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Abstract—Commercial Off-The-Shelf (COTS) System-on-Chip
(SoC) are becoming widespread in embedded systems. Many
of them include a multicore CPU and a high-end GPU. They
combine high computational performance with low power con-
sumption and flexible multilevel parallelism. This kind of device
is also being considered for radiation environments where large
amounts of data must be processed or compute intensive ap-
plications must be executed. In this paper we compare three
different strategies to perform matrix multiplication in the GPU
of a Tegra TK1 SoC. Our aim is to analyze how the different use
of the resources of the GPU influences, not only the computational
performance of the algorithm, but also its radiation sensitivity.
Radiation experiments with protons were performed to compare
the behaviour of the three strategies. Experimental results show
that most of the errors force a reboot of the platform. The number
of errors is directly related with how the algorithms use the
internal memories of the GPU, and increases with the matrix
size. It is also related with the number of transactions with the
global memory, which in our experiments is not affected by the
radiation. Results show that the smallest cross-section is obtained
with the fastest algorithm, even if it uses the cores of the GPU
more intensively.

Index Terms—GPU, Embedded Systems, proton irradiation,
parallelization.

I. INTRODUCTION

System-on-Chip (SoC) devices composed of low-power
multicore processors and small Graphics Processing Units
(GPUs) are very attractive because they offer a trade-off
between computational capacity and low-power consumption.
Graphics Processing Units (GPUs) are highly parallel pro-
grammable co-processors that can accelerate many applica-
tions if they leverage their many cores and large and fast
memories. GPUs offer multiple parallelism levels; however,
properly managing their computational resources becomes a
very challenging task. Embedded systems with SoC including
GPUs are used in critical domains, such as advanced driver
assistance systems [1], avionics or space applications [2], [3].

New space missions combine the need to process very large
volumes of data and execute compute intensive applications.
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Current space qualified processors do not fulfil those require-
ments. Therefore, Commercial Off-The-Shelf SoCs including
Central Processing Units (CPUs), GPUs and, in some cases,
Field Programmable Gate Arrays (FPGAs), are being consid-
ered in space missions as an alternative to ad-hoc rad-hard mi-
croprocessors because they can deal with the new computing
requirements without increasing the power consumption [4],
[5]. However, radiation effects on this kind of device must be
analyzed and fault tolerance or mitigation techniques must be
implemented in order to use them in harsh environments.

In this paper we analyze the radiation sensitivity of a
GPU-accelerated SoC device when running different parallel
implementations of a representative application benchmark,
namely a matrix multiplication kernel. Those implementations
make a very different use of the resources of the GPU, such as
the cores, memories and warp schedulers, among others. For
example, while one of the algorithms performs a large number
of transactions from global memory and L2 cache, the other
two leverage the shared memory. Therefore, they have a very
different probability of being affected by a particle impinging
those components of the GPU. As a consequence, the three
algorithms get very different performances, but also different
behaviour in terms of radiation-induced errors. Most papers
use different benchmarks, such as linear algebra routines,
Fast Fourier Transform (FFT) or even neural networks, to
evaluate the radiation sensitivity of GPUs. However, very few
evaluate the effect of using different strategies to solve the
same problem.

Our main goal is to assess how the use of the components
of the device affects the radiation sensitivity of the algorithms,
and also to detect trade-offs that allow us to obtain max-
imum computational performance and minimum error rate.
Two parameters are commonly used when comparing the
performance of different strategies to implement linear algebra
routines in COTS GPUs, namely, computational performance
and, more recently, energy consumption [6]. In this paper
we add radiation sensitivity as a third parameter to take
into account. To this end we performed different radiation
campaigns executing 1000 matrix multiplications with each
algorithm with different matrix sizes. We compare the cross-
section of the algorithms and also the percentages of the
different types of soft errors occurred during each radiation
campaign. We carried out our experiments on a Tegra TK1
SoC using a proton beam with an energy of 15.4MeV and
a fluence of 3.4 × 1012p/cm2. This device was designed to
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provide high performance with low power consumption on
mobile devices. It is a COTS device, and so it was not designed
to be used in radiation harsh environments.

Results show that the memory-bound strategy with lower
performances is the most error prone and that the cross-section
increases with the matrix size. Finally, preliminary results
show that the spatial distribution of the errors in the matrix
depends on the implementation strategy.

The main contributions of our work are the following:
• Three different algorithms to perform matrix multipli-

cation have been analyzed under proton irradiation. We
have quantified how the algorithms use some of the main
resources of the GPU that can affect their error sensitivity.

• Experiments have been performed on a COTS GPU-
accelerated SoC including the CPU and GPU, but without
focusing the radiation beam on the DDR memory.

• The cross section of the three algorithms and also the
percentages of the different kinds of errors has been
analyzed.

• Some comments about the spatial distribution of the
errors of the three algorithms have been advanced.

The rest of the paper is structured as follows. Section II
summarizes the related work. Section III introduces the GPU
architecture and its programming model. Section IV describes
the experimental setup and benchmark. Section V presents the
experimental results. Finally, section VI summarizes the main
conclusions.

II. RELATED WORK

GPUs have become ubiquitous accelerators both in HPC
centers [7], [8] and safety-critical environments [1], [5]. They
provide massive data parallelism, with high performance per
watt and programming flexibility. However it is important
to guarantee that this kind of device meet the reliability
requirements of many applications, more so when they are
used in radiation environments. Radiation including protons,
neutrons, heavy-ions or electromagnetic radiation can produce
Single Event Effects (SEE) on this kind of device. Impinging
particles may produce bit-flips in memory elements or generate
transient voltage pulses in combinational logic [9], [10]. Tran-
sient SEEs, also called soft errors, can be very common for
example in space environments and they should be evaluated
and avoided or, at least, mitigated.

Therefore, hardware and software hardening strategies
should be designed, implemented and evaluated to increase
the reliability of this kind of device. A considerable num-
ber of papers have been published during the last decade
evaluating the reliability under radiation of GPUs. Most of
the experiments have been performed on high-performance
NVIDIA architectures, including Fermi, Kepler or Pascal using
neutron beams [11]–[13]. Several papers have evaluated the
efficiency, efficacy and overhead of the hardware hardening
ECC mechanism provided by most modern GPUs [14], [15].
Most of them conclude that this protection mechanism sig-
nificantly reduces the SDCs, but increases the Single Event
Functional Interrupts (SEFI) of the algorithms, for example
when multiple-bit faults arise. Other authors have evaluated

different software hardening strategies, such as Algorithm
Based Fault Tolerance (ABFT), Duplication With Comparison
(DWC) or Triple Modular Redundancy (TMR) [11], [16].

Matrix multiplication is one of the most used benchmarks
to evaluate the radiation sensitivity of GPUs, because it is
a basic component in many applications, such as signal or
image processing, audio editing or machine learning. Some
papers analyze not only the SDCs and SEFI rates of matrix
multiplications, but also the spatial error distribution on the
result matrices [7], [13]. The effect of the degree of parallelism
in the soft-error sensitivity of this operation is analyzed in [17].
The authors evaluate the effect of modifying the scheduling
strain and the usage of resources by using different grid and
thread block sizes. A memory-bound and a compute-bound
version of matrix multiplication have been compared in [11].
The authors use high-energy neutron radiation to evaluate
their behaviour on two high-performance NVIDIA GPUs with
different architectures, namely Fermi and Kepler. Their exper-
imental results show that increasing the performance of the
multiplication can also increase the radiation-induced errors.
In this paper we add a third matrix multiplication algorithm
(Cublas) which optimizes the use of the GPU obtaining
much higher performance. We conduct the experiments on
a low-power GPU included on a SoC and using proton
irradiation, which also affects the CPU of the device but not
its global memory.

Radiation tests have also been performed with different
GPU-accelerated SoC [18]. For example, Jetson TX1 and TX2
platforms were tested in [19], [20] using proton irradiation to
provide a baseline assessment of their radiation susceptibility.
Results showed upsets in all tests with different types and
crash conditions, but power cycle mitigated all non-destructive
events. Jetson TX1 and Snapdragon 820 were irradiated in [21]
using protons, heavy ions and also laser testing.

Radiation evaluations show that different types of Jetson
SoCs are acceptable for many low earth orbit short duration
missions using the proper mitigation techniques. For example,
high-energy protons are used in [22] to evaluate the cross-
section and the total dose performance of the Tegra K1 SoC.
In [9] gamma-ray photons were employed to evaluate the
tolerance to radiation effects of a Jetson Nano board, which in-
cludes a 128-core NVIDIA Maxwell GPU. Preliminary results
suggest operation beyond 20 krad(Si). Similar conclusions
were reached in [23] for a Jetson AGX Xavier board, including
a 512-core NVIDIA GPU, using proton irradiation.

Results of testing several Snapdragon devices with different
scaling technology and including different Adreno GPUs are
described in [24]–[26]. Specifically, SEE tests results for the
Snapdragon 820 using proton, neutron and heavy ion radia-
tions are reported in [24]. Authors state that the interpretation
of the results is complicated by mixing of errors between
the components of the platform. Results with other three
Snapdragon devices are reported in [25], where experiments
evaluate the SEE and cross-sections of the devices for different
events and energy levels.

All in all, radiation experiments using different kinds of
particles on COTS GPU-accelerated SoC show that SEFI
errors are a common problem in this type of device. However,
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in almost all cases the error is solved by rebooting the device
and Single Event Latchups (SEL) are very rare.

We have only found two papers where the authors perform
the same kind of experiments that we carry out with this kind
of device. In [27] the authors evaluate under neutron radiation
three NVIDIA GPUs, including a Jetson TX1 SoC. They
evaluate three neural networks and also a matrix multiplication
algorithm. Their results show that the matrix multiplication
crash rates are lower than the Silent Corruption Data (SDC)
rates. The authors also state that the Tegra TX1 has a higher
crash rate than the other two GPUs because the CPU of
the board is also irradiated. Finally, they conclude that the
transistor technology can have a significant impact on the
reliability of the GPUs running neural network algorithms.
They show that the error rate of FinFET devices is an order
of magnitude lower than the error rate of planar CMOS
devices. Similar matrix multiplication results with the same
device are also included in [28], where the authors analyze
the dependence of the radiation-induced errors on the code
and the architecture of six different devices, including an Intel
co-processor, three NVIDIA GPUs, an AMD APU, and an
embedded ARM.

III. GPU ARCHITECTURE AND PROGRAMMING

The Compute Unified Device Architecture (CUDA) [29]
was defined by NVIDIA and can only be used with GPUs
of this company. However, OpenCL, which is an open source
language with a very similar programming model, can be
used with many other GPUs and also with some multicore
CPUs [30]. CUDA is based on an array of Streaming Mul-
tiprocessors (SM). Every SM contains multiple CUDA cores,
which can execute in parallel multiple elementary processes,
called threads. The threads are logically grouped into thread
blocks which are dispatched to an SM and can leverage its
shared memory. Thread blocks are then divided in warps of
size 32, which are scheduled to be executed on the cores of the
SM. Thread blocks are organized in a grid. CUDA programs
combine a host code run on the CPU with one or several kernel
functions to be executed in the CUDA cores using a Single
Instruction Multiple Threads (SIMT) model. That is, the same
instruction is dispatched to the cores, so that one thread per
core executes it. Usually, each core executes the instruction
using different data, which can be stored in registers assigned
to the thread, in the memory shared with other threads of the
same block or in global memory of the GPU. SIMT model
combines threads with the Single Instruction, Multiple Data
(SIMD) model, which was one of the computer architectures
included in Flynn’s taxonomy [31].

In [29] there is a description of the main parameters that
determine the performance of the algorithms running on GPUs.
Firstly, the GPU occupancy, which is defined as the ratio of
active warps on an SM to the maximum number of active
warps supported by the SM, which depends on the GPU
architecture. An SM usually contains more than one warp
scheduler and, in order to hide latencies between dependent
instructions, schedulers must have enough warps to dispatch
an instruction every clock cycle. Therefore, maintaining as

many active warps as possible throughout the execution of
the kernels helps to avoid clock cycles where no instruction
is executed in the cores. Another method to increase the
performance is to leverage registers that are local to each
thread and the fast memory shared by the threads of each block
to reduce the negative impact of accessing the slow global
memory. Besides, data should be distributed in memory so
that most of the accesses can be coallesced, thus reducing the
number of load operations. That is, threads with consecutive
identifiers in its block should access adjacent elements in
memory whenever possible.

There are several limiting factors to the performance asso-
ciated with the resources of the GPU architecture. Table I
describes the physical limiting factors in the case of the
K20A GPU used in our experiments. Those factors are the
maximum number of blocks and warps that can be active
at once on each SM and the maximum number of registers
and shared memory that can be assigned to a thread block.
Programmers should implement their algorithms taking into
account those limits. For example, one of the limits of the
K20A GPU is that there cannot be more than 16 thread blocks
scheduled in its only SM. If we select a very small block
size including only 32 threads (1 warp), we can only have 16
active warps on the GPU. This means that, in this case, we
can only reach 25% of the maximum number of active warps
supported by the GPU, and so, we can only reach 25% of
its theoretical occupancy. Nevertheless, as we will see when
comparing the three CUDA matrix multiplication algorithms,
getting the maximum occupancy does not always guarantee
the best performance.

A. Device under test
We have used as DUT a Tegra K1 (TK1) System-on-Chip

(SoC), embedded in the Jetson development kit [32]. TK1 was
launched by NVIDIA in 2014 as a powerful and flexible device
for mobile devices. As stated by NVIDIA in [33] “Jetson TK1
will enable a new generation of applications for computer
vision, robotics, medical imaging, automotive, and many other
areas”.

The main components of the System-on-Chip are displayed
in Figure 1. The TK1 SoC is fabricated on the 28 nm High
Performance Mobile (HPM) process, which reduces its size
and power demand. It was the first mobile processor to use
4-PLUS-1 ARM Cortex A15 CPU architecture and variable
Symmetric Multiprocessing (vSMP) technology. It combines
four high-performance A15 CPU complex cores for perfor-
mance intensive tasks, and switches to the power optimized
“battery saver” A15 CPU core to handle low performance
tasks.

This SoC includes an NVIDIA “Kepler” K20A GPU with
compute capability 3.2 [34]. It includes a number of optimiza-
tions for mobile system usage to conserve power and deliver
industry-leading mobile GPU performance. In contrast with
the highest-end Kepler GPUs with thousands of cores that
consume a few hundred watts of power, the K20A consumes
only a few watts [32].

This GPU includes one Streaming Multiprocessor (SM)
containing 192 CUDA cores, each including fully pipelined
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floating-point and integer arithmetic logic units. The SM
features four warp schedulers and eight instruction dispatchers.
It can then select four warps of 32 threads and issue two
independent instructions per warp each cycle. The SM has
64 KB of on-chip memory that can be configured as 48 KB
of shared memory and 16 KB of L1 cache or vice versa. The
GPU also includes 128 KB of L2 cache and 65536 registers
of 32 bits that can be distributed among the thread blocks.
Finally, both the CPU and GPU share four DDR3 modules
with a total of 2 GB of memory. It is worth mentioning that,
contrary to other similar Kepler GPUs, the internal memory of
the K20A GPU and the DDR3 memory do not support Error
Correction Codes (ECC).

TABLE I
PHYSICAL FACTOR LIMITS OF THE K20A GPU.

Physical limit value
Threads per Warp 32
Max Warps per SM 64
Max Thread Blocks per SM 16
Max 32-bit registers per Thread 255
Max 32-bit registers per Thread Block 65536
Max Shared Memory per Thread Block (bytes) 49152

SoC of Jetson TK1

                   Shared Memory/ L1 cache

     Registers File
                   
…..

…
.

192 cores

…
.

Warp schedulers
SMX
GPU

                                       L2 cache

                   
…..

 A15

CPU

 A15  A15  A15

Fig. 1. Main components of the Tegra K1 SoC.

IV. DESCRIPTION OF THE EXPERIMENTS

A. Setup and procedure

Experiments were accomplished at CNA - Centro Nacional
de Aceleradores (Sevilla, Spain) in January 2021. A low
energy proton campaign was performed in the external beam
line installed in the 18/9 compact cyclotron (see Figure 2). The
average proton flux was approximately 1.3×108p/(cm2.s) for
energies of 15.4MeV , with a homogeneous spot of 1.5 cm of
diameter. The total fluence after all the radiation runs was of
3.4× 1012p/cm2. The irradiation affected all the components
of the SoC, but the four DDR memory modules shared by
the GPU and CPU were not exposed, neither was the SD card
that hosts the operating system. Therefore, the matrix elements
transferred to the GPU were not affected by the beam radiation
while stored in the global memory.

The Jetson TK1 board sent the logs of the tests to a
host controller through the serial communication. The host
controller is around 1.5 meters apart from the DUT and not
under direct beam exposure. The controller was also connected
to the GPIO pins of the DUT so that it can be used to
remotely reset the Jetson TK1 board when needed. The whole
test was managed remotely from a laptop connected to the
host controller through ethernet. The operating system Ubuntu
14.04 with the CUDA 6.5 driver was run from the SD card of
the Jetson TK1 board, so that we avoided the radiation effect
on the system files.

DUT

ethernet
switch 

Host Controller

Fig. 2. Radiation test setup at CNA.

The matrix multiplication algorithms were programmed
using C and we used a Python 2.7 script to run the different
benchmarks. We used the Python module Pexpect to spawn
and control a subprocess in charge of running each matrix
multiplication. Our experiments included three watchdogs to
detect and recover from different types of hangs, including
those related to the operating system. The first timeout, as-
sociated with the spawned process, was set to a time larger
than the maximum expected duration of one multiplication.
The second watchdog was executed in the Jetson board and
leveraged the Watchdog Timer (WDT) included in the board.
It was configured to reboot the operating system if it was
not kept alive by a process during more than 20 seconds. We
assumed that the operating system hung when this process did
not perform this task. Finally, a third watchdog was executed
on the host controller, so it could reset the device if the Jetson
operating system hung. Namely, the results of each matrix
multiplication was being continuously sent to the controller
through the serial port. Besides, the process in charge of
keeping alive the WDT also sent messages to the controller
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every 10 seconds. If none of those messages arrived to the
controller during more than 20 seconds, we assumed that the
Jetson operating system had hung and remotely performed a
hardware reset of the board using its GPIO pinout.

B. Matrix multiplication benchmark

We have analyzed the radiation effects on the whole SoC,
affecting the CPU cores and all the components of the GPU,
including its internal memories. However, global memory,
which is out of the SoC, has not been exposed. To test the
radiation reliability of the SoC, we have used as benchmark
three well-known parallel versions of matrix multiplication
implemented with CUDA:

• Elem is a straightforward implementation of matrix
multiplication, C = A ·B, where every thread computes
one element C[i, j] of the result matrix as the dot product
of the i-th row of matrix A and the j-th column of matrix
B. Every thread loads all the elements of both matrices
to perform the dot product from global memory, and also
stores the result in the same memory.

• Block is a block version of matrix multiplication. Every
thread-block is in charge of computing one square block
of matrix C, and each thread of the block is in charge
of computing one element C[i, j]. This block of C is
computed as the product of a row of blocks of matrix
A and a column of blocks of matrix B. To compute
each product of a block of A and a block of B, every
thread starts by loading from global to shared memory
one element of each matrix, in parallel with the rest of
threads of its thread-block. Then every thread updates in
a register its element of C by performing a small dot
product between a row of its block of A and a column of
its block of B. Finally, once finished all its products of
blocks, every thread stores in global memory its element
C[i, j]

• Cublas uses the cublasSgemm optimized routine
included in the CUBLAS library [35], based on the
classical BLAS library [36]. It combines blocking and
loop unrolling strategies adapted to the characteristics of
the GPU to optimize the performance of the algorithm.
It is a closed code, so we cannot know the details of its
matrix multiplication implementation.

The algorithms Elem and Block are included in the
“CUDA C Programming Guide” [29] as a representative
example of the effect of leveraging the shared memory of
the GPUs to minimize global memory accesses. The first
algorithm is a straightforward implementation of matrix mul-
tiplication that does not take advantage of shared memory.
On the contrary, the algorithm Block uses a typical blocking
strategy employed in linear algebra libraries to improve the
performance of the routines by increasing the ratio of floating
point operation to memory accesses. In the case of the GPUs,
the blocking strategy saves a lot of global memory transfer
bandwidth by leveraging the fast shared memory. Regarding
the Cublas algorithm, we have used nvprof profiler [37] to
analyze how it uses the resources of the GPU (see Table II). It
uses an amount of shared memory very similar to the algorithm

Block, but it uses a much larger number of registers per
thread than the other two algorithms. Registers are used to
store variables locally to each thread and are the fastest
memory available in GPUs. Elem and Block use 17 and
26 registers per thread respectively, while Cublas leverages
127 registers per thread to reduce the number of accesses
even to the fast shared memory, and so greatly increases the
performance of the algorithm.

C. GPU resources usage and computational performance

We have used the CUDA profiler nvprof [37] in order to
assess and quantify the GPU resources usage of each of the
three algorithms described in the previous section. We have
chosen a few of the metrics provided by the profiler that allow
us to measure how each algorithm uses the main components
of the GPU. Table II shows the values of those metrics for the
three matrix multiplication algorithms.

TABLE II
PROFILING METRICS THE GPU RESOURCE USAGE WITH MATRICES OF

SIZE 1024× 1024.

Metric Elem Block Cublas
Achieved Occupancy (%) 99,46 99,87 24,97
Eligible Warps Per Cycle 7,26 6,34 3,41
Executed IPC 1,20 1,16 4,60
Number of Registers 17 26 127
Shared mem (B/th-blk) 0 8192 8340
DDR Load Trans. (M) 67,11 2,1 2,06
L2 Read Trans (M). 167,81 8,40 2,09
Shared Load Trans. (M) 0 50,33 2,11
FLOP Efficiency (Peak Single) (%) 3,31 7,12 68,88

Profiling results show that the algorithms Elem and
Block do not exceed any of the limiting factors of the
GPU, and so both algorithms reach an occupancy very
close to the theoretical value of 100% obtained using the
CUDA Occupancy calculator (https://docs.nvidia.com/cuda/
cuda-occupancy-calculator). On the contrary, the algorithm
Cublas can only keep 16 of the 64 warps per SM allowed
by the architecture active because it needs 127× 128 = 32K
registers per thread-block of size 16 × 16. Therefore, this
algorithm can only reach an occupancy of 25%, as it is
shown in Table II. However, 16 active warps are enough
to efficiently leverage the 192 cores and reach much better
performances than the other two algorithms. Specifically, the
algorithm Cublas is 10x faster than Block and 20x faster
than Elem, for all matrix sizes, as we can see in Figure 3.

Another two metrics included in Table II are directly related
with the use of the cores of the GPU and their floating point
arithmetic unit. Specifically, the table shows that while the
algorithm Cublas executes on average 4.6 Instructions per
Cycle (IPC), the other two algorithms execute slightly more
than 1 IPC. Even more significant regarding the execution time
of the three algorithms is their single floating point efficiency
with respect to the peak performance of the device. As we can
see Cublas reaches 68.88% of the peak, which is 20x larger
the percentage reached by Elem and 10x larger the percentage
reached by Block. These values exactly reflect the relative
execution time of the three algorithms.

https://docs.nvidia.com/cuda/cuda-occupancy-calculator
https://docs.nvidia.com/cuda/cuda-occupancy-calculator
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Fig. 3. Execution times vs matrix size of all the algorithms.

The use of the different memories of the platform is also
related with the computational efficiency of the algorithm. For
example, we have included in Table II the number of DDR
Load Transactions to show how the algorithm Elem makes a
much more intensive use of the main memory of the device. As
a consequence, this algorithm also uses much more intensively
the L2 cache of the GPU, as it is shown for example by the
number of L2 Read Transactions included in the table. Finally,
the table also shows that the algorithm Cublas makes a much
more efficient use of the shared memory than the algorithm
Block as it greatly reduces for example the number of Shared
Load Transactions.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We performed several experiments to evaluate the behaviour
of the device under radiation depending on the algorithm
used to carry out matrix multiplication and also on the size
of the matrices. Single precision elements were used in all
the experiments. We run 1000 matrix multiplications for each
combination of algorithm and matrix size.

The values of the elements of the matrices are computed as a
function of their row and column, so that verifying the result
of the product has a very low cost. This way, they always
have the same value in all the experiments with matrices
of the same size and for the three algorithms. Radiation
experiments were always performed using the thread-block
size that produces the fastest execution for each algorithm.
Thus, algorithms Elem and Block were always launched
using a thread-block size of 32×32. Meanwhile, a thread-block
size equal to 16× 16, adapted to the Kepler GPU capability,
was always automatically chosen as the optimal one by the
cublasSgemm function used in Cublas algorithm.

We launched our first experiments using a proton flux
of 4.0 × 108p/(cm2s). However, with this flux the device
repeatedly hung during the boot process or after launching
the first one or two matrix multiplications. We had to restart
the device several times without being able to reduce the
SEFI occurrences that hang the operating system. Therefore,
we decreased the flux to 1.2 × 108p/(cm2s) in order to be
able to launch at least 10 consecutive matrix multiplications
without hanging the test or the operating system. All the

experiments were performed with an average flux between
1.0× 108p/(cm2s) and 1.4× 108p/(cm2s).

One of the main problems to know the causes of the errors
occurred while radiating a GPU-accelerated SoC is that it is
affecting all the components of the device, including its CPU
and GPU. The number and type of errors can depend on the
processes being executed on both components of the SoC and
also on the percentage of time of each test that the matrix
multiplication is being executed in the GPU. For example,
when using the algorithm Elem to multiply matrices of size
1024, 95% of the time of the test is devoted to the kernel
executing the matrix multiplication, while the remaining 5%
of the time the CPU is initializing the matrices and verifying
the result, and the GPU is idle. In the case of the algorithm
Block those percentages are 87% and 13% respectively. The
percentages in the case of the algorithm Cublas are very
different. Only 16% of the time of the test is devoted to
executing the matrix multiplication, while 84% is devoted to
initializing the CUBLAS library, transferring the matrices and
verifying the result. The initialization time takes most of the
time of the CPU and is independent of the size of the matrices,
thus the percentage of the time of the matrix multiplication in
the GPU grows with this size. Therefore, most of the errors
detected in our experiments with the first two algorithms are
probably due to the effect of the radiation on the kernel being
executed in the GPU. Meanwhile, a larger portion of the errors
detected in the case of the algorithm Cublas can be caused
by the particles impinging the processes being executed in the
CPU.

A. Cross section results

Figure 4 shows the cross-section of the three matrix multi-
plication algorithms running on the GPU, including the 95%
confidence intervals. Results correspond to matrices of size
1024 × 1024. Cross sections have been computed including
all the errors detected. Specifically, the Figure shows that the
cross-section of the errors depends on the matrix multiplication
algorithm running on the GPU. One of the main differences
among the three algorithms, that produces quite different
performances, is their use of the global memory of the GPU.
Specifically, Elem algorithm totally depends on the global
memory, while the other two algorithms greatly reduce their
cost by leveraging the shared memory and the registers of
the GPU. In the case of the Tegra TK1 device, the global
memory is the same used by the CPU and was not exposed
to radiation. However, matrix elements must be loaded from
global memory by the GPU threads and may temporarily reside
in the L2 and L1 caches. Therefore, if we increase the data
loads, as in the Elem algorithm, we increase the possibility
that particles affect elements stored in those internal memories
that will be used by the threads. Table II helps us to quantify
this behaviour. We can see how the algorithm Elem makes
many more load transactions from global memory and also
many more L2 read transactions than the other two algorithms.
It is worth recalling that the internal memories of the K20A
GPU are not protected by any ECC mechanism. We can see
that the radiation sensitivity of the algorithm decreases when



BADIA et al.: GPU-ACCELERATED SYSTEM-ON-CHIP UNDER PROTON IRRADIATION 7

it makes a better use of the shared memory and reduces the
data transfers from global memory. In the same sense, the
algorithm Block uses more intensively the shared memory
than the algorithm Cublas and this can increase its cross
section.

As we increase the size of the matrices, so increases the use
of the different memories of the GPU. Figure 5 shows that even
in the case of the Block algorithm, that reduces the accesses
to global memory by leveraging the shared memory, the cross-
section increases linearly with the size of the matrices.
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Fig. 5. Effect of the matrix size on the cross-section of the Block algorithm
with matrices of different sizes.

All in all, it seems that the use of the internal memories
of the GPU is more critical to the cross section of the
algorithms than the use of other resources. Table II shows
that the algorithm Cublas makes a much intensive usage of
the cores and floating point units, but it has the lowest cross
section because it greatly reduces the transactions from the
DDR and L2 memories with respect to the algorithm Elem,
and it reduces the transactions from the shared memory with
respect to the Block algorithm.

B. Types of errors

We have also analyzed the types of errors produced on the
different experiments using the following classification:

• Fail: the GPU kernel performing the matrix multipli-
cation crashes or finishes with an SDC, that is, the matrix
multiplication produces a wrong result that can affect
from one to thousands of elements of the result.

• Timeout: the GPU kernel performing the matrix multi-
plication hangs and the software watchdog interrupts the
CPU process that launched it. Afterwards, a new matrix
multiplication can be run successfully without restarting
the device.

• SEFI_test: The system process launching the test
hangs and is unable to launch the next matrix multipli-
cation. The Jetson TK1 is then rebooted after 20 seconds
by the hardware watchdog.

• SEFI_restart: The restart process of the Jetson
hangs and the device is remotely rebooted by a watchdog
running in the external host that controls the experiment.
All these errors are due to particles affecting the processes
being executed in the CPU during the reboot process.

Most of the matrix multiplication executions on the GPU
were not affected by the radiation and produced correct results.
Figures 6 and 7 show that the number of events that affect
the matrix multiplication process or the Operating system
processes depends on the algorithm and also on the size of the
matrix. Specifically, Figure 6 shows that the algorithm Elem
is the one most affected by all types of errors, which impacts
on more than a 10% of its executions. On the contrary, more
than 97% of the executions of the other two algorithms finish
with the correct result. The percentage of executions affected
by an error increases with the size of the matrix, as can be
seen in Figure 7 in the case of Block algorithm.
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Fig. 6. Percentage of the different errors over 100% of the tests with each
algorithm using matrices of size 1024.

Figure 6 also shows that most of the radiation-induced errors
hang the operating system and force a reboot of the platform.
Only a small percentage of those errors crashes the GPU-based
multiplication or produces an SDC. We can also see that the
number and percentage of SEFI restart does not depend on
the algorithm, as this kind of error is due to the effect of
the radiation on the CPU during the reboot of the platform.
Meanwhile, the number of SEFI test depend on the algorithm
being executed in the GPU. It is close to 1% for the algorithms
Elem and Block and close to 5% for the algorithm Cublas

Obviously, a large number of unrecoverable errors that
force the platform to reboot is unacceptable on safety critical
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applications. Therefore, some fault tolerance or mitigation
techniques, such as some level of redundancy of the algorithms
or the devices, should be applied to reduce this kind of error.

TABLE III
NUMBER OF THE DIFFERENT KINDS OF ERRORS FOR THE THREE

ALGORITHMS. 1000 MATRIX MULTIPLICATIONS PER ROW.

Algorithm Size FAIL SEFI test SEFI restart Timeout
Elem 1024 31 48 16 11

Block

512 3 12 5 0
1024 12 9 15 0
2048 16 34 14 1
3072 46 81 62 2

Cublas 1024 3 8 17 0

Table III shows the number of errors of each type for the
different algorithms used to draw the previous figures. One
additional and interesting fact to point out is that the number
of Fails can help us to highlight the effect of the radiation on
the GPU. This kind of error is due to the effect of the particles
in the algorithm being executed on this device. A remarkable
fact shown in the Table III and also in Figure 6 is the very
small number of Fails of the algorithm Cublas with matrices
of size 1024 when compared with the other two algorithms.
This behaviour could be partially due to the small percentage
of the time of the test that the GPU is executing the matrix
multiplication (16%). Thus, most of the particles impinging
the GPU during each test will not cause any detectable error.

One of the main drawbacks of using radiation to evaluate
the soft error sensitivity of GPUs is that it is very difficult to
establish which component of the device caused the error and
how it affected the threads and the results of the benchmarks
being executed. This problem worsens in the case of SoCs,
because the error can be also due to particles impinging the
processes run in the CPU or affecting the data transferred
between CPU and GPU. An alternative method to analyze
the vulnerability of different components of the GPU is to
inject faults at the architecture-level or into compiler-level
intermediate representations [38], [39]. In [40] we employed
the LLFI injection tool to evaluate the soft error sensitivity of
the algorithms Elem and Block in the same Jeston TK1 used
in this paper. We injected single bit-flips in the results of the
instructions of randomly chosen threads. The results show that,

as in the case of the radiation results analyzed in this paper,
the most efficient algorithm was also the least sensitive to this
kind of fault injection. By using the CUDA debugger we found
out that almost all the crashes of the algorithm Elem were due
to illegal accesses to global memory, while most of the crashes
of the algorithm Block were due to illegal accesses to shared
memory. These results can give us indications about some of
the causes of the crashes and SEFI test errors detected during
the radiation campaigns. However, many of the SEFI test
errors may be caused by the radiation effect over components
of the SoC that are not affected by the kind of injection
performed using the LLFI tool.

C. Spatial distribution of the errors

We have also analyzed the spatial distribution of the errors
whenever a SDC happened during one of the experiments.
However, as the number of SDCs per benchmark is so small
it is not possible to perform any kind of statistical analysis
of the results, nor compare the behaviour of the different
algorithms. We can advance a few comments on the results,
but they should be taken with caution. Most of the SDCs of
the algorithm Elem modified only one element of the result
matrix, and only in one case 448 elements of the same column
were affected. In the case of the algorithm Block most of
the SDCs modified between a few tens to some hundreds of
elements, but in every case all the affected elements were in the
same row. Finally, the algorithm CUBLAS was only affected
by one SDC that modified one element of the result matrix.

We know that in the algorithm Elem every thread computes
one element of the result matrix without sharing any interme-
diate result with other threads. It reads all the elements from
the global memory, which is not directly exposed to the beam
radiation. Only if some of the elements were read from the
internal caches of the GPU, the radiation could have affected
data used by several threads of the algorithm. This almost
complete isolation of the resources used by each thread could
justify that most of the SDCs affected only one element. On the
contrary, in the algorithm Block every thread also computes
one element of the result, but all the threads of each block
read and write the same elements stored in the shared memory.
Therefore, any bit-flip on one shared element can affect several
elements of the result matrix, which usually will be in the same
row or column as they are computed by threads in the same
block of threads.

VI. CONCLUSIONS

Radiation experiments with a GPU-accelerated Tegra TK1
SoC show that if we choose the appropriate parallelization
strategy to implement basic linear algebra routines such as
matrix multiplication, we can greatly reduce radiation induced
errors. Most of those errors are unrecoverable and thus,
additional fault tolerance or mitigation techniques should be
applied if this kind of device is used in radioactive environ-
ments, such as space.

Our experimental results using high-energy protons show
that cross section depends on how the algorithm uses the
resources of the GPU. Specifically, the slower memory-bound
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algorithm is more error prone, while the most efficient al-
gorithm gets the smallest cross section. The cross section
increases with the size of the matrices, as we make a more
intensive usage of the internal memories of the GPU. This
behaviour is not due to the increasing in the global memory
area affected by the radiation because this memory is not
affected by the radiation. Finally, results show that the spatial
distribution of the errors in the result matrix seems to depend
on the algorithm.

REFERENCES

[1] J. Fickenscher, S. Reinhart, F. Hannig, J. Teich, and M. E. Bouzouraa,
“Convoy tracking for ADAS on embedded GPUs,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 959–965.

[2] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, and M. Norgren, “Intro-
ducing radiation tolerant heterogeneous computers for small satellites,”
in 2015 IEEE Aerospace Conference, 2015, pp. 2586–2596.

[3] M. Benito, M. M. Trompouki, L. Kosmidis, J. D. Garcia, S. Carretero,
and K. Wenger, “Comparison of GPU Computing Methodologies for
Safety-Critical Systems: An Avionics Case Study,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2021, pp. 717–718.

[4] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papaniko-
laou, D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and
G. Furano, “High-performance embedded computing in space: Evalu-
ation of platforms for vision-based navigation,” Journal of Aerospace
Information Systems, vol. 15, no. 4, pp. 178–192, 2018.
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