sheets were 90◦ and 46.48◦, corresponding to type I and type II con
nections, respectively. These connections were consistent with our 
calculations reported in Table 4, involving the combination of (001) 
and (110), and (111) and (110) surfaces, respectively [129]. 

Awareness is growing that the reactivity of materials is determined 
by surface properties. Therefore, processing materials with high per
formance requires enhanced knowledge on these properties. In addition, 
we need to recognize that there is a need to develop surface-processing 
procedures that allow modifications of surface reactivity in a controlled 
manner to achieve desired performance. To this end, surface charac
terization at the conditions of processing is required, as well as 

Fig. 11. (a) Proposed growth mechanism for the SnO2 nanobelts and (b) high-resolution transmission electron microscope image [51]. Reprinted from [51], 
Copyright 2003, with permission from AIP Publishing. 
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assessment of the effect of surface properties on reactivity and the 
related charge transfer. This knowledge of surface properties and the 
procedures for modification of surface reactivity constitutes a step for
ward in the development of novel advanced materials. 

Overall, this study demonstrates the great potential of the present 
strategy for understanding the morphology evolution of SnO2 and its 
transformations under reaction conditions. New insights into this com
plex material will be instrumental by including specific interaction with 
hydroxyl groups, H2O, CO2, CO, or some other molecules in the envi
ronment. This can reveal the mechanisms behind its excellent activity 
and will thus enable new pathways for the rational design of the next 
generation of gas sensors. 

4. Conclusions 

The surface of a material plays a crucial role as an interface to the 
environment, to control the physical, chemical, and biological proper
ties. As such, changes of the surfaces at the morphology of a material 
offers a practical method of modulating the surface properties and ap
plications. Here, we investigated the structure and stability of low and 
high index surfaces of SnO2 with stoichiometric slab models with DFT 
calculations associated to the PBE functional. The atomic coordination 
environment of surface atoms was described by the undercoordinated 
clusters (dangling bonds), by using the Kröger-Vink notation, at the 
exposed surfaces with different geometry and surface broken bonds 
density distributions. 

The main conclusions of the present work can be summarized as 
follows: (i) based on the Wulff construction, by modifications of the 

Table 4 
Calculated values of formation energy (ΔE) of the facet B on the surface A (J/m2), and angle (θ, degree) between the planes A and B for all crystal shapes reported on 
Fig. 6.  

A\B 
(a) 

(101)\(201) 
19.45◦

ΔE = − 0.23 

(a) 
(201)\(101) 
19.45◦

ΔE = − 0.85 

(c) 
(101)\(110) 
66.80◦

ΔE = − 1.41 

(c) 
(110)\(101) 
66.80◦

ΔE = 1.08 

(f) 
(111)\(110) 
46.50◦

ΔE = − 1.96 

(f) 
(110)\(111) 
46.50◦

ΔE = 0.63 

(i) 
(102)\(100) 
71.46◦

ΔE = − 1.91 

(i) 
(100)\(102) 
71.46◦

ΔE = 0.58 
(101)\(211) 

28.93◦

ΔE = − 2.57 

(211)\(101) 
28.93◦

ΔE = 0.78 

(d) 
(101)\(100) 
56.14◦

ΔE = 0.71 

(d) 
(100)\(101) 
56.14◦

ΔE = − 1.75 

(111)\(100) 
60.88◦

ΔE = − 1.52 

(100)\(111) 
60.88◦

ΔE = 0.28 

(102)\(110) 
77.00◦

ΔE = − 1.04 

(110)\(102) 
77.00◦

ΔE = − 0.17 

(201)\(100) 
36.69◦

ΔE = − 0.32 

(100)\(201) 
36.69◦

ΔE = − 0.88 

(e) 
(001)\(100) 
90.00◦

ΔE = − 1.48 

(e) 
(100)\(001) 
90.00◦

ΔE = 0.63 

(110)\(100) 
45.00◦

ΔE = − 0.46 

(100)\(110) 
45.00◦

ΔE = − 0.63 

(110)\(100) 
45.00◦

ΔE = − 0.55 

(100)\(110) 
45.00◦

ΔE = − 0.45 

(211)\(110) 
37.87◦

ΔE = 0.41 

(110)\(211) 
37.87◦

ΔE = − 1.42 

(001)\(110) 
90.00◦

ΔE = − 1.40 

(110)\(001) 
90.00◦

ΔE = 0.55 

(g) 
(112)\(100) 
72.36◦

ΔE = − 2.22 

(g) 
(100)\(112) 
72.36◦

ΔE = 0.92 

(j) 
(110)\(201) 
55.46◦

ΔE = − 0.34 

(j) 
(201)\(110) 
55.46◦

ΔE = − 0.66 
(100)\(110) 

45.00◦

ΔE = − 0.43 

(110)\(100) 
45.00◦

ΔE = − 0.61 

(100)\(110) 
45.00◦

ΔE = − 0.43 

(110)\(100) 
45.00◦

ΔE = − 0.61 

(112)\(110) 
64.62◦

ΔE = − 1.25 

(110)\(112) 
64.62◦

ΔE = 0.07 

(k) 
(101)\(210) 
60.11◦

ΔE = − 2.11 

(k) 
(210)\(101) 
60.11◦

ΔE = 0.27 
(b) 

(101)\(110) 
66.80◦

ΔE = − 1.65 

(b) 
(110)\(101) 
66.80◦

ΔE = − 0.09   

(110)\(100) 
45◦

ΔE = − 0.55 

(100)\(110) 
45◦

ΔE = − 0.45    

Fig. 12. Scanning electron microscope (a and d) and transmission electron microscope (b, c and e, f) imagens of the SnO2 nanobelts at 10 kPa and 20 kPa, 
respectively [23]. Reprinted from [23], Copyright 2021, with permission from Elsevier. 
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values of Esurf of the different exposed surfaces, we were capable to 
predict the crystal morphology and to construct the complete map of 
available morphologies of SnO2 by investigating the surface stability of 
the (001), (101), (110), (100), (111), (210), (102), (201), (211), 
(112), and (221) surfaces; (ii) by comparing the simulated morphol
ogies from present models with available experimental images of field 
emission microscopy, we can match them quite well; (iii) for other 
experimental observed morphologies, we present necessary modifica
tions to the Esurf values and the reaction path, through the values of 
Epolyhedron, along the synthesis progress are theoretically predicted; (iv) 
our findings explain how the values of the energy surfaces regulate the 
growth, evolution, and final morphology. This morphological progress 
provides guidelines to improve both of chemical activity and structure 
stability. In addition, the growth mechanism of the SnO2 semiconductor 
is modulated by the stability of its surfaces, which is directly affected by 
the synthesis method; (v) the results are expected to be helpful in 
choosing surface-specific interactions in synthesizing SnO2 crystals with 
targeted morphologies by adjusting surface energies contributions; (vi) 
our investigation helps to tune the conditions to obtain the desired 
morphology and can be extended to other complex oxides. Through the 
synergistic roles of different reaction conditions, such as the presence of 
surfactants, type of solvent, temperature, pressure, and so on, leading to 
a challenging synthesis process; and (vii) the present findings provide a 
new insight into the surface-dependent property, which would inspire 
the crystal surface tailoring and control of more semiconductors to 
expand their applications. Therefore, extending the method of 
controlled synthesis of other semiconductors into general laboratories 
should not take much longer. 
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