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Table S1. Characteristics of the samples studied 

Sample 

Composition 

Number 

of  

samples 

Cristallinity Dimensions 

 

Sample 

thickness 

(µm) 

Electrode  

configuration 

and area 

 

Picture of 

the sample 

Picture  

of the 

electrodes 

MAPbI3 6 MC diameter ~15 

mm 

~1000 Pt/Cr 

 ~ 1cm2 

 

 

MAPbBr3 2 MC diameter ~15 

mm 

~1560 Pt/Cr  

~ 1cm2 

 

 

 

MAPbBr3 2 SC 3.93 mm × 3.87 

mm 

~2000 Cr/Cr 

 ~ 0.12 cm2 
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Figure S1 Example on current transient response to short-circuit condition (0 V-

bias voltage) of a a) MAPbI3 MC sample contacted with Pt/Cr electrodes b) a MAPbBr3 

SC symmetrically contacted with evaporated Cr electrodes. Short circuit current 
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Figure S2. Protocol of measurement based on long-time current transient’s response to 

different voltage steps of a) a 2.2 mm MAPbBr3 SC- symmetrically contacted with 

evaporated Cr electrodes and two samples of b) MAPbBr3 MC and c) MAPbI3 MC 

contacted with Pt/Cr electrodes. Note the reproducibility between cycles. 
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Figure S3. Long-time current transient response to different voltage steps during 

the 1
st
 and b) 2

nd
 cycle of measurement of  a 2 mm-thick MAPbBr3 SC.  
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Figure S4. Long-time current transient response to different voltage steps during 

the 2
nd

 and b) 3
rd

 cycle of measurement of a 1.5 mm-thick MAPbBr3 MC.  
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Figure S5. Long-time current transient response to different voltage steps during 

the 2
nd

 and b) 3
rd

 cycle of measurement of a 1 mm-thick MAPbI3 MC.  
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Figure S6. Current–voltage characteristics (j-V) with scan rate of a) 500 mV/s and 

step of 1 V of 1 mm-thick MAPbI3 MC sample b) 500 mV/s and 100 mV/s and step of 1 

V of firstly, a 2 mm-thick MAPbBr3 SC and secondly a 1.5 mm-thick MAPbBr3 MC. In 

Fig b it is remarkable the ohmic character of the characteristics j-V curve, in agreement 

with previous analysis on Cr-contacted perovskite device
1
 

 

         Figure S7. Rotation XRD spectra along α cell axis of a crystal measured with Cu 

radiation. In here only dots appear and the absence of concentric circles supports the 



monocrystalline nature of the crystal. However, is evident the high symmetry observed 

in the material around one axis 

 

 

     Figure S8. a) Absorbance spectra of MAPbI3 MC sample Inset: Tauc-plot of the 

pellet (thickness ~1000 µm), showing the typical absorption edge of MAPbI3 in 1.60 eV 

b) PXRD pattern of MAPbI3-MC sample confirming a single-phase sample with 

tetragonal symmetry at room temperature. The film show the (110), (220), and (310) 

peaks at 14.1°, 28.4°, and 32.1°, respectively. These values are in good agreement with 

the reported values
2-3

 c) and d) SEM images of the top view of a MAPbI3 thick pellets 

showing  the microcrystalline nature of the sample at different magnified areas. 

 

 
 

 

      Figure S9. a) Image of the PXRD diffractogram of MAPbBr3-MC sample 

showing cubic crystal lattice (Pm3m space group). The diffractogram show the (100), 

(110), and (200) (210) peaks at 15.0°, 21.21°, and 30.12 ° and 33.78 ° respectively. These 

values agree with those found in the literature.
4-6

 SEM images of the top view of a b) of 

MAPbBr3-SC sample after a polishing procedure and a c) of MAPbBr3-MC sample 



showing a different surface morphology d) Transmittance spectra of MAPbBr3-SC via 

UV-visible spectroscopy (SC thickness = 2.0 mm) In the inset: Tauc plot of MAPbBr3-SC 

for band gap determination (𝐸𝑔  = 2.18 eV)  
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