
Improving DBSCAN for Indoor Positioning Using

Wi-Fi Radio Maps in Wearable and IoT Devices

Darwin Quezada-Gaibor∗,†, Lucie Klus†,∗, Joaquı́n Torres-Sospedra‡,∗,

Elena Simona Lohan†, Jari Nurmi† and Joaquı́n Huerta∗

∗Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain
†Electrical Engineering Unit, Tampere University, Tampere, Finland

‡UBIK Geospatial Solutions S.L., Castellón, Spain

Abstract—IoT devices and wearables may rely on Wi-Fi finger-
printing to estimate the position indoors. The limited resources
of these devices make it necessary to provide adequate methods
to reduce the operational computational load without degrading
the positioning error. Thus, the aim of this article is to improve
the positioning error and reduce the dimensionality of the radio
map by using an enhanced DBSCAN. Moreover, we provide an
additional analysis of combining DBSCAN + PCA analysis for
further dimensionality reduction. Thereby, we implement a post-
processing method based on the correlation coefficient to join
“noisy” samples to the formed clusters with Density-based Spatial
Clustering of Applications with Noise (DBSCAN). As a result, the
positioning error was reduced by 10% with respect to the plain
DBSCAN, and the radio map dimensionality was reduced in both
dimensions, samples and Access Points (APs).

Index Terms—Clustering; DBSCAN; PCA; RSS; Wi-Fi finger-
printing.

I. INTRODUCTION

Nowadays, Internet of Things (IoT) technologies have be-

come indispensable for many companies in different domains

such as telecommunications [1], transport [2] and e-health

[3], giving rise to new and complex networks with millions

of devices connected through the Internet. Many more ser-

vices (including positioning and localization) are offered to

the end-users at the expense of a fast increase in network

traffic and greater consumption of computational resources.

An increasingly attractive sub-category of IoT technologies

is the category of wearables, i.e., body-worn or hand-held

devices, which can serve various functionalities from health

status monitoring to contact tracing and activity detection.

Many IoT devices and, in particular, many wearable devices

are heavily used in indoor scenarios and are more and more

requiring some indoor localization features to enable a variety

of Location Based Services (LBSs).

Wi-Fi fingerprinting technique is one of the most broadly

used techniques for Indoor Positioning Systems (IPSs), thanks

to the fact that many Wi-Fi routers and APs are already de-

ployed in public and private areas. However, it is not efficient
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enough to run it in some devices, such as power-constraint

wearables. Thus, some authors have proposed methods based

on clustering (e.g. k-means, affinity propagation and c-means)

[4], [5] or dimensionality reduction [6]–[9] in order to reduce

the datasets or at least the search area, and therefore to

decrease the computational load. Whereas the main objective

of dimensionality reduction in Wi-Fi fingerprinting is to reduce

the vector dimensionality (number of APs) by applying linear

or non-linear transformations (e.g. PCA, GDA, LDA, t-SNE)

[10]. Both methods can be applied –separately or jointly– to

Wi-Fi fingerprinting to reduce the radio map in both samples

and feature dimensions.

DBSCAN [11]–[13] is a clustering method used to split the

radio map into high-density and low-density clusters, dividing

it into n non-overlapping reduced radio maps. Then, in the

operational phase, the search has two steps. A coarse search

to identify the closest centroid –the centroids are computed

for each cluster in this work, as they are not provided in

DBSCAN– and a fine-grained search to obtain the closest

reference fingerprints –within the selected closest cluster–

to the operational one. This clustering method requires two

parameters, Eps, which is the distance used to form the neigh-

bourhood between samples, and MinPts, which determines the

minimum number of samples to form a cluster [14]. In case a

point(sample) is not part of a cluster, it will be considered

as noise. Many fingerprints can be considered noisy when

DBSCAN clusters the radio map, which might affect the

position estimation.

In this article, we introduce a new DBSCAN post-

processing method, which is applied when the number of noise

samples exceeds 10% of the total size of the dataset. Thus, we

establish some rules devoted to group noise points in clusters

with a higher level of similarity or correlation.

The main contributions of this article are the following:

• A new variant to enhance the position estimation when

DBSCAN is used in Wi-Fi fingerprinting.

• Dimensionality reduction of the Wi-Fi fingerprinting

datasets by combining DBSCAN and Principal Compo-

nent Analysis (PCA).

• Reduction in the time search and position estimation time

in the online phase of Wi-Fi fingerprinting.

This article is organized by the following sections. Section II



provides a general overview of clustering and Wi-Fi finger-

printing and related work. Section III describes the proposal

modification of DBSCAN clustering and its integration with

Wi-Fi fingerprinting. Section IV describes the procedure to

execute the experiment and its results. Section V provides the

conclusions raised from the main findings.

II. RELATED WORK

Wi-Fi fingerprinting is considered as one of the most used

techniques for indoor positioning and localization [15]. Due to

that Wi-Fi APs are already deployed in multiple environments,

avoiding the cost of deploying new positioning technologies.

However, this solution requires to have datasets with hundreds

or thousands of Received Signal Strength (RSS) measure-

ments. Some researchers use unsupervised ML methods to

classify similar fingerprints into clusters to reduce the search

area in the online phase of Wi-Fi fingerprinting. The most

used algorithms are k-means, fuzzy c-means (soft k-means),

k-medoids, affinity propagation, among others. A few relevant

approaches are detailed below.

Zhang et al. [16] proposed an algorithm based on hierarchi-

cal classification and k-means. The improved k-means is used

to divide the indoor environment into overlapping zones. In

contrast to k-means, which performs a partitioning of the data

space into non-overlapping Voronoi cells, this new algorithm

allows having a Wi-Fi fingerprint in more than one cluster.

As a result, they reduced the execution time (less than 1

second) and improved the position accuracy with a low average

positioning error of 1.2m.

Abusara et al. [6] use a different method to reduce the radio

map. This method is devoted to eliminating non-relevant AP,

reducing the positioning error. The authors use the fast orthog-

onal search (FOS) method to identify relevant information in

the radio map and keep the main characteristics of the dataset.

Additionally, they propose a modified FOS (mFOS) which is

oriented to estimate the user position instead of compressing

the radio map. As a result, both FOS and modified FOS

provide better performance and lower positioning error than

PCA.

Jia et al. [7] based their work in supervised ML, us-

ing Gaussian Process Manifold Kernel Dimension Reduction

(GPMKDR) in the offline phase to detect and extract the most

relevant features in the radio map. Consequently, the authors

got a mean positional error of 1.13m, which is lower than

when the PCA-based method is used.

López-de-Teruel et al. [8] evaluate the quality of the radio

map using dimensionality reduction techniques, and propose

two new visualization methods. The dimensionality reduc-

tion or data compression is mainly based on three well-

known methods PCA, t-SNE and Linear Discriminant Analysis

(LDA). As a result, they obtained a natural visualization of the

radio map, including overlapping zones and outliers.

The analysed research literature shows the importance of

dimensionality reduction for indoor positioning and IoT. It

provides efficient use of the computational resources and the

improvements in the execution time. It is important to high-

light that these analyses were done for WLAN-fingerprinting.

III. PROPOSED DBSCAN VARIANTS

DBSCAN clustering algorithm is used to find groups of

samples of different shapes [9], in particular, to find high-

density zones (clusters) and to separate them from low-density

zones. In contrast with k-means clustering, DBSCAN doesn’t

need a predefined number of clusters, it forms the clusters

based on two parameters: Eps, which determines the distance

to form the neighbourhood and MinPts which is the minimum

number of samples to create a cluster. Once the clusters are

generated, there are some samples labelled as noise, and they

are excluded from the clusters.

In this work, we propose an improved DBSCAN in order to

minimize the error in the position estimation when DBSCAN

is used, and we combine this approach with PCA for further re-

duction in the radio map dimensions, providing computational

efficiency. Additionally, DBSCAN clustering is combined with

k-nearest neighbors (kNN) as main core IPS to estimate the

user position. Thus, DBSCAN is applied in the offline phase of

Wi-Fi fingerprinting positioning technique, in such a way, that

the operational fingerprint will be compared with a specific

cluster with similar characteristics in the online phase.

When DBSCAN is applied to Wi-Fi fingerprinting the clus-

tered radio map may contain many samples denoted as noise,

which might degrade the accuracy of the position estimation

in some cases. Under optimal conditions, DBSCAN is capable

of detecting and excluding outliers from the clusters. However,

due to the heterogeneity of the datasets the cluster distribution

is not homogeneous, and therefore some relevant samples

might be excluded from them. Considering this as a weakness,

we propose the following DBSCAN post-processing method.

A. Step one - Establish the percentage of ”noise” samples

allowed for each dataset

The first step is to establish the percentage of noise (thresh-

old) accepted in the analysed dataset. In general, noise samples

are represented by 0 or -1 in the vector with the cluster indexes

when DBSCAN is applied. The selected threshold may differ

from one dataset to another.

B. Step two - Compute the correlation coefficient matrix

The correlation coefficient matrix is computed if the per-

centage of noise fulfils the condition %ofnoise ≥ threshold,

where the percentage of noise is computed with regard to the

total number of samples and the threshold is established in

step one. This correlation coefficient matrix is computed from

the distance matrix provided by DBSCAN. Thus, the strength

of the relationship between each sample may be known.

C. Step three - Joining ”noise” samples to the formed clusters

The noise samples are joined to a specific cluster in case

they meet the condition CorrelationCoefficient > 0.10. If

the condition is true, we search a labelled sample (no noise)

with a higher level of correlation between the two samples.



When the sample is found, the noise point is joined to the same

cluster. This process is repeated with all the noise samples.

Algorithm 1 graphically describes the process mentioned in

the previous three steps.

Algorithm 1: DBSCAN post-processing

1 Input: IDX, distance matrix

2 Output: IDX’

3 IDX’ ← IDX (cluster indices)

4 if %ofnoise ≥ threshold then

5 ccm ← Compute the correlation coefficient matrix

from the distance matrix

6 vector ← Sum all the coefficients by row

7 for i← 1 to length IDX’ do

8 if IDX’(i) == 0 then

9 Compute the percentage of vector(i) with

respect to the maximum vector’s value

10 if percent > 0.10 then

11 j ← 1

12 while j ≤ length IDX’ do

13 sc ← sort ccm(i,:) DESC

14 if IDX’(sc(j)) != 0 then

15 IDX’(i) ← IDX’(sc(j))

16 break

17 else

18 j ← j + 1

19 end

20 end

21 end

22 end

23 end

24 end

IV. EXPERIMENTS AND RESULTS

A. Setup and Procedure

This experiment is performed by using 12 Wi-Fi finger-

printing radio maps from Tampere University [17]–[19],

University Jaume I [20], University of Mannheim [21], [22],

and University of Minho [23]. Supplementary materials, with

method implementation and dataset explanation, are available

at Zenodo [24] for research reproducibility.

The current analysis combines kNN, DBSCAN post-

processing method and PCA in order to reduce the dimen-

sionality of the radio maps and estimate the user position.

To compare our approach we run a plain kNN with k = 1,

positive data representation, and cityblock distance metric (see

[25]). This simple configuration is used as the baseline for the

analysis performed in this paper.

The hyperparameters for kNN, and DBSCAN are listed

in Table I. These hyperparameter values provide the best

error in the position estimation for every dataset. Additionally,

the table shows the data representation (powed, positive, and

exponential) used for each dataset [25], the k value for kNN,

the values of Eps and MinPts for DBSCAN. It is important to

highlight that there is no data normalization or standardization

applied in plain DBSCAN. However, data normalization is

applied for the combination of DBSCAN with PCA.

TABLE I
OPTIMAL PARAMETERS TO RUN DBSCAN

Plain DBSCAN with PCA 90%

Database Data Rep. k (kNN) Eps MinPts Eps MinPts

DSI 1 Powed 11 0.170 3 0.005 00 2
DSI 2 Positive 9 150 2 0.015 00 2
LIB 1 Positive 11 160 4 0.010 00 2
LIB 2 Positive 9 66 2 0.010 00 2
MAN 1 Exponential 11 0.031 3 0.006 00 3
MAN 2 Exponential 11 0.033 3 0.001 11 3
SIM Exponential 11 0.012 2 0.000 60 2
TUT 1 Positive 3 290 2 0.009 21 2
TUT 2 Powed 1 0.330 2 0.005 10 2
TUT 3 Positive 3 290 2 0.021 00 2
TUT 4 Positive 3 135 2 0.009 00 2
TUT 5 Positive 3 180 2 0.004 10 2

* DSI and SIM - U. of Minho, LIB - U. Jaume I, MAN - U. of Mannheim,
TUT - Tampere U.

Once the data normalization is applied, we use PCA to

reduce the dataset. Furthermore, with the aim of keeping most

of the variance in the dataset, we chose 90% of variance

explained. As a result, we obtained the number of principal

components which satisfy the percentage of variance required.

The next step is to determine Eps and MinPts. Thus, to

have a better approximation of the optimal Eps value, we use

the algorithm proposed by [26] to find the elbow point, then

multiple values of Eps and MinPts were tested to achieve the

lowest positioning error for each dataset.

Finally, we apply the plain kNN, kNN with DBSCAN, kNN

with DBSCAN and the post-processing method, kNN with

DBSCAN, the post-processing method and PCA 90%.

To run the experiments, we used a computer with the

following characteristics: Intel® Core™ i7-8700T @ 2.40GHz

and 16 GB of RAM, the operating system is Fedora Linux and

the software used is Octave v5.0.2.

B. Results

To analyse the results obtained through this experiment, we

use the parameters and notation shown in Table II:

TABLE II
PARAMETERS AND NOTATION

δ is the number of samples in the dataset
γ is the number of APs
γ̃ is the reduced number of APs
ǫ2D represents the mean 2D positioning error
τ is the execution time required to estimate the position
ǫ̃2D represents the normalized 2D positioning error. The bench-

mark is the result of plain kNN.
τ̃ is the normalized execution time
ψ represents the number of clusters
φ is the number of samples labelled as noise

Table III shows the main results of dimensionality reduction,

the application of the post-processing method, execution time,



TABLE III
MAIN RESULTS OF APPLYING DBSCAN IN DIFFERENT DATASET

Plain kNN DBSCAN DBSCAN MOD DBSCAN + PCA 90%

Database δ γ ǫ2D τ ǫ̃2D τ̃ ψ φ ǫ̃2D τ̃ ψ φ ǫ̃2D τ̃ γ̃ ψ φ ǫ̃2D τ̃

DSI 1 1369 348 4.95 14.03 1 1 252 13 1.08 0.002 252 13 1.08 0.022 64 297 12 3.83 0.009
DSI 2 576 348 4.95 5.90 1 1 123 140 1.05 0.140 123 30 1.06 0.113 61 117 37 3.00 0.028
LIB 1 576 3120 3.01 53.97 1 1 3 0 0.91 0.394 3 0 0.91 0.401 31 67 9 1.38 0.024
LIB 2 576 3120 4.02 56.57 1 1 51 378 1.31 0.026 51 36 1.14 0.046 55 73 19 1.27 0.030
MAN 1 14300 460 2.82 186.19 1 1 289 12181 1.25 0.002 289 4430 1.03 0.019 16 1 0 3.28 0.984
MAN 2 1300 460 2.47 17.54 1 1 118 0 0.91 0.022 118 0 0.91 0.022 8 99 10 4.34 0.073
SIM 10710 8 3.14 303.21 1 1 608 9224 1.04 0.001 608 1084 0.81 0.001 5 2 20 3.03 0.834
TUT 1 1476 490 8.61 22.56 1 1 73 431 0.92 0.040 73 0 0.98 0.036 51 57 139 2.64 0.084
TUT 2 584 176 12.66 3.27 1 1 129 100 1.09 0.018 129 0 0.90 0.014 56 111 0 4.10 0.019
TUT 3 697 3951 8.92 98.33 1 1 39 461 1.75 0.015 39 4 1.46 0.030 108 40 1 3.60 0.014
TUT 4 3951 697 6.10 99.37 1 1 186 2974 2.11 0.022 186 24 1.48 0.030 188 64 154 5.73 0.023
TUT 5 446 982 6.39 14.32 1 1 49 216 1.51 0.046 49 64 1.63 0.079 49 26 43 8.82 0.072

Average 1 1 1.24 0.061 1.12 0.068 3.75 0.183

and error in the positioning estimation of the four above-

mentioned methods.

The first group in the table of results shows the parameters

used to execute the plain kNN. Here the dataset is used in its

original size without modifications and normalization, these

results are used as the baseline for our analysis.

The second group shows the results of executing DBSCAN

and kNN. Here we can see that the error in the position

estimation (ǫ̃2D) increased with respect to the baseline in

most of the cases. However, the matching time and position

estimation time (τ̃ ) decreased significantly in the online phase

of Wi-Fi fingerprinting, after using DBSCAN clustering.

The third group is the modified DBSCAN or post-

processing method + kNN. Here we can see the error in

the position estimations is reduced by 10% (approx.) in

comparison to the plain DBSCAN, but the time required to

search the closest fingerprints and estimate the position is

slightly increased, yet it is still significantly lower than the

time required in case of using the plain kNN.

The fourth group is the combination of the modified

DBSCAN or post-processing method + PCA 90%. The results

of the positioning error are considerably higher in some

datasets such as TUT 4 and TUT 5. However, the number

of APs were “compressed” from 697 to 188 and from 982 to

49 in case of TUT 4 and TUT 5, respectively. This represents

a considerable reduction of the dataset.

Regarding the formed clusters, we can observe that the

distribution throughout the clusters is not equal in all the

datasets, obtaining clusters of different sizes. Fig. 1 shows

the distribution of clusters in TUT 2 training dataset. The

x-axis represents the number of clusters and the y-axis the

number of samples assigned to the cluster. The first plot

shows the formed clusters after applying DBSCAN without

any modification. The second plot (middle graph) shows how

the noise samples are redistributed throughout the remaining

clusters when we apply DBSCAN post-processing. Finally,

the last plot shows the distribution of clusters after applying

DBSCAN post-processing and PCA.
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Fig. 1. TUT2 - Distribution of clusters after running DBSCAN, DBSCAN
post-processing method and DBSCAN + PCA

C. Discussion

After conducting a search in Web Of Science with the

following query ”TS=(DBSCAN AND indoor AND (position*

OR localization OR location OR tracking))”, we can notice

that only a few researchers are working with DBSCAN and

Wi-Fi fingerprinting for IPS (13 results). Their work coincides

in asserting that DBSCAN is an efficient clustering algorithm

to detect outliers in datasets. Additionally, if we discard the

noise samples, we can see a reduction in the dimensionality

of the radio map (reducing the number of samples).

DBSCAN, as other clustering methods, does not guarantee

that all reference samples are equally distributed. Nevertheless,

in some cases, we have detected that the original method tends

to include a very large number of samples in just one cluster

(see Fig.1 top), which is not computationally effective, thus,

the need of improving it.



Fig. 2. TUT4 and LIB1/LIB2 dataset – training points representation

After applying the proposed post-processing method or

DBSCAN modification, we can observe that the results ob-

tained are slightly better than while using a plain DBSCAN.

The error in the position estimation decreased by almost 10%

after applying our method and injecting some noisy samples

to the clusters. In the operational phase, the computational

time is not significantly altered with respect to the original

DBSCAN. Resulting improvements in the position estimation

plus the reduction in the processing time could be good enough

for some wearable devices with intermediate capabilities.

However, we consider that this research line needs further

improvements if we target to use it in very low profile devices.

Although DBSCAN provides a lower matching time and

position computation time compared with the plain kNN in

the online phase, it might require a large quantity of time

to form the clusters and then, to compute the correlation

coefficient matrix in the offline stage. This processing time

is especially long in large datasets, i.e. those covering large

multi-building and/or multi-floor operational areas. In our

experiments, clustering of the largest datasets took more than

10 hours. Thus, the proposed method is valid in those radio

maps which remain unaltered for a large period of time as it

is not feasible if the radio map is regularly (hourly or daily)

updated.

Regarding the variation in the results obtained after the

post-processing method, we can observe that the error in the

position estimation does not change significantly after the

dimensionality reduction in some datasets. This is the case

of the LIB 1 and LIB 2 (Fig. 2 right), the result was expected

due to its distribution and the methodology of taking samples.

However, we expected a better performance for TUT 4 (Fig.

2 left) and TUT 5 since DBSCAN is widely used to detect

outliers and exclude them from the cluster, but the error

increased approximately 8 times in comparison with the plain

kNN and in both implementations of DBSCAN. Here it is

important to mention that the methodology used to find the

optimal parameters for Eps and MinPts is very important to

avoid discarding useful samples.

V. CONCLUSIONS

This article provides a novel DBSCAN post-processing

method to be used in IPS, in order to reduce the error in

the position estimation when DBSCAN clustering is applied

in Wi-Fi fingerprinting radio maps. Moreover, our method

helps to reduce the dataset dimensionality by keeping rele-

vant samples. This post-processing method is applied in the

offline phase of Wi-Fi fingerprinting to join important samples

denoted as noise to the formed clusters. This method is based

on the correlation coefficient, which is needed to determine in

which cluster is the sample with a higher level of relationship.

As a result of the experiment, we obtained a reduction of

approximately 10% in the positioning error compared with

the original DBSCAN. Also, the matching time and position

estimation time in the online phase of Wi-Fi fingerprinting is

significantly reduced than when using a plain kNN. However,

the time used to form the clusters and then to compute the

correlation coefficient matrix is considerably high in the offline

phase, which should be considered in the implementation of

DBSCAN.

Additionally, we combined the proposed post-processing

method with PCA analysis for further reduction of the dimen-

sionality of the radio map. Although the radio map dimension

was considerably reduced, the positioning error increased in

all the cases.

The results obtained of the positioning error and dimension-

ality reduction in datasets permit to use this method in middle

profile IoT and wearable devices with the same characteristics

when a high level of positioning accuracy is not necessary.

To sum up, we consider this implementation as a good

starting point to work with DBSCAN for IPS on power-

constraint wearables due to the fact that only a few researchers

are working with the exposed combination for IPS (to our best

knowledge) and it has shown promising first results. The next

step is to research new ways to decrease the execution time of

DBSCAN post-processing method in the offline phase and re-

duce the error when the dimension of the dataset is compressed

by using PCA analysis. For the research reproducibility, we

have also provided the link to all datasets on Zenodo [24].
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