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ELIAHOU NUMBER, WILF FUNCTION AND CONCENTRATION OF A

NUMERICAL SEMIGROUP

PATRICIO ALMIRÓN AND JULIO JOSÉ MOYANO-FERNÁNDEZ

ABSTRACT. We give an estimate of the minimal positive value of the Wilf function of a numer-

ical semigroup in terms of its concentration. We describe necessary conditions for a numerical

semigroup to have negative Eliahou number in terms of its multiplicity, concentration and Wilf

function. Also, we show new examples of numerical semigroups with negative Eliahou num-

ber. In addition, we introduce the notion of highly dense numerical semigroup; this yields a

new family of numerical semigroups satisfying the Wilf conjecture. Moreover, we use the Wilf

function of a numerical semigroup to prove that the Eliahou number of a highly dense numerical

semigroup is positive under certain additional hypothesis. In particular, these results provide

new evidences in favour of the Wilf conjecture.

1. INTRODUCTION

Let N denote the set of the nonnegative integer numbers. A numerical semigroup Γ is an additive

sub-semigroup of the monoid (N,+) such that the greatest common divisor of all its elements

is equal to 1. The complement N\Γ is therefore finite, and the elements of that complement are

called gaps of Γ. Moreover, Γ is finitely generated and it is not difficult to find a minimal system

of generators of Γ, whose cardinality e = e(Γ) is called the embedding dimension of Γ. The

number c = c(Γ) = max(N\Γ)+1 is called the conductor of Γ, and the number of elements in

Γ which are smaller than c(Γ) is said to be the delta-invariant δ = δ (Γ) of Γ. The Frobenius

number of Γ is said to be f = f (Γ) := c(Γ)−1.

One of the most challenging open problems in commutative algebra is the Wilf conjecture,

proposed by H. Wilf in 1978 [20]: it foretells the inequality

c(Γ)≤ e(Γ) ·δ (Γ)

between the conductor and the product of the embedding dimension and the delta invariant of a

numerical semigroup Γ. It is customary to call Wilf number to the difference e(Γ) ·δ (Γ)−c(Γ)
in order to state the Wilf conjecture as the positivity of this quantity.

The Wilf conjecture is known to be true in several cases, see e.g. Delgado [3], Dobbs and

Matthews [7], Eliahou [8], Eliahou and Fromentin [9], Fromentin and Hivert [11], Kaplan [13],

Moscariello and Sammartano [15] and Sammartano [19]. However this is still an open question,
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and in the meanwhile several related problems have been treated in order to gain a better under-

standing of the conjecture (see for example [4, 5, 1]). One of those nearby problems is related

to another interesting number that can be associated to a semigroup, the Eliahou number.

Eliahou [8] has been able to relate the Wilf conjecture to an invariant E(Γ), nowadays called

the Eliahou number associated to a semigroup (cf. [3]; see also subsection 2.2) such that

e(Γ) · δ (Γ)− c(Γ) ≥ E(Γ). Therefore, any numerical semigroup with positive Eliahou num-

ber satisfies the Wilf conjecture. Unfortunately, there exist numerical semigroups with negative

Eliahou number [3, 8, 9] and thus the Wilf conjecture is reduced to study those semigroups with

negative Eliahou number.

The characterization of those numerical semigroups with negative Eliahou number is a huge

challenge, as observed e.g. in [3, 5, 9], and very few general properties about them are known.

One of the main goals of this paper is to establish necessary conditions for a numerical semi-

group in order to have negative Eliahou number, see Section 4. In particular, this conditions will

allow us to show some new examples of numerical semigroups with negative Eliahou number

4.9. To do so, we will make use of two recent techniques introduced in the study of the Wilf

conjecture.

On the one hand, the authors proposed in [1] to associate a function WΓ(k) : N → Z to the

numerical semigroup Γ in order to gain a better understanding of the Wilf conjecture, see e.g.

Theorem 3.2 and Theorem 4.1 in [1] and, in particular, of the conditions leading to the vanishing

of the Wilf number. In this direction, we also propose to study the constant

µΓ := min{k ∈ N : WΓ(k)≥ 0}.

In this paper we present a step forward towards the understanding of the conjecture: Eliahou

reduced the problem to the study of the Wilf number for semigroups with negative Eliahou

number. If we denote by es the number of minimal generators less than c(Γ), our approach

will reduce the study of the semigroups with negative Eliahou number to the investigation of

semigroups with µΓ ≥ es. Concretely, we will show in Theorem 4.1 that the Eliahou number

is bounded below by WΓ(es). Thus, the negativity of the Eliahou number implies µΓ > es. To

find examples with µΓ > es and positive Eliahou number is not difficult as Example 4.2 shows;

and obviously because semigroups with negative Eliahou number seem to be rare [3, 9]. There-

fore, the condition µΓ > es may lead to an easier characterization of the interesting family of

semigroups to study.

On the other hand, in a recent preprint Rosales et al. [17] introduce the concept of concentration

of a numerical semigroup: set nextΓ(s) := min{x ∈ Γ | s < x}; the concentration of a numerical

semigroup is then defined as

C(Γ) = max{nextΓ(s)− s | s ∈ Γ\{0}}.

If we call m(Γ) := min(Γ \ {0}) the multiplicity of the semigroup, it is clear that a numerical

semigroup with concentration 1 is of the form {0,m(Γ),→}, where the arrow → means that

from m(Γ) on all natural numbers belong to the set. The numerical semigroups with concentra-

tion 2 have been characterized by Rosales et al. [17].

The essence of the Wilf conjecture may be expressed as how often elements of Γ occurr in

the integral interval [0,c]∩N. From this viewpoint, it is natural to ask for semigroups with
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fixed concentration satisfying the Wilf conjecture. One should obviously expect that smaller

concentration should lead to a higher frequency of occurrence of elements of Γ in the integral

interval [0,c]∩N; this is indeed the case as shown in our Theorem 4.4.

The current manuscript is organized as follows. Section 2 presents all the required techniques

of the theory of numerical semigroups needed for the remainder of the paper —besides the

concentration, namely the Wilf function and the Eliahou number of a semigroup, as well as

some partitions of the set of elements in the semigroup due to both Eliahou and Sammartano.

Section 3 appeals to the utility of the concentration in order to show the nonnegativity of the

Wilf function, see Propositions 3.5 and 3.6. In Section 4 we establish criteria for the negativity

resp. positivity of the Eliahou number in terms of the Wilf function resp. concentration of the

numerical semigroup: this is the content of Theorem 4.3 resp. Theorem 4.4. Moreover, we show

new examples of semigroups with negative Eliahou number 4.9. In the concluding Section 5

we present a family of examples (under the name highly concentrated numerical semigroups)

that show the utility of the previous results.

2. PRELIMINARIES

Let Γ be the numerical semigroup generated by a1, . . . ,ae; this fact will be expressed by writing

Γ = 〈a1, . . . ,ae〉. We will assume that a1, . . . ,ae are a minimal system of generators. We will

moreover consider that they are ordered with respect to the natural ordering and write G :=
{a1 = m < a2 < · · · < ae}; observe that trivially m(Γ) = a1. For generalities on numerical

semigroups the reader is referred to the book of Rosales and Garcı́a-Sánchez [18]; see also the

book of Ramı́rez-Alfonsı́n [16].

In the study of the Wilf conjecture there are two features which are relevant for the remainder of

the paper, namely the Wilf function and the Eliahou number of a numerical semigroup. We will

summarize the fundamentals of these two topics, as well as their implications in the computation

of the delta-invariant.

2.1. The Wilf function. In our previous paper [1], we defined the map

WΓ : N → Z

k 7→ WΓ(k) := kδ (Γ)− c(Γ)

as an attempt to give more instruments for the investigation of the Wilf conjecture. The function

WΓ is what we called the Wilf function of the semigroup Γ. As already mentioned, for k = e(Γ)=
e, the nonnegativity WΓ(e)≥ 0 expresses thus the statement of the Wilf conjecture; indeed, the

study of the behaviour of the Wilf function contributes to the understanding of Wilf’s conjecture,

as shown in [1].

In general, k = e is not the minimal value making WΓ(k) nonnegative. This means that the Wilf

number WΓ(e) does not yield in general a sharp bound for the positivity of the Wilf function.

From this point of view, it would be certainly interesting to investigate the constant

µΓ := min{k ∈ N : WΓ(k)≥ 0},

where obviously 2 ≤ µΓ ≤ m, as mentioned in [1]. This constant will play a role in the study of

the positivity of the Wilf function by the concentration of the semigroup which will be done in

Section 3.
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2.2. The Eliahou number. An ultimate tool towards the solution of the Wilf conjecture seems

to be the Eliahou number, whose definition will be recalled in the sequel.

Let q := q(Γ) = ⌈ c(Γ)
m(Γ)⌉ be the q-number of Γ. We set

ν(Γ) =ν = qm− c

small(Γ) =|{s ∈ Γ : s < c}|

G(Γ) = G :={a1, . . . ,ae}

Eliahou [8] introduced the following partition of the interval [−ν,c+m]:

Jα := [αm−ν,(α +1)m−ν] for α = 0,1, . . . ,q.

Of course, the interval [−ν,c+m] is meant to be [−ν,c+m]∩N, but we leave out the inter-

section with N in order to discharge the notation, and we will assume this and all occurring

intervals to be in N.

The main advantage of Eliahou’s partition is that the last subinterval is exactly Jq = [c,c+m] (we

will consider a different partition due to Sammartano [19] in Section 3 in which this property

does not hold).

Set pq := Jq∩G and dq := [c,c+m]\ pq. Let us denote by es := |G∩ small(Γ)| resp. ec := |pq|
the number of minimal generators of the semigroup which are smaller than the conductor resp.

bigger than the conductor. Obviously, e(Γ) = es+ec. Eliahou introduced the following invariant

[8], named the Eliahou number of Γ after him, cf. [3]:

E(Γ) = esδ (Γ)−q|dq|+ν.

The Eliahou number plays a role in the Wilf conjecture in virtue of the following [8, Proposition

3.11]:

Theorem 2.1 (Eliahou). Let Γ be a numerical semigroup, then WΓ(e)≥ E(Γ).

It is an important result the fact that negative Eliahou numbers can be effectively attained, see

[3, Corollary 14, Corollary 35]:

Theorem 2.2 (Delgado). For any z ∈ Z there exist a numerical semigroup with E(Γ) = z. In

particular there exist numerical semigroups with arbitrarily negative Eliahou number.

2.3. δ (Γ) from the Apéry set. There is a remarkable system of generators —by no means

minimal— that can be attached to a numerical semigroup Γ: let s ∈ Γ\{0}, the Apéry set of Γ
with respect to s is defined to be the set

Ap(Γ,s) = {w ∈ Γ : w− s /∈ Γ},

see Apéry [2], or also Kunz and Herzog [14, Lemma 4.2].

Observe that the cardinality of Ap(Γ,s) is s, and that Ap(Γ,s) = {w0 < w1 < · · ·< ws−1} where

wi = min{z ∈ Γ : z ≡ i mod s}; obviously, w0 = 0. We will always consider the particular case

s = m := m(Γ), for which w1 = a2 and wm−1 = c−1+a1 = c+m−1.
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In this subsection we will leave Eliahou’s partition, and following Sammartano [19] we will

adopt instead a partition in subintervals of length m−1 of the form

Iα := [αm,(α +1)m−1], for α = 0,1, . . . ,L,

where L := ⌊c−1
m

⌋= ⌊wm−1

m
⌋−1 denotes the integer part of the quotient between the conductor

of Γ minus 1 —the Frobenius number of Γ— and its multiplicity. Hence, we can write c−1 =
Lm+ρ ′ with 0≤ ρ ′≤m−1 and ρ ′ 6= 0 because c−1 6=Γ. Therefore, we can rewrite c= Lm+ρ
with ρ = ρ ′+1 and 2 ≤ ρ ≤ m. Thus we have in particular the following identity.

Lemma 2.3. Let Γ be a numerical semigroup with conductor c and multiplicity m, and set

L := ⌊c−1
m

⌋. Then,

L =

{

⌊ c
m
⌋ if c is not a multiple of m

c
m
−1 if c is a multiple of m

In particular, Lemma 2.3 implies that q = L+1 and that the number of subintervals Jα is one

more than the number of subintervals Iα .

Following the notation of [19] and [15], for j = 1, . . . ,m−1 we define

η j = |{α ∈ N : |Iα ∩Γ|= j}| and nα = |{s ∈ Γ∩ Iα : s < f}|.

The number η j can be computed from the Apéry set Ap(Γ,m) in the following way:

Lemma 2.4 ([19], Proposition 13). For any j = 1, . . . ,m−1 we have

η j =
⌊w j

m

⌋

−
⌊w j−1

m

⌋

.

Therefore we can compute δ (Γ) in terms of the Apéry set as follows:

Proposition 2.5. Let Γ be a numerical semigroup, then

δ (Γ) = m
⌊wm−1

m

⌋

−
m−1

∑
j=0

⌊w j

m

⌋

+ρ −m.

Proof. First of all, it is a trivial observation that δ (Γ) = n0+ · · ·+nL. Thus, an extensive use of

the statement in Lemma 2.4 shows that

δ =
L

∑
j=0

n j =
m−1

∑
j=1

(η j · j)+ρ −m =
m−1

∑
j=1

(

m−1

∑
i= j

ηi

)

+ρ −m

=
m−1

∑
j=1

(

m−1

∑
i= j

⌊wi

m

⌋

−
⌊wi−1

m

⌋

)

+ρ −m =
m−1

∑
j=1

(⌊wm−1

m

⌋

−
⌊w j−1

m

⌋)

+ρ −m

=(m−1)
⌊wm−1

m

⌋

−
m−2

∑
j=1

⌊w j

m

⌋

+ρ −m

=m
⌊wm−1

m

⌋

−
m−1

∑
j=0

⌊w j

m

⌋

+ρ −m,

as desired. �
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3. POSITIVITY OF THE WILF FUNCTION ASSOCIATED TO THE CONCENTRATION

As already mentioned in subsection 2.1, the study of the invariant µΓ seems to be difficult:

in fact, this should help to give a sharper inequality than that in the Wilf conjecture. In this

direction, very few is known. This section is devoted to use the notion of concentration to show

upper bounds for the invariant µΓ.

To do so, we are first going to give estimates for the δ -invariant and the embedding dimension

in terms of the multiplicity of the semigroup and its concentration.

Proposition 3.1. Let Γ be a numerical semigroup with concentration C(Γ) = k and c = Lm+ρ ,

then

δ (Γ)≥
(L−1)m+ρ

k
+1.

Proof. Let us denote by Aα := Iα ∩Γ. For 1 ≤ α ≤ L−1 consider the set

A′
α := {b1 := αm < · · ·< bs := (α +1)m | bi ∈ Γ}.

Thus, |Aα | = |A′
α | − 1 = s− 1. On the other hand, since we are assuming concentration k, we

have that

m = (bs −bs−1)+ · · ·+(b2 −b1)≤ k(s−1).

Hence, |Aα |= s−1 ≥ m
k
.

A simple observation shows that |A0|= 1, and so

δ (Γ) = 1+
L−1

∑
α=1

|Aα |+(|BL|−1),

where BL := {x1 := Lm < · · ·< xt := c = Lm+ρ}.
Again, since the concentration is assumed to be k, we have |BL|−1 ≥ ρ/k. Therefore

δ (Γ) = 1+
L−1

∑
α=1

|Aα |+ |BL| ≥
(L−1)m+ρ

k
+1,

as we wished. �

Remark 3.2. Observe that the bound in Proposition 3.1 is sharp: consider

Γ =Wm,q = 〈m,qm+1, . . . ,qm+(m−1)〉

for integers m,q such that m> 1 and q> 0. These semigroups have concentration C(Γ)= k =m,

and moreover ρ = m and L = q−1. Also it is easy to check that δ = L+1. Thus,

L+1 = δ ≥
(L−1)m+m

m
+1 = L+1.

The semigroups Wm,q are indeed very interesting in the context of Wilf conjecture: the authors

proved in [1, Theorem 4.8] the following characterization of the nonpositivity of the Wilf func-

tion: Γ =Wm,q for q ≥ 1 if and only if WΓ(k)≤ 0 for all 1 ≤ k ≤ m.

Remark 3.3. In the particular case of k = 2 and c > 2m, Rosales et al. [17, Lemma 2] show

the inequality δ ≥ m/2+2. The assumption c > 2m leads to L ≥ 2, hence our Proposition 3.1

covers their result.
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Proposition 3.4. Let Γ be a numerical semigroup with concentration C(Γ) = k and conductor

c > 2m, then es ≥ m/k. In particular, the embedding dimension is bounded below by m/k, i.e.

e ≥ m/k.

Proof. Any element of the interval I1 ∩ Γ is a minimal generator of the semigroup. Hence

e ≥ |I1 ∩Γ| ≥ m/k, where the last inequality holds because of the arguments in the proof of

Proposition 3.1. �

The nonnegativity of the Wilf function can be related to the concentration of the semigroup in

the following manner.

Proposition 3.5. Let Γ be a numerical semigroup with concentration C(Γ) = k, then WΓ(2k)≥
0. In particular, 2k ≥ µΓ.

Proof. Let us write c = Lm+ρ with L := ⌊c−1
m

⌋ and 2 ≤ ρ ≤ m. By Proposition 3.1 we have

kδ (Γ) ≥ (L− 1)m+ ρ . On the other hand, since G ⊂ Γ \ {0} and e = |G|, Proposition 3.4

implies kδ (Γ)≥ m. Therefore

WΓ(2k) = 2kδ (Γ)− c ≥ (L−1)m+ρ +m− c = 0,

and we are done. �

The inequalities in Proposition 3.5 can be improved by adding additional hypothesis:

Proposition 3.6. Let Γ be a numerical semigroup with concentration C(Γ)= k. If δ (Γ)≥m−k,

then WΓ(k+1)≥ 0. In particular, k+1 ≥ µΓ.

Proof. Let us write c = Lm+ρ with L := ⌊c−1
m

⌋ and 2 ≤ ρ ≤ m. By Proposition 3.1 we have

kδ (Γ)≥ (L−1)m+ρ +k. Moreover, since δ (Γ)≥ m−k by hypothesis, the claim follows. �

4. ON THE NEGATIVITY OF THE ELIAHOU NUMBER

The negativity of Eliahou number poses an interesting question within the theory of numerical

semigroups: the semigroups having negative Eliahou number seem to be rare and infrequent, as

already observed in several works [3, 5, 9]. In this section, we first present a lower bound for

the Eliahou number in terms of the Wilf function. This contrasts with the fact that the Eliahou

number attains any integer value and allows us to provide a necessary condition for its negativity

in terms of the Wilf function. In addition, we continue the section investigating Eliahou numbers

in semigroups with fixed concentration. This will allow us to provide a necessary condition for

its negativity in terms of the concentration.

4.1. Eliahou number vs Wilf function. As already mentioned in Subsection 2.2, Delgado

showed that the Eliahou number can attain any integer value. The main problem for the com-

putation of the Eliahou number is that the Eliahou partition Jα defining Eliahou numbers does

not coincide with the one defined by Samartano Iα , and Samartano’s partition allows an easier

calculation of δ , as Proposition 2.5 witnesses.

Our main idea in this subsection is to give a range of the possible values of the Eliahou number

by considering the Wilf function; this will allow us to check only the properties of Wilf function

in order to study semigroups with a prescribed Eliahou number.
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Theorem 4.1. Let Γ be a numerical semigroup with embedding dimension e. Preserving the

notation of Subsection 2.2, we have the inequalities

WΓ(e)≥ E(Γ)≥WΓ(es).

Proof. The first inequality is due to Eliahou [8, Proposition 3.11]. The second inequality is

deduced from the fact that |dq| ≤ m, so that

WΓ(e)≥ E(Γ) = esδ (Γ)−q|dq|+ν ≥ esδ (Γ)−qm+ν =WΓ(es),

which is our assertion. �

Example 4.2. Before presenting some computations, we establish the following standard no-

tation: write S = 〈x1 . . . ,xs〉r for the minimal semigroup that contains {x1 . . . ,xs} and all the

integers greater than or equal to r. This notation is widely used e.g. by Delgado in [3].

According to the computations done with the functions in GAP [12], the numerical semigroup

Γ := 〈30,42,51〉290 has WΓ(es)< 0, µΓ = 5, c = 290, e = 23, δ = 65 and

WΓ(µΓ) = 35 < E(Γ) = 105 <WΓ(e) = 1205.

Theorem 4.1 yields a necessary condition for the negativity of Eliahou number in terms of the

Wilf function.

Theorem 4.3. Let Γ be a numerical semigroup with Eliahou number E(Γ)< 0. Then,

WΓ(e)< ecδ .

In particular, µΓ > es.

Proof. We begin by observing that

WΓ(1) =−
m−1

∑
j=0

⌊w j

m

⌋

;

this follows by Proposition 2.5 and by the fact that c = Lm+ρ with L = ⌊wm−1

m
⌋−1.

On the other hand, from the linearity of Wilf function we have WΓ(es) = (es − 1)δ +WΓ(1).
Moreover, since E(Γ)< 0, Theorem 4.1 implies WΓ(es)< 0. All this together yields

WΓ(e−1) =WΓ(es + ec −1) = (es −1)δ +WΓ(ec)<−WΓ(1)+WΓ(ec) = (ec −1)δ ,

which establishes the desired inequality. �

4.2. Positivity of the Eliahou number associated to the concentration. Once we have shown

a necessary condition for the negativity of the Eliahou number obtained thanks to the Wilf

function, our purpose now is to give a necessary condition for the negativity of Eliahou number

in terms of the concentration of the semigroup. To do so, we first need to prove the following.

Theorem 4.4. Let Γ be a numerical semigroup with multiplicity m and concentration C(Γ) = k.
Write c = Lm+ρ with 2 ≤ ρ ≤ m, and assume that c > 2m. If m/k2 > (L+1)/(L−1), then

E(Γ)≥ 0.
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Proof. First of all, observe that Lemma 2.3 implies that L+ 1 = ⌈c/m⌉ = q. Also |dq| ≤ m.
Therefore

E(Γ)≥ esδ (Γ)− (L+1)m.

On the other hand, Proposition 3.1 together with Proposition 3.4 give us

esδ (Γ)− (L+1)m ≥

(

m

k

)(

(L−1)m+ρ + k

k

)

− (L+1)m.

Since ρ ,k ≥ 0, the claim follows from the hypothesis m/k2 > (L+1)/(L−1). �

Theorem 4.4 gives us an easy-to-handle condition which implies the positivity of the Eliahou

number. In contrast to the examples of negative Eliahou number given by Delgado [3], Eliahou

[8], and Fromentin [9], our condition only assumes the knowledge of the multiplicity, the con-

centration and the conductor of the semigroup. In this way we do not need to compute neither

the embedding dimension nor the δ -invariant in our case. This leads to the following necessary

condition for a semigroup to be a semigroup with negative Eliahou number.

Corollary 4.5. Let Γ be a numerical semigroup with multiplicity m and concentration C(Γ)= k,

and write c = Lm+ρ with 2 ≤ ρ ≤ m. If E(Γ)< 0, then m/k2 < (L+1)/(L−1).

Remark 4.6. It is not difficult to check that all the semigroups defined by Delgado in [3] that

have negative Eliahou number satisfy the inequality m/k2 < (L+1)/(L−1) and k < m.

Here it is natural to ask whether the condition m/k2 < (L+ 1)/(L− 1) is too restrictive. This

seems not to be the case: it is quite easy to construct numerical semigroups satisfying the

mentioned inequality. The general trick to find them is to observe that 1 < (L+1)/(L−1)< 2

if L ≥ 4 and (L+1)/(L−1)≥ 2 if 1 ≤ L ≤ 3. Now, we have two options: either we choose a big

multiplicity in order to allow bigger concentrations, or we choose directly small concentrations.

Let us illustrate this behaviour with some examples computed with the aid of GAP [12, 6]:

Example 4.7. Let A := {1000+25·k |0≤ k≤ 39}. Let Γ be the numerical semigroup minimally

generated by A∪{1507,1899,13765,13790,13815}.The multiplicity of Γ is m(Γ) = 1000, the

conductor is c = 13741 = 13 · 1000+741, and the concentration C(Γ) = 25. Thus L = 13 and

the conditions of Theorem 4.4 are fulfilled, therefore Γ has positive Eliahou number.

Example 4.8. Let us consider the numerical semigroup defined by

Γ = 〈50,55,60,65,70,73,77,81,86,91,96,194,199〉.

We see that c= 190 and it has concentration C(Γ)= 5. Then it fulfils the hypothesis of Theorem

4.4 and so E(Γ)> 0. Moreover, since δ = 66 > 50 it satisfies the conditions of Proposition 3.6

so W (6) ≥ 0. An easy computation shows that E(Γ) = 544 and W (6) = 206. It is also easily

seen that µΓ = 3.
On the other hand, the type of Γ is 17, and it is neither symmetric nor pseudo-symmetric, ac-

cording to the computations done with the routines in GAP [12]. Moreover, it is easily checked

that it does not fulfils any of the conditions of the main theorems of [15, 19].
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4.3. Examples of semigroups with negative Eliahou number. A few examples of numerical

semigroups with negative Eliahou number are known. Some of them already appeared in Eli-

ahou’s paper [8]. Those are the unique numerical semigroups with negative Eliahou number

and c− δ ≤ 60. Later, Delgado [3, Sections 3 and 4] provided several families of numerical

semigroups with negative Eliahou number and es = 3. In fact, these families offer examples

with arbitrarily large negative Eliahou number. Moreover, Delgado showed a few examples

with es = 4,5 in [3, Tables 6 and 7]. More recently, Eliahou and Fromentin [9] presented new

families of numerical semigroups with negative Eliahou number, all of them with c = 4m.

It is not difficult to check that all the examples provided by Delgado, Eliahou and Fromentin

satisfy the conditions of Theorem 4.3 and Corollary 4.5. We wonder whether these necessary

conditions may help to find new examples of numerical semigroups with negative Eliahou num-

ber. This is the case; in fact we present now a few of them: it is straightforward to check that

they do not belong to the above collections of Delgado resp. Eliahou and Fromentin [8, 9], since

in our examples we have es = 4 and c ≥ 5m; to the best of the authors’ knowledge, these are not

mentioned in the literature.

Example 4.9. In the following table we show eight numerical semigroups with negative Eliahou

number, es = 4 and concentrations 70,100.

Γ E(Γ) C(Γ) ei µi Wi(ei) Wi(µi)

〈100,170,171,176〉599 −1 70 71 13 2880 38

〈100,270,272,275〉998 −2 100 70 15 4882 52

〈100,270,271,175〉999 −3 100 70 12 4881 9

〈100,270,273,275〉1000 −4 100 70 12 4880 8

〈100,170,173,174〉597 −5 70 70 13 2833 40

〈100,170,172,175〉598 −6 70 70 13 2832 39

〈100,170,173,175〉599 −7 70 70 13 2831 38

〈100,170,172,175〉600 −8 70 70 13 2830 37

TABLE 1. Some semigroups with negative Eliahou number.

Different combinations of the minimal generators and conductors of the examples of Table 1

allowed us to find 36 numerical semigroups with Eliahou number within the interval [−8,−1].
Those semigroups are of two types:

Type 1 〈100,170,a,b〉c with a,b∈ [171,176], c∈ [597,600].These semigroups have es ∈ {3,4}
and c > 5m.

Type 2 〈100,270,a,b〉c with a,b ∈ [271,276], c ∈ [997,1000]. These semigroups have es ∈
{3,4} and c > 9m.

There are 18 numerical semigroups of type 1 and negative Eliahou number and 18 numerical

semigroups of type 2 and negative Eliahou number. All of them can be computed with the help

of GAP [12, 6] by using the following codes:
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Algorithm 1 Code to compute the 18 numerical semigroups negative Eliahou number of type 1

1: L1 := [593..602]; ;

2: L2 := [171..180]; ;

3: for i in [1..Length(L1)] do

4: for j in [1..Length(L2)] do

5: for k in [1..Length(L2)] do

6: G := NumericalSemigroup(Union([100,170,L2[ j],L2[k]], [L1[i]..900]));
7: if EliahouNumber(G)< 0 then

8: Print([100,170,L2[ j],L2[k]],”\n”);
9: Print(Conductor(G),”\n”);

10: Print(EliahouNumber(G),”\n”);
11: Print(” ============================= ”,”\n”);
12: fi;

13: od;

14: od;

15: od;

Algorithm 2 Code to compute the 18 numerical semigroups negative Eliahou number of type 2

1: L1 := [993..1005]; ;

2: L2 := [271..280]; ;

3: for i in [1..Length(L1)] do

4: for j in [1..Length(L2)] do

5: for k in [1..Length(L2)] do

6: G := NumericalSemigroup(Union([100,270,L2[ j],L2[k]], [L1[i]..9000]));
7: if EliahouNumber(G)< 0 then

8: Print([100,270,L2[ j],L2[k]],”\n”);
9: Print(Conductor(G),”\n”);

10: Print(EliahouNumber(G),”\n”);
11: Print(” ============================= ”,”\n”);
12: fi;

13: od;

14: od;

15: od;

5. HIGHLY DENSE NUMERICAL SEMIGROUPS

To finish, let us present a class of numerical semigroups satisfying the Wilf conjecture. To do

so, we will make use of the results of Section 3. Furthermore, we will prove that under certain

restrictions they also have positive Eliahou number. We need first the notion of highly dense

numerical semigroup:

Definition 5.1. We say that Γ is highly dense if one of the following two conditions is satisfied:

(1) Γ has concentration less or equal than 2.
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(2) Γ has concentration less or equal than e(Γ)/2 and 4 ≤ e(Γ).

Examples 4.7 and 4.8 show already highly dense numerical semigroups with concentration

C(Γ) = 5 resp. C(Γ) = 25. We employ the terminology highly dense due to the fact that small

concentrations lead to higher number of elements of the numerical semigroup in the interval

[0,c], as Proposition 3.1 shows.

By definition and the discussion of Section 3 we have the following.

Proposition 5.2. Let Γ be a highly dense numerical semigroup. Then WΓ(e)≥ 0.

Proof. This is an straightforward consequence of Proposition 3.5. �

Therefore, highly dense numerical semigroups provide a new family of numerical semigroups

satisfying Wilf’s conjecture. Moreover, we can use Theorem 4.1 to show that —under certain

additional hypothesis— highly dense numerical semigroups have positive Eliahou number.

Corollary 5.3. Let Γ be a numerical semigroup with C(Γ) = k ≥ 2, with conductor c > 2m and

satisfying es ≥ 2k. Then E(Γ)≥ 0.
In particular, any highly dense numerical semigroup with es ≥ 2k has positive Eliahou number.

Proof. By Theorem 4.1 we have E(Γ)≥WΓ(es). Since es ≥ 2k, the linearity of the Wilf function

together with Proposition 3.5 shows

E(Γ)≥WΓ(es)≥WΓ(2k)≥ 0,

as desired. �

Corollary 5.4. Let Γ be a numerical semigroup with concentration k ≥ 2, with es ≥ k + 1,

delta-invariant δ (Γ)≥ m− k, and conductor c > 2m. Then E(Γ)≥ 0.
In particular, any highly dense numerical semigroup with es ≥ k + 1 and δ (Γ) ≥ m− k has

positive Eliahou number.

Proof. From Theorem 4.1 we have E(Γ) ≥ WΓ(es). Since es ≥ k + 1 and δ (Γ) ≥ m− k, the

linearity of the Wilf function together with Proposition 3.6 shows

E(Γ)≥WΓ(es)≥WΓ(k+1)≥ 0,

as wished. �
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