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Abstract—Monitoring water bodies from remote sensing data is
certainly an essential task to supervise the actual conditions of the
available water resources for environment conservation, sustain-
able development, and many other applications. Being Sentinel-
2 images some of the most attractive data, existing traditional
index-based and deep learning-based water extraction methods
still have important limitations in effectively dealing with large
heterogeneous areas since many types of water bodies with different
spatial-spectral complexities are logically expected. Note that, in
this scenario, optimal feature abstraction and neighborhood in-
formation may certainly vary from water to water pixel, however
existing methods are generally constrained by a fix abstraction
level and amount of land cover context. To address these issues,
this article presents a new attentional dense convolutional neural
network (AD-CNN) especially designed for water body extraction
from Sentinel-2 imagery. On the one hand, the AD-CNN exploits
dense connections to allow uncovering deeper features while si-
multaneously characterizing multiple data complexities. On the
other hand, the proposed model also implements a new resid-
ual attention module to dynamically put the focus on the most
relevant spatial-spectral features for classifying water pixels. To
test the performance of the AD-CNN, a new water database of
Nepal (WaterPAL) is also built. The conducted experiments reveal
the competitive performance of the proposed architecture with
respect to several traditional index-based and state-of-the-art deep
learning-based water extraction models.

Index Terms—Convolutional neural networks (CNNs), dense
networks, residual attention networks, Sentinel-2, water bodies.

I. INTRODUCTION

W ITHOUT doubt, water is a significant part of nature
with a key role in human life, environment, and climate.

Being one of the most intensively exploited natural resources, the
accurate and continuous knowledge on terrestrial water is funda-
mental in many different applications, such as precision farming,
disaster management, drought detection, or Earth surface analy-
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sis [1], [2], [3], [4]. In this way, monitoring water bodies becomes
an essential task to supervise the actual conditions of the avail-
able water resources along with environment conservation and
sustainable development [5]. This relevance is such that even
small changes in the water distribution may have a huge impact
on human lives, causing soil subsidence, inland inundation, and
health hazards, among other critical issues. Besides, water is
also an integral part of different thematic and topographic maps
used for many different purposes. Under this scenario, timely
updated data are logically required to effectively monitor water
bodies, which tend to change from time to time unlike other
more stable structures like buildings or roads [6]. Unfortunately,
this demand is difficult to cover using time consuming in situ
procedures, especially in the context of developing countries [7].

With the expansion of remote sensing technologies, different
satellites and constellations were designed to satisfy the reg-
ular provision of multispectral Earth observation data, which
become particularly useful for water monitoring [8]. From
Moderate-Resolution Imaging Spectroradiometer (MODIS) [9]
and Landsat [10], to many other open and commercial satellites
(e.g., Sentinel, Rapideye, ZY-3, EnviSat, Corona, radar satellite
(RADARSAT), Gaofeng, etc.), multiple Earth observation data
can be available for analysis [11]. Among all the available
alternatives, Sentinel-2 has certainly shown to be one of the
most suitable missions for the accurate detection of water bodies
because of the advantages of its imaging products [12]: free
availability, 13-band spectral resolution, and high spatial reso-
lution of up to 10 m. Different water detection works published
in the literature exemplify this fact, e.g., [13], [14], [15].

In general, two dominant trends can be identified when it
comes to automatic water body extraction from remote sensing
images [16]: traditional index-based methods and deep learning-
based techniques. Despite their simplicity based on spectral
indices and thresholding, traditional water extraction approaches
may have important constraints in accurately distinguishing
water from snow, mountains, buildings, and shadows due to the
own limitations of pixel-wise computations [17], [18]. Auxiliary
data like digital elevation model (DEM) may help to relieve
some of these issues [19], [20]. However, how to choose the
most suitable threshold value to extract even small water bodies
is still a major problem [21]. As a result, traditional approaches
are often not the best solution at global scales since they are
unable to integrate shapes and texture information characteristic
of water pixels.

In contrast, deep learning-based methods take advantage
of convolutional neural networks (CNNs) to uncover more
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discriminating spatial-spectral features for the better identifi-
cation of water bodies [22]. In this respect, different CNN
technologies have been successfully exploited, being the classi-
fication scheme one of the most general mapping frameworks.
For example, Pu et al. [23] propose a hierarchical CNN for
water-quality classification. Analogously, Rezaee et al. [24]
build a two-level network for exploiting high-level water features
too. Chen et al. [25] adopt an adaptive pooling to better preserve
water context and boundary information. Other works also pro-
pose different multiresolution schemes for further improving
the generalization capabilities of CNN-based features for water
classification [26], [27].

Despite all the conducted research, there are still important
challenges in terms of the abstraction level of the uncovered
water features based on the network design. Due to larger depths,
deep learning models tend to suffer from the vanishing gradient
problem that rapidly degrade the learning process, and hence,
the quality of the results [28]. Thus, many of the existing water
classification networks, e.g., [23], [24], [25], try to control the
number of layers and feature maps for relieving these negative ef-
fects. Nonetheless, this strategy may often reduce the abstraction
capabilities of the extracted features while limiting the resulting
classification performance, especially when considering rich
spatial-spectral data like in the Sentinel-2 case. In this scenario,
this article proposes a new CNN-based classification model
(AD-CNN) especially designed for water body extraction from
Sentinel-2 imagery, based on the following key aspects: dense
connectivity, residual learning, and attention. On the one hand,
dense connections are used to relieve vanishing gradients as well
as an excessive expansion of receptive fields at very deep layers
with the objective of better preserving water local information
when extracting deeper features. Besides, they also work for
jointly exploiting from lower to higher level features in order
to deal with the numerous spatial-spectral complexities of water
pixels at large scales. On the other hand, a new residual attention
module (RAM) is implemented to dynamically put the focus
on the most relevant spatial-spectral features when identifying
water bodies. To evaluate the performance of the proposed
approach, we first create a new dataset of Nepal (WaterPAL)
made of Sentinel-2 images, DEM data, and ground-truth water
information. Then, we conduct multiple experiments including
several state-of-the-art index-based and CNN-based water ex-
traction methods. Summarizing, the main contributions of this
work can be listed as follows:

1) We build a new database of Nepal (WaterPAL) composed
by Sentinel-2 images, DEM data, and ground-truth water
information.

2) We propose a novel water extraction architecture (AD-
CNN) that jointly exploits dense connectivity, residual
learning, and attention mechanisms to uncover more dis-
criminating deep features from water bodies.

The remaining part of this article continues with the literature
review of related works in Section II. Section III describes the
geographical location of the study area and the detailed steps for
the dataset preparation. Section IV delineates the workflow and
structure of the proposed methodology. Section V provides de-
tails about the experimental setup and results. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Traditional Index-Based Methods

In general, index-based methods focus on the spectral proper-
ties of water with the objective of defining single-band or multi-
band computations to isolate water pixels within a particular
value range. In this way, a common practice consists in exploit-
ing the conjugate ratio between green and red bands to segregate
the spectral response of water [29]. To avoid noise from artificial
constructions like buildings, this approach is often improved by
using near-infrared (NIR) instead of red bands [30]. With these
considerations in mind, different indices have been proposed
and utilized in the literature to extract water bodies [31]. One
of the most popular indices is the normalized difference water
index (NDWI) [32], which is calculated using green and NIR
bands as follows:

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(1)

where ρgreen and ρNIR are green and NIR reflectance bands,
respectively. The values of this index range between −1 and
1, representing positive values water bodies [33]. However,
depending on the region of interest, some built-up areas could
still generate noisy false positive results. Then, other authors
also propose the modified NDWI (MNDWI) [34] as

MNDWI =
ρgreen − ρMIR

ρgreen + ρMIR
(2)

where ρMIR is the midinfrared (MIR) reflectance band. With
this change, built-up areas usually become negative but some
additional problems appear with mountain shadows and snow,
making the MNDWI index mainly suitable for urban water
extraction. Similarly, another index termed new water index
(NWI) was also proposed in [35], where green and NIR bands
are replaced by blue and Landsat MIR bands as follows:

NWI =
ρblue − (ρNIR + ρMIR1

+ ρMIR2
)

ρblue + (ρNIR + ρMIR1
+ ρMIR2

)
. (3)

In addition to these, other related indices have also shown
prominent results in detecting water bodies from remote sensing
data. For instance, it is the case of the normalized difference
vegetation index (NDVI) [36], which employs the difference
between NIR and red bands, following the same scheme as
NDWI, to primarily extract vegetation while detecting water
as negative values. In fact, some works in the literature show the
advantages of jointly exploiting both NDWI and NDVI for water
body extraction, e.g., [37]. Other authors also propose using the
principal component analysis (PCA) approach to only consider
the most informative image components when computing the
own index, as in the case of the enhanced water index (EWI) [21].
However, the high computational cost of PCA strongly limits the
applicability of this scheme over large interest regions.

B. Deep Learning-Based Methods

Despite their efficacy, traditional index-based methods usu-
ally have important limitations when working at global scales
since optimal water detection ranges may often vary from local
to local scenes [17]. To provide a more general solution, deep
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learning methods aim at exploiting characteristic spatial-spectral
information of water pixels via CNNs. In this regard, numerous
approaches can be found in the related literature.

For instance, Yang et al. [38] propose using an stacked sparse
autoencoder for extracting pixel-wise features that take into
account neighborhood information using a feature expansion
algorithm. In the case of [22], the authors opt by developing
a classification CNN, named Deep-WaterMap, which is specif-
ically trained to separate water from land, snow, ice, clouds,
and shadows using Landsat images as input. Chen et al. [25],
extend this concept to ZY-3 and Gaofeng satellites by adopting
a self-adaptive pooling into the own network to extract water
features more robust to terrain local variations.

Despite the positive results achieved by these and other rele-
vant deep learning methods, the high spatial diversity of water
bodies may lead to highly boundary-dependent features that
may eventually limit the generalization power and performance
of the uncovered features. To relieve these effects, different
multiresolution schemes have been proposed in the literature.
For example, Wang et al. [39] present a multiscale CNN for
extracting urban water from Landsat imagery. Zhang et al. [26]
also define a multiresolution encoder–decoder network, which
is intended to characterize water pixels regardless the consid-
ered terrain conditions. Additionally, Pu et al. [23] propose
a four-layer CNN with a hierarchical structure to accurately
estimate nonoptically active parameters when classifying water
quality levels. Following a similar scheme, Rezaee et al. [24]
develop a two-level CNN for complex wetland classification
from Rapideye images. Unlike these classification models that
work at pixel level, other works also try to exploit different
scene-based segmentation schemes to uncover water. In [40],
the authors recommend using the correlations among multires-
olution scales to refine the uncovered features. Xia et al. [41]
take advantage of an U-shaped segmentation network (U-Net)
to allow skip connections between different resolution levels.
Zhang et al. [42] adopt an squeeze-and-excitation technique for
the recalibration of feature channels when segmenting water.
Nonetheless, these segmentation models have the disadvantage
of requiring full-scene annotated data in contrast to pixel-based
water classification, which become more suitable to relieve the
data scarcity problem in developing countries like Nepal.

In all water extraction models, it was observed that initial
layers tend to extract low-level features, like edges, whereas
deeper layers are focused on higher level features, like spatial-
spectral patterns and textures. In this scenario, one may think
that deeper features are expected to provide more generalization
capabilities for water extraction since the deeper the network the
higher the abstraction level. Nevertheless, this is not always the
case due to the so-called vanishing gradient problem [43]. When
it comes to CNN-based methods, many of the most successful
water classification networks, e.g., [23], [24], [25], need to
control the number of layers and filters for avoiding a poor
gradient propagation, and hence, a rapid performance saturation.
Under these circumstances, the use of a reduced number of
layers may certainly constrain the abstraction capabilities when
characterizing water bodies, especially when dealing with rich
spatial-spectral data like in the Sentinel-2 case. Although some

mechanisms, such as residual [44] or dense models [45], have
also been presented in the standard computer vision field to
allow additional layers, how to effectively implement and exploit
deeper features for outperforming state-of-the-art water classi-
fication models with remote sensing data is still an open-ended
issue. Similarly, with the operational exploitation of the most
recent CNN-based attention mechanisms to dynamically pay
attention to the most relevant features [46]. Beyond existing
pixel-wise water classification networks, this article pursues to
design a novel CNN classification architecture especially de-
signed for water body extraction from Sentinel-2 data by jointly
exploiting the following three aspects: dense connections [45],
residual learning [44], and attention [47]. Section IV will provide
all the corresponding details.

III. STUDY AREA AND DATASET

The study area comprises 18 districts of the Terai region
located in the southern plains of Nepal. Specifically, it occupies
about 28 402.98 km2 within 26.42◦ to 29.07◦ North latitudes and
80.47◦ to 87.01◦ East longitudes in the WGS 1984 coordinate
system. The Terai is considered as the greenbelt of Nepal being
covered with grasslands, tropical monsoon forests, savanna,
clay, and loam soil. In terms of biodiversity, Terai is also home
to 35 species of mammals, 111 of birds, 46 of herpetos, and
106 of fishes [48]. With the 55.7% of its agricultural land within
an altitude range from 60 to 300 m, Terai is known as the rice
bowl or agricultural production house of the country [48], [49].
Moreover, nearly a 47% of Nepal population inhabit in Terai
with an increasing population density of around 350 people
per km2 [50]. Certainly, all these factors make regional water
resources a major concern for the global development of the
country as well as the sustainability of its agricultural sector.
In this sense, Terai contains many seasonal and annual rivers
mostly originated from the Siwalik hills on the northern side of
the region. Besides, Terai features 163 wetlands and 4 Ramsar
sites [51] that also make the automatic and remote detection
of water a particularly relevant task. Fig. 1 shows the study
area of this research and the corresponding Sentinel-2 tiles.
Focusing on this region of interest, we build a water body
extraction database (WaterPAL), made of Sentinel-2 images,
DEM data, and ground-truth water information, as detailed in the
following sections. The WaterPAL collection will be accessible
on https://github.com/rufernan/ADCNN.

A. Sentinel-2 Images

Sentinel-2 images [52] contain 13 spectral bands with three
different spatial resolutions of 10, 20, and 60 m. Blue (B), green
(G), red (R), and near-infrared (NIR) bands are provided at 10 m,
while the four vegetation red-edge bands and the two short wave
infrared (SWIR) bands are provided at 20 m. The remaining
channels, i.e., coastal aerosol, water vapor, and cirrus (SWIR),
are provided at a 60-m resolution. Table I summarizes the list
of bands acquired by the multi-spectral instrument carried by
Sentinel-2.

Considering this data nature, a total of 11 cloud-free Level-
2 A Sentinel-2 products from 2020 were downloaded to cover

https://github.com/rufernan/ADCNN
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Fig. 1. Study area covering the southern region of Nepal. As it is possible to see, the considered area includes a total of 11 different Sentinel-2 tiles.

TABLE I
SENTINEL-2 BAND DESCRIPTION

the whole study area. For such task, we essentially used the
Copernicus Open Access Hub1 (COAH) platform. Initially, a
preliminary tile inspection regarding the amount of clouds,
cirrus, number of bands, spatial coverage, etc., were performed
to avoid any issue in the selected products. However, some data
problems (such as, missing regions or bands) were found in
some of the cloud-free tiles retrieved by COAH for the year
2020. Hence, T45RUK, T45RUL, T45RTL, and T45RVK tiles
were alternatively obtained from the United States Geological
Survey Earth Explorer data portal2 (USGS-EE) to complete our
dataset. For these scenes, Level-1 C data were downloaded from
USGS-EE and converted into Level-2 A images by applying
the Dark Object Subtraction atmospheric correction available in
the Quantum Geographic Information System Desktop 3.14.15.
Finally, all the downloaded products were processed by the
Sentinel Application Platform to generate uniform data cubes at
10 m using a bicubic resampling kernel. Besides, B01 and B10

1[Online]. Available: https://scihub.copernicus.eu/
2[Online]. Available: https://earthexplorer.usgs.gov/

bands were excluded since they are only useful for atmospheric
correction purposes. It is important to note that CNN-based mod-
els require spatially homogeneous input data, thus, in this work,
we used the standard bicubic interpolation for up-sampling the
lower resolution Sentinel-2 bands to their best resolution bands
(10 m).

B. DEM Data

DEM raster data covering the study area were downloaded
from the United Nations Office for Humanitarian Affairs Ser-
vices (UN-OCHA) at the following website.3 Specifically, these
data were provided by the NASA Shuttle Radar Topographic
Mission, being last updated on November 10, 2019. In more
details, the downloaded data are represented at 90-m spatial
resolution with geographic latitude/longitude coordinates. Since
the downloaded Sentinel-2 images use the Universal Transverse
Mercator projection system (with Zones 44 N and 45 N), DEM
data were accordingly projected, resampled via a bicubic kernel
to 10 m and converted to unsigned 16-bit integers in order to be
integrated as an additional band in the corresponding Sentinel-2
products. For all these steps, we made use of ArcGIS Pro 2.6
software with its default settings.

C. Ground-Truth Information

For obtaining ground-truth information about the water bodies
within the region of interest, we downloaded the River dataset
from UN-OCHA website.4 In this case, this dataset was last
updated on November 24, 2015, containing different water body
types in vector format. For the sake of simplicity, we binarized
the available labels to water and non-water classes. Besides,
we also reprojected, rasterized, and clipped the resulting data
to generate a ground-truth water map for each Sentinel-2 tile.

3[Online]. Available: https://data.humdata.org/dataset/Nepal-digital-model-
elevation-dem/

4[Online]. Available: https://data.humdata.org/dataset/Nepal-watercourses-
rivers/

[Online]. ignorespaces Available: ignorespaces https://scihub.copernicus.eu/
[Online]. ignorespaces Available: ignorespaces https://earthexplorer.usgs.gov/
[Online]. ignorespaces Available: ignorespaces https://data.humdata.org/dataset/Nepal-digital-model-elevation-dem/
[Online]. ignorespaces Available: ignorespaces https://data.humdata.org/dataset/Nepal-digital-model-elevation-dem/
[Online]. ignorespaces Available: ignorespaces https://data.humdata.org/dataset/Nepal-watercourses-rivers/
[Online]. ignorespaces Available: ignorespaces https://data.humdata.org/dataset/Nepal-watercourses-rivers/
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Fig. 2. Sample data tile with (a) Sentinel-2, (b) DEM, and (c) label information. Note that Sentinel-2 product is visualized in RGB, DEM data ranges from the
minimum global value (blue) to the maximum global value (yellow), and water labels are displayed in blue.

TABLE II
TOTAL NUMBER OF PATCHES EXTRACTED FROM WATERPAL

Likewise in the case of DEM data, we employed ArcGIS Pro
2.6 for all these steps. Fig. 2 shows a sample data product corre-
sponding to the T44RQR Sentinel-2 tile. Additionally, Table II
summarizes the considered number of training, validation, and
test patch samples per category .

IV. METHODOLOGY

This section presents the proposed model for extracting water
bodies from Sentinel-2 data. First, let us formulate the wa-
ter extraction problem from a classification perspective. Let
I = {I1, . . . , IN} be a collection of Sentinel-2 images (with
the possibility of including DEM data as an additional band)
covering a particular region of interest with a spatial-spectral
size of (I1 × I2 ×B). Let W = {W1, . . . ,WN} be their cor-
responding ground-truth water classification maps considering
C classes. In this scenario, it is possible to extract M nonover-
lapping patches from I (using a (P × P ) spatial size) in order
to build the following set: X = {x1, . . . ,xM}, where xi ∈
R(P×P×B)∀i ∈ [1,M ]. Considering that each patch is used for
representing its central pixel, i.e., (�P/2�, �P/2�) spatial posi-
tion, it is also possible to extract a label set Y = {y1, . . . ,yM}
with the class labels of the central pixels as one-hot-encoding
vectors. Under this notation, the proposed AD-CNN architecture
pursues to approximate a function F : X → Y , which essen-
tially takes Sentinel-2 patches as input and classifies their central
pixels as output. In this sense, the AD-CNN tries to relieve some
limitations of current CNN-based water classification models
by means of jointly exploiting two different elements: residual
attention and dense connections. Now, let us describe these two
components as well as the proposed network topology in details.

A. Residual Attention Module

Certainly, both residual and attentional learning paradigms
have shown to be two excellent mechanisms for CNNs since

Fig. 3. Considered RB and RAM. (a) RB. (b) RAM.

they allow focusing on the most discriminating features along
the learning process. On the one hand, residual blocks (RBs) [44]
are able to provide better feature representations at deeper layers
by using skip connections that allow the model shortcut some
convolutions when convenient. In this way, over-fitting and
vanishing gradient problems can be relieved since unnecessary
layers may be skipped while gradients more easily restored. On
the other hand, attention [47] is another important tool for allow-
ing the network to dynamically pay attention to the most relevant
feature maps and regions with respect to the desired output.
Hence, an attention block can emphasize or suppress features
with the objective of refining intermediate data representations.

Despite their potential, these two mechanisms have not yet
been used in the context of extracting water bodies from RS
data, e.g., [23], [24], [25]. In this scenario, the proposed ap-
proach takes advantage of residual and attentional paradigms to
define an RAM especially designed to extract water features
from Sentinel-2 data. Specifically, RAM is made of several
RBs, which consist of batch normalization layers (BN), rectified
linear activation functions (ReLU), 2-D convolutional layers
(Conv2D), and residual addition layers (Add). Fig. 3(a) shows a
graphical visualization of the considered residual building block.
As it is possible to observe, three of the Conv2D layers use
a (1× 1) kernel size, whereas the other one employs (3× 3)
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kernels. Additionally, we set K2 to the spectral size of the block
input and K1 = K2/4 in order to compress/decompress the
number of feature maps within each RB. The objective of this
diabolo-shape consists in simplifying the spectral information
coming from Sentinel-2 to better identify water signatures,
which are typically more prominent in the visible spectrum
where Sentinel-2 has only a limited number of bands.

Using our RB as basic building unit and inspired by the ideas
presented in [47], we further define RAM based on additional
max-pooling layers (MaxPool), up-sampling layers (Up), sig-
moid activation functions (Sigmoid), and residual multiplication
layers (Mult). Fig. 3(b) displays the defined RAM. In particular,
MaxPool applies a maximum pooling operation with a (2× 2)
window size and Up does a 2× up-scaling using a nearest
neighbor filter. The three first RB units pursue to extract a
fundamental deep representation of the input data. Then, the
four following elements work for simplifying the spatial infor-
mation at a higher abstraction level by down-scaling/up-scaling
the corresponding feature maps. In this way, coarser texture
patterns can be uncovered to better identify water pixels, which
usually have rather homogeneous neighborhoods. Finally, the
last RB is intended to remove some possible spectral noise that
could appear after weighting the feature maps and could be
rather prejudicial for water detection, given the limited spectral
resolution of Sentinel-2 in visible wavelengths.

B. Dense Module

In general, increasing the number of convolutional layers
in a network allows extracting higher level features that can
help to achieve a better visual understanding [53]. However,
standard feed-forward CNNs have two important limitations in
this regard: vanishing gradients and receptive field expansion.
On the one hand, the use of back-propagation requires comput-
ing the derivatives of the cost function to update the network
parameters. Since the parameters of each layer logically depend
on the former ones, the chain rule is used for unrolling these
gradient computations. In this scenario, the deeper the network
the higher the number of nested derivatives, and hence, the
higher the chances of canceling the propagated gradients and
network updates. On the other hand, standard CNNs process
the input data layer by layer. In this way, the selected kernel
sizes determine the spatial neighborhoods (or receptive fields)
involved in each convolution, becoming the considered area of
the input image logically bigger as more convolutional layers
are sequentially stacked. As a result, very deep CNNs could
also produce a degradation of the uncovered features due to an
excessive increase of receptive fields.

In order to overcome these limitations when extracting water
bodies from Sentinel-2 data, we design a dense convolutional
module (DM) by taking advantage of the connectivity scheme
presented in [45]. Specifically, our DM is made of multiple
sequential blocks with the following layers: ReLU, Conv2D,
and concatenation layer (Concat). Fig. 4 visualizes the defined
DM. In more details, DM contains a total of D convolutional
blocks withK3 (3× 3) kernels each. With this configuration, we
densely propagate feature maps from shallow to deep layers in

Fig. 4. Considered dense module (DM) with D convolutional blocks in total.

order to generate more consistent gradient computations during
training while providing context information to deeper layers.
In this manner, each input Sentinel-2 patch can be characterized
by multiple receptive fields in order to improve its context
information for a better prediction of water bodies.

C. Proposed Attentional Dense CNN

In contrast to many of the existing CNN-based water extrac-
tion methods, e.g., [23], [24], [25], the proposed architecture
takes advantage of the designed modules to focus on the most
distinctive features of water while allowing very deep data
representations. In general, it is easy to see that water bodies
have particular spatial-spectral features that play a fundamental
role in their recognition. From an spectral perspective, water
molecules usually have spectral responses more focused on the
visible and near-infrared spectrum [54]. Precisely, this is the
point that classical water indices try to exploit. However, fixing
the bands for such computations can often be a too rigid strategy
under heterogeneous in-land scenarios, where different spectral
mixtures may be expected. By contrast, existing CNN-based
models take into account the whole spectral input that may
eventually introduce too much noise for detecting purer water.
From an spatial perspective, a similar reasoning can also be
done since water bodies tend to have specific rounded and
smooth shapes and textures, being other spatial information not
so useful. In this sense, the proposed architecture adopts the
developed RAM module to automatically pay more attention to
those initial spatial-spectral features that can be more relevant
to identify water pixels, but without neglecting any other input
information. Moreover, the proposed network also integrates
within its topology the defined DM for effectively uncovering
very deep features that are able to gather multiple receptive fields
that may help to decide whether a pixel is water or not at different
abstraction levels.

With all these considerations in mind, we define the proposed
architecture according to Fig. 5. Specifically, the AD-CNN is
made of the following components: head block (HB), RAM,
DM, transition block (TB), DM, TB, DM, and end block (EB).
As it is possible to see in Fig. 6, HB is made of only two layers:
BN and Conv2D with K3 (3× 3) kernels. Besides, TB has a
total of three layers: Conv2D with K3 (1× 1) kernels, average
pooling (AvgPool) with a (2× 2) window, and BN. Finally, EB
contains: ReLU, global average pooling (GAvgPool), a dense
layer (Dense) with C units and a softmax activation function
(Softmax). Let us describe the rationale behind the selected
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Fig. 5. Proposed AD-CNN based on different building blocks to extract water pixels from Sentinel-2 and DEM data.

Fig. 6. Considered head (HB), transition (TB), and end block (EB). (a) HB.
(b) TB. (c) EB.

components in more details. Initially, HB (1) processes the
input data (i.e., a Sentinel-2 image patch with the possibility
of including DEM information) to generate an initial low-level
characterization of the normalized input. Then, these representa-
tions are passed through RAM (2) in order to generate a weighted
version of the data, in both spatial and spectral dimensions,
according to the objective task. After this process, the most
relevant features for identifying water pixels are emphasized to
drive the following higher level steps. Subsequently, three DMs
separated by two intermediate TBs are used for extracting very
deep features. In this case, transition blocks are used to reduce
the data complexity since a large increase on the number of
feature maps is generated within each DM. Additionally, TB also
works for progressively reducing the spatial size by means of
an average pooling operation. Once obtained the corresponding
deep features, the objective of EB consists in projecting them to
the final label space to decide whether the central pixel of the in-
put patch is water. To further prevent overfitting, a global average
pooling operation is used to summarize each feature map into a
single scalar before the final fully connected classification layer.

V. EXPERIMENTS

A. Experimental Settings

In order to validate the proposed architecture in the task of
extracting water bodies from Sentinel-2 images, we conduct
multiple classification experiments with the dataset described
in Section III. For comparison purposes, we consider some of
the most popular methods used for water extraction, includ-
ing classical index-based and more recent CNN-based models:
NDWI [32], NDVI [36], NDWI-NDVI [37], EWI [21], water
quality classification CNN (WQC-CNN) [23], complex wet-
land classification CNN (CWC-CNN) [24] and self-adaptive
pooling CNN (SAP-CNN) [25]. To complete the experimental
comparison, we also test the performance of other CNNs that

have not been explicitly used for water extraction but they have
some connections to this work: basic CNN (base-CNN) [55],
dense CNN (DenseNet) [45], and residual attention CNN (At-
tResNet) [47]. To validate the effectiveness of the proposed
architecture, we also conduct an ablation study to compare the
AD-CNN with a simplified version (named as D-CNN) that
omits the RAM module. In this way, the improvements generated
by the proposed dense architecture and attention mechanism
can be fairly isolated. It is important to note that all CNN-based
models (logically including the proposed approach) take as input
an spatial-spectral patch, whereas water indices only require
the spectral information of the central pixel to perform the
corresponding classification.

Regarding the considered data, we selected two Sentinel-2
tiles (from the 11 tiles available in our dataset) for an external
qualitative evaluation. From the remaining ones (nine tiles),
we extracted their patches (i.e., X ) and labels (i.e., Y) for
training and testing the models considering different patch sizes
P = {8, 12, 16, 20}. Specifically, the 60% of the data were used
for training (with a 20% of it for validation) and the other 40%
for testing. Since water/non-water classes may logically became
highly imbalanced in inland scenarios like Nepal, we further
balanced the data by means of random sampling to keep the
ratio between majority (non-water) and minority (water) classes
as (2 : 1). Under this settings, we carry out the following exper-
iments to study the performance of index-based and CNN-based
methods as well as the contribution of Sentinel-2 and DEM data
in the water extraction task.

1) Experiment 1: Index-based models using Sentinel-2 data
as input. Note that index-based methods cannot be used
with DEM data, hence, they are tested in isolation in this
experiment.

2) Experiment 2: CNN-based models using only Sentinel-2
RGB channels as input data, i.e., B = 3.

3) Experiment 3: CNN-based models using all Sentinel-2
channels, i.e., B = 11 (note that two bands are removed
by the atmospheric correction).

4) Experiment 4: CNN-based models using Sentinel-2 to-
gether with DEM data as input, i.e., B = 12 (DEM data
are integrated as an additional input band).

With respect to the hyperparameters of the proposed ar-
chitecture, we set K1 = 4, K2 = 16, K3 = 16, D = 12, and
C = 2 according to the information provided in Section IV. In
the case of the considered competitors, we logically used the
settings described in their corresponding articles. For training all
CNN-based models, we made use of the standard cross-entropy
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TABLE III
EXPERIMENT 1: QUANTITATIVE RESULTS FOR THE CONSIDERED INDEX-BASED METHODS IN TERMS OF THE OVERALL

CLASSIFICATION ACCURACY (%) AND CLASS RECALL (%)

TABLE IV
EXPERIMENT 2: QUANTITATIVE RESULTS FOR CNN-BASED METHODS WITH SENTINEL-2 RGB DATA IN TERMS OF THE OVERALL

CLASSIFICATION ACCURACY (%) AND CLASS RECALL (%)

loss with the ADAM optimizer using the following parameters:
100 epochs, 1e−3 learning rate, and 128 batch size. Additionally,
we also applied a learning rate decay (0.2 factor) on each
validation loss plateau after 15 epochs. All the experiments were
performed on a server with an Intel(R) Core (TM) i7-6850 K
processor, 64 GB of DDR4 RAM, and an NVIDIA GeForce
GTX 1080 Ti. Besides, Ubuntu 20.04 ×64, CUDA 10.1, Ten-
sorFlow 2.1.0, Keras 2.3.1, and Python 3.6 were used as software
environment. The codes of this article will be accessible on
https://github.com/rufernan/ADCNN.

B. Results

Tables III–VI present the quantitative evaluation obtained
for the considered experiments (i.e., Experiments 1–4, respec-
tively). In more details, Table III contains the results of index-
based methods, whereas Tables IV–VI provide the quantitative
assessment of CNN-based models when considering different
combinations of the input data (i.e., only Sentinel-2 RGB bands,
all Sentinel-2 bands, and Sentinel-2 bands together with DEM
data). As it is possible to see, all the tables are organized with
the tested methods in rows and the considered patch sizes and
metrics in columns. In this regard, two different quantitative
classification metrics are considered: overall accuracy (%) and
class recall (%). For the sake of clarity in the visualization
of the tables, all recall values are rounded to integer figures.
Besides, the two best accuracy values for each patch size are
highlighted in bold font, being the best result displayed with
gray background. Note that we use the label N/A to highlight
that the corresponding result is not available, whether the model
is unable to converge or run with the considered patch size. For
conducting a qualitative evaluation of the methods, Fig. 8 also

shows some of the classification maps obtained over the external
tiles when focusing on the two first experiments with P = 16.

C. Discussion

1) Experiment 1: According to the results reported in
Table III, the use of NDWI, NDVI, and NDVI_NDWI achieved
a maximum overall accuracy of 75% with recall values of 52%
for water and 98% for no-water classes. In general, it was
found that the performance of all the considered indices were
approximately similar to each other across all patch sizes. In
more details, NDVI slightly edged the rest indices in terms of
overall accuracy and recall metrics. Besides, NDWI was found
to have exactly the same performance as NDVI at patch size
16, which reveals the affinity of both indices for the study area.
Finally, the highest recall values were obtained by NDVI_NDWI
for no-water classes. In contrast to the other experiments, the
considered traditional indices certainly obtained the worse gen-
eral performance.

2) Experiment 2: As Table IV shows, the proposed model
(AD-CNN) consistently achieved the best performance through
all the considered patch sizes when using Sentinel-2 RGB bands
as input. In general, it is possible to observe that the larger
the patch the higher the accuracy since, logically, more local
information is available for consideration. In this sense, it is also
important to note that the CWC-CNN was not able to converge
when considering RGB bands with a small patch size of 8.
Besides, AttResNet was only able to manage multiples of two
as patch size due to the down-sampling operations performed
inside this architecture. Regarding the other competitors, the
WQC-CNN was always found to perform better than the SAP-
CNN, and DenseNet was able to obtain the third best general

https://github.com/rufernan/ADCNN
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Fig. 7. (a) Average overall accuracy and (b) water recall obtained by the proposed approach when considering different class balance factors. Note that the vertical
axes display the metrics in percentage, whereas the horizontal axes show the balance factors between majority (non-water) and minority (water) classes.

TABLE V
EXPERIMENT 3: QUANTITATIVE RESULTS FOR CNN-BASED METHODS WITH ALL SENTINEL-2 BANDS IN TERMS OF THE OVERALL

CLASSIFICATION ACCURACY (%) AND CLASS RECALL (%)

TABLE VI
EXPERIMENT 4: QUANTITATIVE RESULTS FOR CNN-BASED METHODS WITH SENTINEL-2 AND DEM DATA IN TERMS OF THE

OVERALL CLASSIFICATION ACCURACY (%) AND CLASS RECALL (%)

performance for all the considered patch sizes. In comparison
to the remaining experiments, the use of RGB channels yielded
the poorest results for all CNN-based models.

3) Experiment 3: In the case of Table V, it is possible to
observe how all the networks were able to increase the perfor-
mance around a 5% with respect to the previous experiment.
Similarly, the AD-CNN provided the best results over all path
sizes, being the highest overall accuracy 91.52% with a recall of
87% for water and 93% for no-water classes. Again, CWC-CNN
was found to achieve the worse performances, followed by
AttResNet and SAP-CNN, respectively. Besides, DenseNet and
WQC-CNN obtained the most competitive results, after the

proposed model ones. In general, this experiment revealed a
significant performance improvement when using the complete
spectral information provided by Sentinel-2 for the more accu-
rate characterization of water.

4) Experiment 4: In Table VI, it was found that the
integration of DEM data as an additional input band was
only able to improve the results around a 1%. This evi-
dence indicates that full Sentinel-2 spectral information is
certainly more important than DEM data to uncover water bodies
over the region of interest. Overall, the proposed model achieved
again the best performance with metrics ranging from 89.66%
to 91.34% of accuracy and 83 to 87 of recall for water, when
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Fig. 8. Qualitative results for the T44RQR Sentinel-2 tile with P = 16. (a) RGB image. (b) Water ground truth. (c) NDWI. (d) NDVI. (e) NDWI-NDVI.
(f) base-CNN. (g) WQC-CNN. (h) CWC-CNN. (i) SAP-CNN. (j) DenseNet. (k) AttResNet. (l) AD-CNN (ours). Note that water bodies are colored in blue,
non-water in brown, and pixels outside the study area in white color.

increasing the patch size from 8 to 20. As in all the con-
ducted experiments, the CWC-CNN was the least performing
method. Moreover, DenseNet was followed by WQC-CNN and
SAPCNN on the quantitative evaluation. This time the general
trend showed a moderate performance increase with respect to
the previous experiment due to the inclusion of DEM data.

Taking into account that the study area has an important
class imbalance, Fig. 7 further analyzes the proposed approach
when considering different balance factors between the majority
class (non-water) and minority class (water). As it is possible to
observe, the overall accuracy over the test set increases with
the balance factor. However, the decreasing water recall reveals
that these improvements are based on the underestimation of the

minority class since less water pixels are successfully retrieved.
In this way, the considered balance factor (i.e., 2 : 1) shows a
reasonable tradeoff between accuracy and water recall. Addi-
tionally, Table VII also provides the average number of trainable
parameters and computational time (in seconds) per training/test
epoch for each one of the considered CNN-based methods. As
shown, the proposed approach figures are comparable to the ones
of the best performing competitor (DenseNet).

From the qualitative results displayed in Fig. 8, several impor-
tant observations can be made to support the conducted analysis.
Regarding index-based methods, all the three considered indices
(i.e., NDWI, NDVI, and NDVI_NDWI) produced similar output
results where water bodies become rather underestimated. As it
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TABLE VII
AVERAGE NUMBER OF PARAMETERS AND COMPUTATIONAL TIME (S) PER TRAINING/TEST EPOCH

is possible to see, NDVI [see Fig. 8(d)] tended to obtain a slightly
better estimation but, in general, many water bodies were still
missed with respect to the ground-truth data [see Fig. 8(b)].
In this sense, the particularly low water recall values reported
in Table III also support these observations where index-based
methods tend to essentially detect the most pure water spectral
signatures. When inspecting the visual results of the six con-
sidered deep learning-based competitors [see Fig. 8(f)–(k)], we
can observe a different trend. Overall, all the networks seemed
to extract not only pure water bodies but also other neighbor-
ing regions such as river banks or partially dried streams. In
details, it was found that DenseNet [see Fig. 8(j)] was able to
extract more true water pixels than the other competitors, being
CWC-CNN [see Fig. 8(h)] and AttResNet [see Fig. 8(k)] the
worst performing networks due to the amount of noise in their
corresponding estimations. In the case of the proposed AC-CNN
approach [see Fig. 8(l)], less output noise and more accurate
water shapes were certainly obtained, making its estimations
the most accurate results.

Although all the tested deep learning-based methods lean to
overestimate water with respect to index-based ones, the need
of using index thresholds according to the spectral properties of
water often makes traditional indices fail to extract water bodies
beyond pure water pixels. In contrast, CNNs take advantage of
context information for characterizing water pixels with richer
spatial-spectral features while providing a more general solution
to water body extraction. Nonetheless, many of the existing wa-
ter classification networks are only able to satisfactorily perform
using a fix abstraction level given by a relatively small number of
convolutional layers, which may eventually saturate their learn-
ing performances. Note that, when working with study areas as
heterogeneous as the considered one, many types of water bodies
with different complexities are naturally expected. Besides, the
reasonably good spatial-spectral resolution of Sentinel-2 data is
also a plus for the need of exploring deeper features. Hence,
it becomes desirable to simultaneously learn from lower to
higher water feature abstraction levels in order to solve from
the simplest to the most challenging cases. Logically, feature
abstraction and neighborhood information are important factors
for identifying a pixel as water but the optimal abstraction
level and amount of context may certainly vary from patch
to patch. Precisely, the proposed AC-CNN model exploits this
idea by implementing attentional dense connectivities that allow
transferring multiple characterization levels while focusing on
the most relevant features for water extraction.

VI. CONCLUSION

This article presented a new CNN classification architecture
(termed AD-CNN) especially designed for water body extrac-
tion from Sentinel-2 data. Unlike other models in the remote
sensing literature, the AD-CNN adopted a novel attentional
dense scheme that pursues to effectively exploit deeper convo-
lutional features for the better identification of water pixels. On
the one hand, dense connections were implemented to allow
extracting deeper features while characterizing multiple data
complexities at once. On the other hand, a new RAM was
designed to dynamically put the focus on the most relevant
spatial-spectral features for classifying water pixels. In order
to test the proposed model performance, a new water database
of Nepal (WaterPAL) was built. The experiments, conducted
on WaterPAL, revealed the competitive results achieved by the
AD-CNN with respect to several traditional index-based and
state-of-the-art CNN-based water extraction models.

According to the obtained results, several important conclu-
sions can be made with regard to the use of Sentinel-2 data and
the performances of the tested models. First, the most effective
data configuration for water body extraction has shown to be the
complete Sentinel-2 spectra together with DEM data. However,
it is also important to highlight that the contribution of DEM is
rather small with respect to multispectral Sentinel-2 information.
Second, traditional index-based methods are generally unable
to provide satisfactory results under heterogeneous large-scale
scenarios since only pure water signatures are mainly detected.
Third, deep learning-based methods provide more competitive
results although they also tend to be more prone to overestimate
water. Fourth, the proposed attentional dense scheme allows
extracting deeper and more complete features for a more accu-
rate estimation of water bodies. Although the outcomes of this
work are promising, there is still room for future improvements
based on extending the proposed network to different intersensor
platforms, multimodal data, and multitemporal stages.
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