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Abstract—Graphic Processing Units (GPU) have become a
basic accelerator both in high-performance nodes and low-power
SoC. They provide massive data parallelism and very high perfor-
mance per watt. However, their reliability in harsh environments
is an important issue to take into account, especially for safety-
critical applications. In this paper we evaluate the influence of
the parallelization strategy on reliability of LU decomposition on
a GPU-accelerated SoC under proton irradiation. Specifically we
compare a memory bound and a compute bound implementation
of the decomposition on a K20A GPU embedded on a TK1
SoC. We leverage the GPU and CPU clock frequencies both
to highlight the radiation sensitivity of the GPU where we are
running the benchmark, and also to apply both algorithms
to solve problems with the same size when exposed to the
same radiation dose. Results show that a more intensive use of
the resources of the GPU increases the cross-section. We also
observed that most of the radiation-induced errors hang the
operating system and even the rebooting process. Finally, we
present a preliminary study of the error propagation of the LU
decomposition algorithms.

Index Terms—fault tolerance, GPU, LU decomposition,
System-on-Chip, proton irradiation.

I. INTRODUCTION

Current System-on-Chip (SoC) that include several cores
with a low-power GPU are very attractive in many envi-
ronments. They combine low cost and weight, high power
efficiency, relatively high performance and, high flexibility in
the use of their various components, as shown for multiple
applications, such as Advanced Driver-Assistance Systems
(ADAS) [1], avionics [2] and space [3]. However, in these
environments there is an additional factor that is very im-
portant to consider: the radiation sensitivity of these devices
along with the applications running on them. In many cases,
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especially in space, specific rad-hard devices are used to
withstand radiation effects [4]. However, it is increasingly
relevant to study the sensitivity of Commercial off-the-shelf
(COTS) components, which are currently considered as an
alternative for the design of spacecraft electronics [5].

Our work aims to assess how the radiation effects depend on
the parallelization strategy of applications executed on a GPU-
accelerated SoC which, together with the problem size, defines
their resource usage. To this end, we have tested two very
different versions of the same application. Note that GPUs
offer a large number of parallel computational cores, block and
warp schedulers, as well as different kinds of memories that
can be leveraged to increase the performance of the algorithms,
but can also affect their radiation sensitivity.

We have selected Lower-Upper (LU) decomposition as a
case study. This one-sided factorization is one of the bench-
marks included for example in the Rodinia suite [6] and stands
out because it is a basic computational kernel in multiple
applications. Besides it combines a high computational load
with intensive memory access, which may depend on the
particular implementation used. In fact, LU decomposition
has been used in both irradiation tests and fault injection
experiments, such as [7], [8], but to the best of our knowledge,
it has never been irradiated to study its sensitivity on GPU-
accelerated SoC.

Our experiments have been carried out on the Tegra K1
(TK1) System-on-Chip (SoC), embedded in the Jetson devel-
opment kit, which contains a quad-core CPU together with a
small GPU [9]. The tasks of the CPU cores are limited to run
a few operating system processes, prepare, launch, and verify
the result of the LU decomposition. It is worth pointing out
that no Single Event Latchups were observed in our DUT,
which confirms the observations in [10], where the authors
used much higher energy protons.

We want to highlight that our approach does not only focus
on the parallelization strategy or the size of the problem,
but also, leverages the GPU and CPU frequencies. Properly
combining both kind of frequencies allows us to adjust the
utilization of the CPU and GPU, and also to apply both LU
algorithms to solve the problems with the same size when
exposed to the same radiation dose.

Our results show that a more intensive utilization of the
GPU resources, such as its shared memory or schedulers,
produces higher computational performances. However, it also
increases the probability of suffering radiation induced errors
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and so the cross-section of the applications.
The rest of the paper is structured as follows. Section II

summarizes the related work. Section III describes the exper-
imental environment and methodology. Section IV presents
the experimental results and discussion. Finally, section V
summarizes the main conclusions.

II. RELATED WORK

A considerable number of papers have been published in
recent years analyzing the fault tolerance of GPUs. Two main
techniques have been employed to carry out those analysis:
fault injection and radiation [11], [12]. Recent papers combine
both techniques trying to model the behaviour of this kind of
device [13], [14].

It is important to consider what kind of benchmark to use
to study the fault tolerance of such devices. A widely used
benchmark is the product of matrices, but others have also
been used, such as FFT, matrix transposition or some algo-
rithms included in the Rodinia suite [6], [11]. Recently, more
complex applications related to neural networks have also been
used to assess GPUs reliability [15]. LU decomposition can be
a very suitable benchmark because it is a basic computational
kernel in multiple applications and also because it combines a
high computational load with intensive memory access, which
may depend on how it is implemented.

A number of papers that use fault injection to study the
version of the LU included in Rodinia can be found in
the literature [7]. There are also several papers that design
and analyse various fault-tolerant versions (ABFT) of this
decomposition [16]–[18]. However, to the knowledge of the
authors, LU decomposition has never been irradiated to study
its sensitivity on GPUs.

Most radiation reliability analysis of GPUs comparing the
behaviour of different benchmarks have been performed on
high performance devices under neutron radiation [8], [11],
[12].

Nevertheless, some radiation tests have also been performed
with different GPU-accelerated SoC, mainly with NVIDIA
Jetson and Qualcomm Snapdragon devices [19]. For example,
results of testing several Snapdragon devices with different
scaling technology and including different Adreno GPUs are
included in [20], [21]. Experiments use proton, neutron and
heavy ion radiation with different energy levels and analyze
the SEE sensitivity of the platforms.

Jetson TX1 and TX2 platforms were tested in [22], [23]
using proton irradiation to provide a baseline assessment of
their radiation susceptibility. Jetson TX1 and Snapdragon 820
were irradiated in [24] using protons, heavy ions and also
laser testing to characterize long-term radiation effects and
determine their dose-rate sensitivity. Radiation evaluations
show that different types of Jetson boards are acceptable
for many low earth orbit short duration missions using the
proper mitigation techniques. For example, in [25] gamma-ray
photons were employed to evaluate the tolerance to radiation
effects of a Jetson Nano board, which includes a 128-core
NVIDIA Maxwell GPU. Preliminary results suggest operation
beyond 20 krad(Si). Similar conclusions were reached in [26]

for a Jetson AGX Xavier board, including a 512-core NVIDIA
GPU, using proton irradiation. High-energy protons were used
in [10] to evaluate the cross-section and the total dose perfor-
mance of the Tegra K1 SoC by running different versions of
the FFT in the CPU and GPU.

Radiation experiments using different kinds of particles on
COTS GPU-accelerated SoC show that Single-Event Func-
tional Interrupt (SEFI) errors are a common problem in this
type of device. However, in almost all cases the error is solved
by rebooting the device and Single Event Latchups (SEL) are
very rare.

III. EXPERIMENTAL ENVIRONMENT AND METHODOLOGY

A. Device Under Test

The Tegra K1 (TK1) System-on-Chip (SoC) is fabricated
on a 28 nm Complementary Metal-Oxide-Semiconductor
(CMOS) process technology. This system comprises a quad-
core ARM Cortex A15 processor (or CPU), an ARM Cortex
A15 battery-saving shadow core, and an NVIDIA “Kepler”
K20A GPU with 1 Streaming Multiprocessor (SM) containing
192 CUDA cores [9]. The device has 2 GiB of global memory
which is the same DDR3 memory for both the CPU and
GPU. It also includes 128 KiB of L2 cache, 48 KiB of
shared memory and a register file with 32768 registers. Recall
that, following the CUDA memory model, the shared memory
included in the GPU is a fast memory allocated per thread
block that can be only accessed by all the threads of that block.
It is worth noting that neither the device’s DDR3 memory nor
any of the GPU’s internal memory support Error Correction
Codes (ECC). Therefore, even single bit flips in the memory
cells can produce errors in the applications.

The K20A GPU can be classified as a high-end COTS
embedded GPU [3]. This kind of GPU does not offer as
much computational power as high-performance GPUs, but
it combines low cost, very high-performance per watt with
the flexibility offered by programming frameworks such as
CUDA or OpenCL. It is worth pointing out that OpenCL is not
supported by the GPU included in the TK1 SoC or any other
embedded NVIDIA GPU. This device is an ideal accelerator
for SoC that can be included in embedded systems with a
wide range of applications such as ADAS, avionics or space,
among many others.

The power management strategy of the Jetson device uses
dynamic frequency scaling with dynamic voltage scaling. The
CPU and GPU frequency are dynamically adjusted depending
on how busy the device is. Both the CPU and CPU provide
a wide range of frequencies that affect the performance and
energy consumption of the applications. The user can choose
at runtime one of the available CPU and GPU processor
frequencies by using some system commands or modifying
some system files.

B. Setup and procedure

Experiments were performed in remote mode using the
protons cyclotron accelerator of the Centro Nacional de Acel-
eradores (CNA) at Sevilla, Spain, in January 2021 [27]. In
the used set-up on air, the proton beam reaches the DUT
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surface with 15.4MeV and an estimated spread of 400 keV.
The average proton flux was maintained in the order of
0.8 × 107p/(cm2s) into an homogeneous spot of 1.5cm in
diameter. The irradiation affected the whole SoC component
of the board, containing the four CPU cores, and the GPU
including its shared, L1 and L2 cache memories. The radiation
did not affect the DDR memory common to the CPU and GPU
the eMMC memory or the SD card. All our experiments were
performed in the same radiation campaign and using only one
Jetson TK1 board at room temperature.

Despite the low proton energy, the device was sensitive
enough without thinning it, as happened in previous tests
conducted by CNA on similar devices with technology of
28nm and epoxy covering [27]. When we use 15.4MeV
incident protons in the DUT surface, the energy of the particles
in the silicon active area is in the order of 10MeV or below, so
enough event rates are produced for the used technology [28].

In our setup the Jetson TK1 board sent the logs of the test
to a host controller through the serial communication port.
The host controller is near the DUT but not under direct
beam exposure. The controller was also connected to the
GPIO pins of the DUT so that it could be used to remotely
reset the Jetson TK1 board when it hangs. The whole test
was managed remotely from a laptop connected to the host
controller through ethernet. Figure 1 displays the radiation
test setup used during the experiments. The operating system
Ubuntu 14.04 with the CUDA 6.5 driver was run from the SD
card of the Jetson TK1 board, so that we avoided the radiation
effect on the system files.

DUT

ethernet
switch 

Host Controller

Fig. 1. Radiation test setup at CNA.

The LU decomposition algorithms were programmed using
C and we used a Python scripts to run the different bench-

marks. We employed the Python module Pexpect to spawn
and control a subprocess in charge of running each multi-
plication. Our experiments included three watchdogs to detect
and recover from different hangs of the tests and the operating
system. The first timeout, associated with the spawned process,
was set to a time larger than the maximum expected duration
of one LU decomposition. The second watchdog used the
watchdog Linux API to reboot the system if it hung for more
than 20 seconds. Finally, a third watchdog was implemented
on the host controller, so it could reset the device if the Jetson
system hung and did not produce any log result during more
than 25 seconds.

C. CUDA programming model

The Compute Unified Device Architecture (CUDA) [29]
was developed by NVIDIA to ease the programming of its
General Purpose GPUs. CUDA programs combine a host
code run on the CPU with one or several kernel functions
to be executed in the CUDA cores using a Single Instruction
Multiple Threads (SIMT) model. That is, every thread runs the
same instructions on a different core of the GPU in lockstep,
usually affecting different data. The host code is mainly in
charge of transferring the data to the GPU, orchestrating the
execution of the different kernels on the cores and getting and
verifying the results.

In CUDA, GPUs are based on an array of Streaming
Multiprocessors (SM) containing tens or hundreds of CUDA
cores. Those cores are much simpler than CPU cores and are
mainly devoted to perform basic arithmetic operations in a
pipelined fashion. Latest GPUs also contain special tensor
cores designed to optimize the basic operations performed
during the training and inference steps of neural networks.
Threads are grouped by the programmer in blocks that are
dispatched to one SM. Thread blocks are organized in a grid
that can have up to three dimensions. Besides, thread blocks
are divided in warps usually containing 32 threads. Modern
SMs contain several schedulers that can schedule several warps
in parallel to groups of 32 cores. To increase the occupancy of
the GPU, tens of warps can be kept active on each SM, so that
whenever the threads of one warp have to wait for example
while the data they need is loaded from memory, another warp
can be executed.

The performance of the CUDA programs depends on several
parameters [29]. One of the most important goals of the
programmers is to maximize the GPU occupancy, that is, the
ratio of active warps on an SM with respect to the maximum of
active warps supported by each SM. This ratio is different on
each GPU architecture. One way to increase the occupancy
is to define thread blocks containing enough warps to keep
the cores active while hiding the latencies between dependent
instructions, synchronizations and other stalling factors. The
main idea is to maximize the number of instructions per clock
cycle during the execution of the programs. Another important
factor that determines the performance is the efficient use of
the fastest memories of the GPU. Whenever possible, data
should be stored in the registers that are local to each thread,
or in the fast memory shared by all the threads of each block.
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Kernels should avoid accessing the global memory of the GPU,
which is much slower than the shared memory. Moreover, data
should be organized in memory to minimize the number of
load operations. These accesses can be coallesced if adjacent
memory positions are loaded by threads with consecutive
identifiers in its block.

There are several limiting factors to the performance that
depend on the resources available in the GPU. For example,
individual threads should not use more than a given number
of registers and there is also a limit to the number of registers
or the shared memory that can be used by each thread block.
Therefore, programmers should implement their codes to avoid
any of the limiting factors being reached.

D. LU decomposition benchmark

LU is a Lower-Upper decomposition where a matrix is
factorized as the product of a lower triangular matrix and an
upper triangular matrix. It is usually performed as a first step
towards the direct solution of square systems of equations, and
it is also used to invert a matrix or compute its determinant.
We have used CUDA to implement two very different parallel
algorithms to perform LU decomposition. Our goal is to
compare the behavior of two codes that make a different use
of the resources of the SoC, including the memories of the
GPU and also the warp schedulers or instruction dispatchers
included in the SM.

The first LU decomposition algorithm, called block, is the
block version included in the Rodinia benchmark suite [6].
Figure 2 shows the main panels of the first iteration of this
algorithm. The algorithm starts from the top left corner and
applies the following three steps:

A11 ← L11U11 (1)
L21 ← A21U

−1
11 U12 ← L−1

11 A12 (2)

A
′

22 ← A22 − L21U12 (3)

Then, the decomposition continues by applying the same
steps to the A

′

22 panel obtained after finishing the first itera-
tion. Three CUDA kernels are used to perform the three main
steps of the algorithm, namely, diagonal, perimeter and
internal. In Figure 2 we can see the panels affected by
each kernel during the first iteration on a different color. The
kernel diagonal performs the LU decomposition of the top
left panel A11 by means of a simple method, using only one
thread-block with blk threads. Every thread is in charge of
computing one row of U11 and one column of L11 storing
the intermediate results in the shared memory of the block.
The last two kernels partition the panels A12, A21 and A22

in square blocks of size blk × blk (dotted red lines in Fig. 2)
and copy and update them in parallel by leveraging the shared
memory of the GPU to reduce the accesses to global memory.

The second parallel algorithm that we have evaluated
is called rc, and uses the same method that the ker-
nel diagonal, but applied to the whole matrix. A very im-
portant difference with respect to the algorithm block is that
all the elements of the matrix are loaded and stored from/to the
global memory of the GPU. Besides, every thread may have

to compute more than one row and column, depending on the
size of the matrix. The algorithm rc is obviously much slower
than the block version, as it uses less efficiently the cores and
memories of the GPU.

A11 A12

A21 A22

U11
U12

L21 A22
|

b

b

n

n

L11

Fig. 2. Main panels and updates during the first iteration of the block LU
decomposition.

E. GPU resources usage

Both algorithms make a very different use of the memories
of the GPU, and also of other resources, such as the warp
schedulers included in the SM of the GPU. On the one
hand, algorithm Block successively executes each of its three
kernels on each iteration. The size of the grid used to launch
each kernel adapts to the size of the matrix panel factorized
on each iteration. For example, suppose that Fig 2 represents
a matrix of size 64× 64, where each small square block is of
size 16× 16. Then, during the first iteration of the algorithm,
kernel diagonal launches one block of threads of size 16;
kernel perimeter launches 3 blocks of threads of size 32;
and kernel internal launches 3×3 blocks of threads of size
16×16. On the other hand, algorithm rc uses a grid including
only one block of threads of size 64. Therefore, the number
of kernels launched when executing both algorithms is quite
different, and thus, it is also the occupancy of the cores and
the use of the 4 warp schedulers of the GK20 GPU included
in the TK1 SoC.

Table I shows that the achieved occupancy of the kernel
of the algorithm rc and the three kernels of the algorithm
block is quite different. For example, with a matrix of size
1024 × 1024 and 1024 threads per block, the kernel rc can
keep 32 warps active per cycle, which is 50% of the maximum
number of warps that can be active in a K20A GPU (64). The
kernel diagonal uses only one thread block with one warp
and so it only gets an occupancy of 1/64 = 1.56%. On the
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TABLE I
METRICS OF THE GPU RESOURCE USAGE WITH A MATRIX OF SIZE

1024× 1024.

Metric diagonal perimeter internal rc
Achieved Occupancy (%) 1.56 18.65 91.96 50.00
Eligible Warps Per Cycle 0.06 1.00 6.26 2.01
Executed IPC 0,06 0.62 1.23 0.12
Number of Registers 30 25 17 24
Shared mem (B/th-blk) 1024 3072 2048 0
Global Load Trans. (M) 0.001 0.10 4.10 196.52
L2 Read Trans. (M) 0.02 0.25 8.31 215.51
Shared Load Trans. (M) 0.04 1.95 16.39 0

contrary, the kernel internal uses a large number of warps,
which results in an occupancy close to the optimum (91.96%).
The table also shows that the kernel internal achieves
the maximum Instructions Per Cycle (IPC) and occupancy.
As it clearly dominates the execution time of the algorithm
block, this algorithm clearly overcomes the computational
performance of the algorithm rc.

Radiation may have a quite different effect on both algo-
rithms. For example, algorithm rc does not use the shared
memory of the GPU and thus, a particle modifying the
information stored in this memory will not produce any
error. However, this algorithm accesses much more the global
memory than the algorithm block. Even if this memory
is not exposed to the radiation beam, the probability of a
particle modifying the data being loaded and stored from/to
the L2 cache memory notably increases. Table I shows that
the algorithm rc performs a much larger number of load
transactions from global memory and read transactions from
L2 cache than the three kernels of the algorithm block.
Besides, algorithm block makes a much more intensive use
of the warp schedulers of the SM, as it has to launch three
different kernels with different block sizes on the successive
iterations of the algorithm. This fact can be seen if we compare
for example the number of eligible warps per cycle of the
kernels of both algorithms shown in Table I. All the data
included in this table has been obtained using the CUDA
profiler nvprof [30].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Radiation experiments

Our first radiation experiments were devoted to determine
an appropriate proton flux that allowed us to launch the LU
algorithms. We found out that medium-intensity proton fluxes,
(i.e. 2.0×108p/(cm2s)), hung or rebooted the Linux operating
system even if it was not executing any user application.
Besides, in those cases, the system was unable to complete
the rebooting process without hanging again. Therefore, we
reduced the flux to a value that allowed us to launch at least an
average of 10 consecutive LU decompositions without hanging
the test or the operating system. The average flux used in all
our subsequent experiments was 0.8× 107p/(cm2s).

In previous experiments performed by other authors no
Single Event latchup (SEL) were observed, even when the
Tegra TK1 was irradiated with the equivalent of at least 21.0

years heavy ion fluence up to a Linear Energy Transfer of
approximately 10MeV cm2/mg [10]. Our results, using lower
energy protons, but with higher fluxes and fluence, confirm this
behaviour. No SEL was observed in our experiments, where
the device received a total fluence of 2.2 × 1012p/cm2 at
15.4MeV .

Once the average flux was fixed, we performed experiments
to evaluate the behaviour of the DUT depending on the
algorithm used to perform matrix decomposition, the CPU and
GPU frequencies, and also on the size of the matrix. Single
precision elements were used in all the experiments. Table II
shows the main parameters of each of the tests with both LU
decomposition algorithms. For each algorithm and problem
size we launched the test using two different CPU and GPU
frequencies called f1 and f2 in the names of the tests. Those
frequencies were different for each algorithm and problem
size. As radiation affects the whole SoC, we cannot evaluate
separately the effects on the GPU and CPU cores. However, we
can use the clock frequencies of both components to highlight
the effects on the GPU, where we are running our benchmark.
We should be cautious when comparing results obtained under
different frequencies, since radiation behaviour of the device
under test can be different. However, this method allows us
to increase or decrease the percentage of the time of the test
devoted to performing the LU decomposition in the GPU. As
this computation is performed while the CPU is mainly idle,
most radiation errors would be caused by the GPU activity.

For example, the first two rows of Table II show the
parameters used in the algorithm block with matrices of
size 1024 (1k). The test blk1kf1 uses the minimum GPU
frequency (72 MHz) and the LU kernel executed in the GPU
takes 73.2% of the total time of the test. On the contrary,
the test blk1kf2 uses a higher GPU frequency (324 MHz),
and in this case the LU kernel takes only 18.6% of the total
time of the test under radiation. This way, if we increase the
percentage of time spent by the LU decomposition, the results
of the radiation mainly show how the kernels running in the
GPU are affected by the proton flux. We can then compare
the results with the ones obtained by using a higher GPU
frequency, which reduces the percentage of time devoted to
the LU decomposition and thus highlights the effect of the
radiation on the tasks performed by the process running on
the CPU. That process is in charge of generating the matrix
to factorize, transferring the data to and from the GPU and
verifying the result of the decomposition with respect to a
previously stored golden result.

Our experiments show that the block algorithm is 8x faster
than the rc algorithm with matrices of size 1024, and 10x
faster with matrices of size 2048. The times shown in Figure 3
have been obtained using a frequency of 396 MHz for the
GPU. The frequency of the CPU is not fixed as it does not
affect the execution time of the kernel in the GPU. In order
to submit the tests with both algorithms to the same radiation
dose, we chose CPU and GPU frequencies that produce the
same total execution time for the same problem size. The
execution times are shown in the column Total of Table II.
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Fig. 3. Execution times of both LU algorithms.

TABLE II
MAIN PARAMETERS OF THE RADIATION TESTS. ”BLK” IN THE NAME OF

THE TESTS REFERS TO BLOCK ALGORITHM, 1K=1024 AND 2K=2048.

CPUFreq GPUFreq Total Kernel
(MHz) (MHz) (ms) (% Total)

blk1kf1 696 72 1003 73.2%
blk1kf2 204 324 1145 18.6%
rc1kf1 2065 612 1013 90.4%
rc1kf2 564 804 1055 68.6%
blk2kf1 2065 180 2008 92.1%
blk2kf2 696 252 2050 74.8%
rc2kf1 2065 852 5043 96.8%

B. Radiation results

Due to the total available time to perform radiation tests,
we run around 1000 LU decompositions for each combination
of algorithm and frequencies for the problems with size
1k=1024, and around 500 LU decomposition for the problems
with size 2k=2048. Once the parameters defining each batch
of tests were established, the radiation was started and the
beam was kept active during the 1000 LU decompositions.
Each decomposition involved not only the factorization of the
matrix, but also the transfer of its initial values from CPU
to GPU, the transfer of the result matrix from GPU to CPU
and also the verification of the result using the golden copy.
After each batch of LU decompositions the beam was stopped
and a few minutes were devoted to configure the next batch.
Columns in Table III show the results of the radiation for both
algorithms, with both problem sizes and frequencies. Column
Correct contains the number of LU decompositions that
finished with the correct result, while column SDC contains
the number of LU decompositions affected by a Silent Data
Corruption and finished with a wrong result. Regarding the
column HangTest, it contains the number of hangs produced
during one of the LU decompositions due to the kernel running
on the GPU or the processes running on the CPU. Those hangs
forced us to reboot the Jetson board, which took more than 20
seconds. Finally, column HangBoot contains the number of
hangs produced by the radiation during the reboot of the board,

TABLE III
RESULTS OF THE IRRADIATION CAMPAIGN.

Correct SDC HangTest HangBoot
blk1kf1 1011 18 21 11
blk1kf2 1017 15 39 19
rc1kf1 1023 3 27 9
rc1kf2 1014 4 32 12
blk2kf1 500 18 21 1
blk2kf2 478 22 17 8
rc2kf1 478 19 55 21

which involved restarting the slow reboot process. The table
shows that most of the LU decompositions are not affected
by the radiation or mask its effects. Only a few SDCs were
detected for each algorithm and problem size, and the number
of times the test or the reboot hung was larger than the number
of decompositions finished with wrong results.

In order to compare the radiation sensitivity of both LU
decomposition algorithms we computed their cross-section
with the two problem sizes and show the results in Figure 4.
Cross-section is calculated by dividing the number of errors
by the radiation flux (protons/cm2). Higher cross sections
imply higher probabilities for a particle that hits the GPU to
produce an error. The figure includes the confidence intervals
computed with a confidence of 95%. Firstly, we can see
that increasing the size of the problem increases the cross-
section of both algorithms. Besides, a more intensive use of
the resources of the SoC involves a higher probability of
radiation induced errors. The block algorithm gets much
higher performances than the rc algorithm by leveraging the
shared memory of the GPU. However, stressing the internal
memory and other components of the GPU also involves
a higher cross-section. Specifically, Table II shows how the
block algorithm achieves a larger occupancy by having more
eligible warps per cycle. That algorithm also executes more
instructions per cycle and uses the shared memory of the GPU.
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Fig. 4. Cross-section of both LU decomposition algorithms.

We can also highlight the effect of the radiation on the
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GPU by reducing its frequency and analyzing the cross-section
obtained for both algorithms and problem sizes. Recall that
with lower frequencies the percentage of radiation time that
affects the LU decomposition on the GPU increases. Figure 5
shows that the cross-section increases in all cases when the
percentage of the total time running the LU in the GPU
decreases. This percentage is shown at the top of each bar of
the figure. In those cases we reduce the effect of the radiation
on the GPU while keeping its effect on the processes running
on the CPU. Therefore, it seems that the processes running on
the cores of the CPU are more sensitive to the radiation than
the kernels running on the cores of the GPU.
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Fig. 5. Effect of the GPU frequency in the cross-section of both LU
decomposition algorithms. Problem size: 1k=1024 and 2k=2048. Labels in
bars contain the percentage of time of the test spent running the LU kernels
on the GPU. Frequencies f1 and f2 are different for each algorithm and
problem size, and their values can be found in Table II

Finally we wanted to isolate the effect on the cross-section
of the very long time taken by the reboots of the operating
system whenever the test hung. Figure 6 shows that including
the HangBoot errors (see Table III) in the computation of
the cross-section reduces it. The number of errors taken into
account increases, but the total time of the test increases even
more, due to the long time taken to reboot the board.

C. Error propagation

Error propagation is a very important issue in LU decom-
position. In most cases the corruption of one element of the
matrix due to a soft error propagates to a large number of ele-
ments of the final matrix. This is caused by the dependence in
the computations performed during the decomposition, where
the values of the elements depend on others previously com-
puted. Therefore, this problem has been previously analyzed
in the literature. For example, in [17], [18], [31] the authors
studied the pattern of the error propagation of block versions
of LU decomposition. In all three cases the authors studied the
behaviour of the main steps of the algorithm and concluded
that the rate and pattern of error propagation depend on the
step where the soft-error occurs. Therefore, when designing
error mitigation methods or ABFT versions of LU decom-
position, different detection and correction schemes should
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Fig. 6. Cross-section of the tests with and without including the effect of the
hangs during the Jetson board reboot.

be applied to the different steps of the algorithm. Usually,
the authors perform a theoretical analysis or modelling of the
error propagation based on the operations performed in each
step of the algorithm and the dependence of the computations
affecting the different elements of the matrix. Fault injection
is used in [17], [18] in order to evaluate the coverage and
overhead of the detection and correction schemes proposed. To
the best of our knowledge no experimental evaluation of the
error propagation of LU decomposition has been performed
under radiation.

During our experiments we logged not only if each test
got the correct result or hung, but also the number of wrong
elements when an SDC occurred. Nevertheless, as the number
of SDCs is small, we cannot perform a significant statistical
analysis or detailed comparison of the behaviour of the algo-
rithms.

Figure 7 shows the percentage of wrong elements in the 99
SDCs that were detected during the 5831 LU decompositions
launched under radiation. The first bar shows the number of
tests with a percentage of wrong elements in the result matrix
between 0% and 1%, the second bar shows the number of tests
with a percentage between 1% and 2%, and so on. We can see
that in most cases, when an SDC occurs, the error propagates
to less than 1% of the elements of the matrix. In 8 tests the
error did not propagate at all and affected only one element of
the result. In almost all cases, less than 20% of the elements
are affected by the data corruption. Nevertheless, in 4 cases
almost all the elements of the decomposition were different
from the golden result.

Both algorithms show a similar behaviour regarding their
error propagation. That is, in most cases the data corruption
propagates to less than 10% of the elements.

V. CONCLUSIONS

In this work we have evaluated the reliability of a low-power
GPU-accelerated SoC under proton irradiation. We have used
as benchmark two very different CUDA parallel algorithms
that perform LU decomposition on the GPU. By leveraging
the frequencies of both CPU and GPU we have been able to
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Fig. 7. Percentage of wrong elements in the tests with SDC.

compare the behaviour of both algorithms with problems of
the same size and submitting the tests to the same radiation
dose.

It is worth pointing out that the results of most of the LU
decompositions are not affected by the radiation, and SDCs
occur in less than 2% of the tests. However, the experiments
show a substantial number of application hangs (close to 4%),
and most of them forced a very slow reboot of the system in
order to launch the next LU decomposition, which would be
unacceptable in safety-critical applications. Besides radiation
also hung more than one third of the booting processes, which
forced a hardware reset of the board from the host controller.
In order to reduce the very negative effect of the rebooting
process a compact Operating System with a very fast booting
should be used.

Results show that a better use of the resources of the
GPU, such as its shared memory, can greatly improve the
computational performance of LU decomposition. However, it
also increases by about 15% its cross-section for all problem
sizes. That is, the block algorithm is much faster than the
rc algorithm, but more prone to radiation-induced errors. Our
experiments also show that the processes running on the cores
of the CPU are more sensitive to radiation-induced errors
than the kernels running on the cores of the GPU. However,
different tests and more extensive experiments are required to
confirm this behaviour.

REFERENCES

[1] J. Fickenscher, S. Reinhart, F. Hannig, J. Teich, and M. E. Bouzouraa,
“Convoy tracking for ADAS on embedded GPUs,” in 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 959–965, IEEE, 2017.

[2] M. Dı́az, R. Guerra, P. Horstrand, E. Martel, S. López, J. F. López,
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