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A Banach algebra A is Arens-regular when all its continuous functionals are weakly 
almost periodic, in symbols when A∗ = WAP(A). To identify the opposite behaviour, 
Granirer called a Banach algebra extremely non-Arens regular (enAr, for short) 
when the quotient A∗/WAP(A) contains a closed subspace that has A∗ as a quotient. 
In this paper we propose a simplification and a quantification of this concept. We 
say that a Banach algebra A is r-enAr, with r ≥ 1, when there is an isomorphism 
with distortion r of A∗ into A∗/WAP(A). When r = 1, we obtain an isometric 
isomorphism and we say that A is isometrically enAr. We then identify sufficient 
conditions for the predual V∗ of a von Neumann algebra V to be r-enAr or 
isometrically enAr. With the aid of these conditions, the following algebras are 
shown to be r-enAr:

(i) the weighted semigroup algebra of any weakly cancellative discrete semigroup, 
when the weight is diagonally bounded with diagonal bound c ≥ r. When the 
weight is multiplicative, i.e., when c = 1, the algebra is isometrically enAr,

(ii) the weighted group algebra of any non-discrete locally compact infinite group 
and for any weight,

(iii) the weighted measure algebra of any locally compact infinite group, when the 
weight is diagonally bounded with diagonal bound c ≥ r. When the weight is 
multiplicative, i.e., when c = 1, the algebra is isometrically enAr.

The Fourier algebra A(G) of a locally compact infinite group G is shown to be 
isometrically enAr provided that (1) the local weight of G is greater or equal than 
its compact covering number, or (2) G is countable and contains an infinite amenable 
subgroup.
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1. Introduction

In [1], Richard Arens showed how to extend the product of a Banach algebra A to its second dual A∗∗. 
He in fact observed that there are two symmetric and identically natural ways of performing this extension. 
Each of these paths however leads to a different multiplication on A∗∗. With one of these multiplications, 
left translations are weak∗-weak∗-continuous but right multiplications may fail to be so. With the other 
multiplication, the situation is reversed.

There is a subspace of A∗ on which both multiplications coincide, the space WAP(A) of weakly almost 
periodic functionals elements. This follows from an important property of weakly almost periodic functionals: 
Grothendieck’s double limit criterion. According to this criterion, f ∈ WAP(A) if and only if for every pair 
of bounded nets (aα)α∈Λ1 and (bβ)β∈Λ2 ,

lim
α

lim
β

f(aαbβ) = lim
β

lim
α

f(aαbβ),

whenever both limits exist.
So, when A∗ = WAP(A), i.e., when the quotient A∗/WAP(A) is trivial, there is only one Arens product, 

which is separately weak*-weak*-continuous. In such a situation, the algebra A is said to be Arens regular. 
Otherwise, the algebra A is said to be non-Arens regular or Arens irregular. C∗-algebras constitute the 
paradigmatic example of Arens regular Banach algebras. If A is a C∗-algebra, its universal representation 
identifies A with a norm-closed algebra of operators on a Hilbert space. By the Sherman-Takeda theorem, 
A∗∗ may be identified with the closure of the universal representation of A in the weak operator topology, 
and both Arens products coincide with the multiplication of operators, see [4].

Most of the algebras of functions arising in harmonic analysis turned out to be non-Arens regular, even 
dramatically so. Not only WAP(A) is often different from A∗ but the quotient A∗/WAP(A) tends to be 
as large as A∗. A name for this situation was coined by Granirer in [18] when he called a Banach algebra 
A extremely non-Arens regular (enAr, for short) if A∗/WAP(A) contains a closed subspace that has A∗ as 
a quotient. The group algebra L1(G) of an infinite locally compact group G is an important example of a 
Banach algebra that is enAr, see [12]. Extreme non-Arens regularity of the Fourier algebra A(G) is more 
subtle. First, the question of whether A(G) is non-Arens regular is still not completely settled. It is known 
that A(G) is not Arens regular if G contains an infinite amenable subgroup or if G is not discrete. The first 
assertion was obtained by Forrest in [17, Proposition 3.7], improving upon results of Lau and Wong [27, 
Proposition 5.3], and the second assertion was proved by Forrest [17, Corollary 3.2]. If G is far enough from 
being discrete, then A(G) is even enAr. For this to happen, it is enough that the minimal cardinal of an 
open base at the identity, χ(G), is larger than κ(G), the minimal number of compact sets required to cover 
G. This was proved by Granirer [18] when χ(G) = ω and by Hu [21] in the general case.

We refer to our recent paper [13], or the expository papers [14] and [15], for a wider background, and 
an extended list of references on Arens irregularity. In our paper [13] we devised a general method for 
proving when a Banach algebra is enAr. This method showed how the two main properties that trigger non-
Arens regularity in the group algebra L1(G) and the Fourier algebra A(G) -non-compactness and bounded 
approximate identity in L1(G), non-discreteness and amenability in A(G)- are actually particular cases of a 
single one, the existence of �1-bases with a certain multiplicative triangle-like structure in a bounded subset 
of the algebra.

In the present paper we consider preduals of von Neumann algebras. In this special case, one may take 
advantage of the additional structure available and require the above �1-bases to be orthogonal. With that 
requirement, it is possible to construct bounded linear isomorphisms of A∗ into the quotient A∗/WAP(A)
in such a way that their distortion is controlled. When the above mentioned triangles lie in the unit sphere 
of A, and this can be achieved in many cases, these isomorphisms become isometries.
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The availability of these constructions has led us to propose a new version of extreme non-Arens regularity 
by requiring an isomorphic (or an isometric) copy of A∗ into the quotient A∗/WAP(A). This definition seems 
to be more natural and still holds in most of the known classes of enAr algebras.

We remark that, to the best of our knowledge, isometries of A∗ into the quotient A∗/WAP(A) have only 
been obtained before in the particular case of A = L1(G), [12], with quite a different approach.

In particular, isomorphisms or isometries of A∗ into A∗/WAP(A) could not be obtained from our previous 
paper [13], as it is not possible to deduce (to the best of our ability) Theorem 3.12 below from Theorem 3.9 
of [13]. The strategy using lower and upper triangles (see Section 3) is indeed used in both theorems, as it is 
the natural method with this problem and has been used in the past by many authors, as mentioned in [13]. 
But the proofs of these two theorems are in essence different. In the general case treated in [13], �1(η)-bases 
are used to find a closed subspace of A∗/WAP(A) having A∗ as a quotient via a Hahh-Banach argument, 
but we have no control on how to embed A∗ into A∗/WAP(A), while in Theorem 3.12 the isomorphisms, 
or isometries, are defined concretely using the orthogonal projections in the von Neumann algebras.

We remark in closing that there is no reason for Banach algebras that happen to be the predual of von 
Neumann algebras to be enAr. They can even be Arens regular as is the case with the semigroup algebra 
�1 with pointwise product as already observed by Arens in [1], or with many weighted semigroup algebras 
�1(S, w), see Remark 4.8.

2. Outline of the paper

As stated above, Granirer defined a Banach algebra A to be enAr when the quotient A∗/WAP(A)
contains a closed linear subspace which has A∗ as a continuous linear image. We start by modifying this 
definition.

Definition 2.1. We say that a Banach algebra A is r-enAr, where r ≥ 1, when there is a linear isomorphism 
of A∗ in the quotient A∗/WAP(A) with distortion r, i.e., when there is a linear isomorphism E : A∗ →
A∗/WAP(A) with

‖E‖‖E−1‖ = r.

When r = 1, the map ‖E−1‖E is a linear isometry and we say that A is isometrically enAr.

In Section 3, a combination of the strategy used in the general theorem of [13] with the concept of 
orthogonal family sets, natural conditions under which the predual of a von Neumann algebra is r-enAr for
some r ≥ 1. This is Theorem 3.12. The following two sections apply Theorem 3.12 to the Banach algebras in 
harmonic analysis which are non-Arens regular. We extend the main theorem in [12] to the weighted group 
algebra and prove that the weighted group algebra L1(G, w) is isometrically enAr for any non-discrete 
locally compact group G and for any weight function on G. If the weight function w is diagonally bounded 
with bound c, then the weighted semigroup algebra �1(S, w) for any infinite, discrete, weakly cancellative 
semigroup S is r-enAr with r ≤ c. When the weight function w is diagonally bounded on G, the same is also 
true for the weighted measure algebra M(G, w) for any infinite locally compact group G. Both weighted 
algebras �1(S, w) and M(G, w) are isometrically enAr when the weight is multiplicative.

In our last section we show that the conditions of Theorem 3.12 are met when A(G) contains either a TI-
net (a net converging to a topologically invariant mean in A(G)∗∗) or a bai-sequence (a sequence converging 
to a right identity in A(G)∗∗, see section 3.2 for the definitions). This implies that A(G) is isometrically 
enAr when G satisfies the condition χ(G) ≥ κ(G) or when G is a second countable group containing a 
non-compact amenable open subgroup. This strengthens the corresponding results in [13], [18] and [21].
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3. Triangles and weakly almost periodic functionals

In this section we put forward the main tools developed in this paper. We begin with a number of 
definitions designed to set the ground for the somewhat subtle combinatorial arguments needed in our 
subsequent results. These definitions were introduced in Section 3 of [13], we reproduce them here for the 
benefit of the reader.

By a directed set, it is always meant a set Λ together with a preorder � with the additional property 
that every pair of elements has an upper bound. We will use a single letter, Λ usually, to denote a directed 
set, the existence of � is implicitly assumed.

Definition 3.1. Let (Λ, �) be a directed set and let Λ1, Λ2 be two cofinal subsets of Λ. If U is a subset of 
Λ1 × Λ2, we say that

(i) U is vertically cofinal, when for every α ∈ Λ1, there exists β(α) ∈ Λ2 such that (α, β) ∈ U for every 
β ∈ Λ2, β � β(α).

(ii) U is horizontally cofinal, when for every β ∈ Λ2, there exists α(β) ∈ Λ1 such that (α, β) ∈ U for every 
α ∈ Λ1, α � α(β).

Definition 3.2. Let U and X be two sets. We say that

(i) X is indexed by U , when there exists a surjective map x : U → X. When U ⊂ Λ ×Λ, for some other set 
Λ, we say that X is double-indexed by U and write X = {xαβ : (α, β) ∈ U}, where xαβ = x(α, β).

(ii) If X is double-indexed by U , we say it is vertically injective if xαβ = xα′β′ implies β = β′ for every 
(α, β) ∈ U . If xαβ = xα′β′ implies α = α′ for every (α, β) ∈ U , we say that X is horizontally injective.

Definition 3.3. Let A be a Banach algebra, (Λ, �) be a directed set and Λ1, Λ2 be two cofinal subsets of Λ. 
Consider two subsets, A and B, of A indexed, respectively, by Λ1 and Λ2, i.e.,

A = {aα : α ∈ Λ1} and B = {bα : α ∈ Λ2} .

(i) The sets

Tu
AB = {aαbβ : (α, β) ∈ Λ1 × Λ2, α ≺ β} and

T l
AB = {aαbβ : (α, β) ∈ Λ1 × Λ2, β ≺ α}

are called, respectively, the upper and lower triangles defined by A and B.
(ii) A set X ⊆ A is said to approximate segments in Tu

AB, if there exists a vertically cofinal set U in Λ1×Λ2
so that X is double-indexed as X = {xαβ : (α, β) ∈ U}, and for each α ∈ Λ1,

lim
β�β(α)

‖xαβ − aαbβ‖ = 0.

Note that, by considering an appropriate subset of X we can assume that (α, β) ∈ U implies β � α.
(iii) A set X ⊆ A is said to approximate segments in T l

AB, if there exists a horizontally cofinal set U in 
Λ1 × Λ2 so that X is double-indexed as X = {xαβ : (α, β) ∈ U}, and for each β ∈ Λ2,

lim
α�α(β)

‖xαβ − aαbβ‖ = 0.

As before, we can assume here that (α, β) ∈ U implies α � β.
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Definition 3.4. Let V be a von Neumann algebra with predual V∗, and let a ∈ V∗ be a positive normal 
functional. The support projection of a is the smallest projection S(a) ∈ V such that 〈a, S(a)〉 = 〈a, I〉 = ‖a‖.

Definition 3.5. Let V be a von Neumann algebra and let A ⊆ V+
∗ . We say that A is an orthogonal �1(η)-set 

with bound M and constant K > 0 if

(i) |A| = η,
(ii) S(a) S(a′) = 0 whenever a, a′ ∈ A, a �= a′ and
(iii) K ≤ ‖a‖ ≤ M for every a ∈ A.

Remarks 3.6.

(i) If one considers the action of V on V∗ given by 〈Fa, H〉 = 〈a, FH〉 for every F, H ∈ V and every 
a ∈ V∗, then for every a ∈ V+

∗ , S(a)a = a.
This follows from applying the Cauchy Schwarz inequality (see e.g. [24, 4.3.1]), to a ∈ V+

∗ , S(a) − I

and an arbitrary Q ∈ V:

|〈a, (S(a) − I)Q〉|2 ≤ 〈a, (S(a) − I)2〉 · 〈a,QQ∗〉.

Since |〈S(a)a −a, Q〉|2 = |〈a, (S(a) −I)Q〉|2, and, by definition of S(a), 〈a, (S(a) −I)2〉 = 0, the equality 
S(a)a = a follows.

(ii) If S(a) and S(b) are orthogonal, then 〈a, S(b)〉 = 0. This is a consequence of the preceding item

〈a, S(b)〉 = 〈S(a)a, S(b)〉 = 〈a, S(a)S(b)〉 = 0.

(iii) We have chosen the term orthogonal �1(η)-set because these sets are equivalent to the unit �1-basis, i.e., 
the closed vector space they span is isomorphic to �1(η). To see this let a1, . . . , ak ∈ A and z1, . . . , zk ∈ C. 
Taking into account that 

∥∥∥∑n
k=1

zk
|zk|S(ak)

∥∥∥
V

≤ 1, we have that

∥∥∥∥∥
n∑

k=1

zkak

∥∥∥∥∥ ≥
∣∣∣〈 n∑

k=1

zkak,
n∑

k=1

zk
|zk|

S(ak)
〉∣∣∣

=

∣∣∣∣∣∣
n∑

k=1

n∑
j=1

zk
zj
|zj |

〈S(aj), ak〉

∣∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=1

|zk| 〈S(ak), ak〉
∣∣∣∣∣ =

n∑
k=1

|zk|‖ak‖ ≥ K
n∑

k=1

|zk|,

and this shows that A is equivalent to the unit �1-basis.

3.1. Auxiliary lemmas

The following definition and its consequence, recorded in [12], will prove convenient to exploit Defini-
tion 3.5.

Definition 3.7. Let E1 and E2 be Banach spaces, T : E1 → E2 be a bounded linear map, F be a closed 
subspace of E2, and let c > 0. We say that T is c-preserved by F when the following property holds

‖T ξ − φ‖ ≥ c‖ξ‖, for all φ ∈ F and ξ ∈ E1. (∗)
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The proof of next lemma is similar to that of [12, Lemma 2.2].

Lemma 3.8. Let T : E1 → E2 be a bounded linear isomorphism of the Banach spaces E1 into E2 and let D, 
F be closed linear subspaces of E2 with D ⊆ F . Denote by Q : E2 → E2/D the quotient map. If, for some 
c > 0, T is c-preserved by F , then the map Q ◦ T : E1 → E2/D is a linear isomorphism with distortion at 
most ‖T ‖

c .

3.2. Weak almost periodicity

We materialize here the facts about weak almost periodicity mentioned in the introduction. If A is a 
Banach algebra, the left and right actions of a ∈ A on f ∈ A∗ are defined, respectively, by:

〈a · f, b〉 = 〈f, ba〉, 〈fa, b〉 = 〈f, ab〉, for every b ∈ A.

In the following definitions we use the symbol A1 to denote the unit ball of the Banach space A.

Definition 3.9. Let A be a Banach algebra. A functional f ∈ A∗ is said to be weakly almost periodic if the 
left orbit A1 · f = {a · f : a ∈ A1} is relatively weakly compact.

Theorem 3.10 ([28]). Let A be a Banach algebra and f ∈ A∗. The following are equivalent:

(i) f is weakly almost periodic.
(ii) The right orbit fA1 = {fa : a ∈ A1} is relatively weakly compact.
(iii) (Grothendieck’s double limit criterion)

lim
α

lim
β

f(aαbβ) = lim
β

lim
α

f(aαbβ)

for every pair of bounded nets (aα)α and (bβ)β in A for which both limits exist.

One more lemma is needed before we state our main theorem. It is an easy corollary of the strong 
convergence of the sum of orthogonal projections on a Hilbert space, and might be well-known. We include 
the proof for completeness.

Lemma 3.11. Let {Pξ}ξ≺η be a family of orthogonal projections on a Hilbert space H and v = (zξ)ξ≺η ∈
�∞(η). Then 

∑
ξ≺η zξPξ converges strongly to a bounded operator Pv on H. Moreover, ‖Pv‖ = ‖v‖∞.

Proof. Note first that, for every finite subset F of η, PF =
∑

ξ∈F Pξ is a projection and, thus, ‖PF ‖ = 1.
Then, for any finite subset F of η and any vector w in the Hilbert space H, we have

‖
∑
ξ∈F

zξPξw‖2 = 〈
∑
ξ∈F

zξPξw,
∑
ξ∈F

zξPξw〉 =
∑
ξ∈F

|zξ|2〈Pξw,Pξw〉

< ‖v‖2
∞

∑
ξ∈F

〈Pξw,Pξw〉 ≤ ‖v‖2
∞‖PF ‖‖w‖2 = ‖v‖2

∞‖w‖2.
(3.1)

Let now η<ω denote the set of all finite subsets of η, direct it by set inclusion, and consider for each 
w ∈ H the net in H given by 

(∑
ξ∈F zξPξw

)
F∈η<ω

.
Since the net of projections (PF )F∈η<ω is convergent (see for instance [24, Proposition 2.5.6]), there exists 

for each ε > 0, F0 ∈ η<ω such that ‖PF1w − PF2w‖ < ε for every F1, F2 ∈ η<ω, with F1, F2 ⊇ F0. We have 
then that
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∥∥∥∥∥∥
∑
ξ∈F1

zξPξw −
∑
ξ∈F2

zξPξw

∥∥∥∥∥∥
2

=
∑

ξ∈F1ΔF2

|zξ|2‖Pξw‖2 ≤ ‖v‖2
∞

∑
ξ∈F1ΔF2

‖Pξw‖2

=

∥∥∥∥∥∥
∑
ξ∈F1

Pξw −
∑
ξ∈F2

Pξw

∥∥∥∥∥∥
2

= ‖PF1w − PF2w‖ < ε

whenever F1, F2 ∈ η<ω, F1 ⊇ F0, F2 ⊇ F0.
The net 

(∑
ξ∈F zξPξw

)
F∈η<ω

is accordingly a Cauchy net in H. We denote by Pvw its limit in H. Then 

it is clear from (3.1) that w �→ Pvw defines a bounded operator Pv on H with ‖Pv‖ = ‖v‖∞. �
In our previous paper [13], we dealt with Banach algebras that contain �1(η)-bases that approximate 

segments in triangles. For such an �1(η)-base X, contained in the Banach algebra A, we constructed an 
isomorphism �∞(η) → 〈X〉∗/WAP(A)

∣∣
〈X〉. This led to the extreme non-Arens regularity of A, in the sense 

of Granirer, as soon as the density character of A is not larger than η.
In our next Theorem we assume that A is a subalgebra of the predual of a von Neumann algebra. Under 

this condition, we are able to find an isomorphism �∞(η) → A∗/WAP(A). This will lead us to show that, in 
such a situation, there is an isomorphic, and in many cases a linear isometry, copy of A∗ in A∗/WAP(A). 
The term tr(Λ) that appears in its statement makes reference to the true cardinality of the directed set 
Λ, tr (Λ) = minξ∈Λ |{α ∈ Λ: ξ ≺ α}|, see [10]. As explained in [13, Page 1845], this concept is needed to 
delimitate pathological situations that will not be pertinent to our applications.

Theorem 3.12. Let A be a Banach algebra and suppose that A is a subalgebra of the predual V∗ of a von 
Neumann algebra V. Let η be an infinite cardinal number and suppose that A contains two bounded subsets 
A and B indexed by a directed set (Λ, �) with tr (Λ) = η. Suppose also that A contains two other disjoint 
sets X1 and X2 with the following properties

(i) X1 and X2 approximate segments in Tu
AB and T l

AB, respectively.
(ii) X1 ∪ X2 is an orthogonal �1(η)-set (as a subset of V∗) with constant K and bound M , i.e., with 

K ≤ ‖x‖ ≤ M for every x ∈ X1 ∪X2.
(iii) X1 is vertically injective and X2 is horizontally injective.

Then there is a linear isomorphism E : �∞(η) → A∗/WAP(A) with distortion at most MK .
In particular, ‖E−1‖E is a linear isometry when K = M .

Proof. Put A = {aα : α ∈ Λ} and B = {bβ : β ∈ Λ}. Let

X1 = {xαβ : (α, β) ∈ U1} and X2 = {xαβ : (α, β) ∈ U2}

be the sets which approximate Tu
AB and T l

AB, respectively, where U1 and U2 are vertically and horizontally 
cofinal in Λ × Λ, respectively.

Introduce on Λ × Λ an equivalence relation by the rule (α, β) ∼ (α′, β′) if and only if xαβ = xα′β′ . Note 
that, by vertical/horizontal injectivity, (α, β) ∼ (α′, β′) implies β = β′ when β � α and implies α = α′

when α � β. We shall denote the equivalence class of (α, β) ∈ Λ × Λ by [α, β]. Restrict this equivalence 
relation to U1 and U2. Denote the quotient spaces

U1/∼ and U2/∼,
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respectively, by R1 and R2. By [10, Lemma, p. 61], we can partition the set Λ into η-many cofinal subsets 
Λξ, with the cardinality of each Λξ equals η. Then, for an element v =

(
zξ
)
ξ≺η

∈ �∞(η), we consider the 
sum

∑
ξ≺η

zξ

⎛⎜⎜⎝ ∑
[α,β]∈R1
β∈Λξ

S(xαβ) −
∑

[α,β]∈R2
α∈Λξ

S(xαβ)

⎞⎟⎟⎠ .

Since X1 ∪X2 is an orthogonal set, and xαβ �= xα′β′ when [α, β] �= [α′, β′], all the projections appearing 
in this sum are pairwise orthogonal. So by Lemma 3.11, the above sum converges strongly to an element of 
V. We label this element as Pv.

We now define T : �∞(η) → A∗ by

T (v) = Pv
∣∣
A
, for each v ∈ �∞(η).

Recalling Lemma 3.1 it is obvious, that for every v ∈ �∞(η),

‖T (v)‖A∗ ≤ ‖Pv‖V
= ‖v‖∞. (3.2)

It is easy to check in fact that T is an isomorphism. (When A = V∗, T is even an isometry.)
Next we prove that T is K

M -preserved by WAP(A). We consider v = (zξ)ξ≺η ∈ �∞(η) and φ ∈ WAP(A)
and let ε > 0 be fixed as well. Let now ξ ≺ η be fixed. Since A and B are bounded and φ ∈ WAP(A), we 
can assume, after taking suitable subnets on the cofinal set Λξ, that the following equality holds

lim
α

lim
β

〈φ, aαbβ〉 = lim
β

lim
α

〈φ, aαbβ〉 .

Mark these iterated limits by L, put Lα = limβ 〈φ, aαbβ〉 and Mβ = limα 〈φ, aαbβ〉. Then limα Lα =
limβ Mβ = L, and so for a fixed ε > 0, we may choose α0 and β0 in Λξ such that

|L− Lα0 | < ε/4 and |L−Mβ0 | < ε/4. (3.3)

For these fixed α0 and β0, there are β1 and α1 in Λξ such that

|φ(aα0bβ) − Lα0 | < ε/4 for all β � β1, (3.4)

|φ(aαbβ0) −Mβ0 | < ε/4 for all α � α1. (3.5)

Putting together (3.3)–(3.5), we obtain α0, α1, β0, β1 ∈ Λξ, such that

|〈φ, aα0bβ〉 − 〈φ, aαbβ0〉| < ε for all β � β1 and α � α1. (3.6)

Since

lim
β

‖aα0bβ − xα0β‖A
= lim

α
‖aαbβ0 − xαβ0‖A

= 0

and Λξ is cofinal, we can find α2, β2 ∈ Λξ with α0, β1 ≺ β2 and β0, α1 ≺ α2 such that

‖aα0bβ2 − xα0β2‖A
≤ ε and ‖aα2bβ0 − xα2β0‖A

≤ ε, (3.7)

and so
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‖aα0bβ2 − aα2bβ0‖A
≤ 2M + 2ε. (3.8)

Recalling that (see (ii) of Remarks 3.6)

〈S(xαβ), xα′β′〉 = 0

whenever [α, β] �= [α′, β′] and taking into account that

〈S(xαβ), xαβ〉 = ‖xαβ‖ ≥ K for every α, β ∈ Λ,

we see that

|〈T (v), xα0β2 − xα2β0〉| = |zξ| (〈S(xα0β2), xα0β2〉 + 〈S(xα2β0), xα2β0〉) ≥ 2K|zξ|. (3.9)

Using (3.2) and (3.9), it follows that∣∣∣〈T (v) − φ, aα0bβ2 − aα2bβ0〉
∣∣∣ =

∣∣∣〈T (v), aα0bβ2 − aα2bβ0〉 − 〈φ, aα0bβ2 − aα2bβ0〉
∣∣∣

=
∣∣∣〈T (v), (aα0bβ2 − aα2bβ0) − (xα0β2 − xα2β0)〉

+ 〈T (v), xα0β2 − xα2β0〉 − 〈φ, aα0bβ2 − aα2bβ0〉
∣∣∣

≥
∣∣∣〈T (v), xα0β2 − xα2β0〉

∣∣∣− ∣∣∣〈T (v), aα0bβ2 − xα0β2〉
∣∣∣

−
∣∣∣〈T (v), aα2bβ0 − xα2β0〉

∣∣∣− ∣∣∣〈φ, aα0bβ2 − aα2bβ0〉
∣∣∣

≥ 2K |zξ| − 2ε ‖T (v)‖A∗ − ε

≥ 2K |zξ| − 2ε ‖v‖∞ − ε.

Next, we use (3.8) to obtain

‖T (v) − φ‖A∗ ≥ 1
‖aα0bβ2 − aα2bβ0‖A

(2K |zξ| − 2ε ‖v‖∞ − ε) (3.10)

≥ 1
2M + 2ε (2K |zξ| − 2ε ‖v‖∞ − ε) .

Since ξ ≺ η and ε > 0 were chosen arbitrarily, we conclude that

K

M
‖v‖∞ ≤ ‖T (v) − φ‖

A∗ for every v ∈ �∞(η), φ ∈ WAP(A).

The map T is therefore a linear isomorphism that is K
M -preserved by WAP(A).

If Q is the quotient map of A∗ into A∗/WAP(A), then Lemma 3.8 shows that E = Q ◦ T is the sought 
after isomorphism with distortion at most MK .

If K = M , then ‖E−1‖E becomes clearly an isometry. �
The conditions of Theorem 3.12 imply clearly that A is non-Arens regular. If, in addition d(A) = η, then 

A is even r-enAr with r ≤ M/K. This follows from the following well-known fact (see, e.g. [21]). Recall that 
the density character of a normed space A, denoted by d(A), is the cardinality of the smallest norm-dense 
subset of A.
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Lemma 3.13. If A is a normed space with density character d(A) = η, then there is a linear isometry of A∗

into �∞(η).

Proof. If {xα : α < η} is a norm-dense subset in the unit ball of A, the required isometry I : A∗ → �∞(η)
is defined by:

I(ψ) = vψ,

where vψ in �∞(η) is given by vψ(α) = 〈ψ, xα〉. �
Corollary 3.14. Let A be as in Theorem 3.12 and suppose that d(A) = η. Then A is r-enAr with r ≤ M

K . In 
particular, A is isometrically enAr when K = M .

The presence of a bai or of a TI-net is usually the reason behind the non-Arens regularity of a given 
Banach algebra. A weaker form of these nets is in fact enough to deduce non-Arens regularity. Here are the 
necessary definitions.

Definition 3.15. In a Banach algebra A, a net {aα : α ∈ Λ}, with ‖aα‖ = 1 for every α ∈ Λ, is a weak bounded 
approximate identity (weak bai for short) if

lim
α

‖aαaβ − aβ‖ = lim
α

‖aβaα − aβ‖ = 0 for each β ∈ Λ.

Definition 3.16. Let V be a von Neuman algebra. A net {aα}α∈Λ of normal states of V is a weak TI-net if

lim
α

‖aαaβ − aα‖ = lim
α

‖aβaα − aα‖ = 0 for each β ∈ Λ.

If we require that limα ‖aαa −aα‖ = limα ‖aaα−aα‖ = 0 for every normal state a of V, and not only for 
members of the net itself, then we obtain the familiar concept of a TI-net. Here TI stands for topological 
invariance, the term was introduced by Chou [6]. They also appeared in the work by Lau, see for example 
[26].

A separable Banach algebra satisfying the conditions of the following theorem was proved to be enAr in 
the sense of Granirer in [13, Theorems 4.2 and 4.4]. When A is in addition a subalgebra of the predual of a 
von Neumann algebra, Theorem 3.12 implies as we see next that A is isometrically enAr.

Theorem 3.17. Let A be a Banach algebra and suppose that A is a subalgebra of the predual V∗ of a von 
Neumann algebra V. Let η be an infinite cardinal number and suppose that A contains either a weak bai or 
a weak TI-net {aα}α∈Λ of true cardinality η such that {aα : α ∈ Λ} is an orthogonal �1(η)-set. Then

(i) there is an isometry E : �∞(η) → A∗/WAP(A),
(ii) in particular, A is non-Arens regular,
(iii) A is isometrically enAr, if in addition d(A) ≤ η.

Proof. Take Λ1, Λ2 ⊂ Λ with Λ1 ∩ Λ2 = ∅ in such a way that both Λ1 and Λ2 are cofinal for �. Put then

A = {aα : α ∈ Λ1} and B = {aα : α ∈ Λ2}.

If {aα} is a weak bai, define the elements xαβ by

xαβ =
{
aα, if (α, β) ∈ Λ × Λ1, β � α

a , if (α, β) ∈ Λ × Λ, α � β.
β 2
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If {aα} is a weak TI-net, define the elements xαβ by

xαβ =
{
aβ , if (α, β) ∈ Λ × Λ1, β � α

aα, if (α, β) ∈ Λ2 × Λ, α � β.

In each case, let

X1 = {xαβ : (α, β) ∈ Λ × Λ1, β � α} and X2 = {xαβ : (α, β) ∈ Λ2 × Λ, α � β}.

So here X1 ⊆ A and X2 ⊆ B are double-indexed by

U1 = {(α, β) ∈ Λ × Λ1 : β � α} and U2 = {(α, β) ∈ Λ2 × Λ : α � β},

respectively. The sets U1 and U2 are clearly vertically cofinal and horizontally cofinal, respectively.
In the first situation, for every α ∈ Λ, the approximate identity property yields

lim
β∈Λ1
β�α

‖xαβ − aαaβ‖ = lim
β∈Λ1
β�α

‖aα − aαaβ‖ = lim
β

‖aα − aαaβ‖ = 0.

Similarly, for each β ∈ Λ,

lim
α∈Λ2
α�β

‖xαβ − aαaβ‖ = lim
α∈Λ2
α�β

‖aβ − aαaβ‖ = lim
α

‖aβ − aαaβ‖ = 0

In the second situation, the weak TI-net property yields

lim
β∈Λ1
β�α

‖xαβ − aαaβ‖ = lim
β∈Λ1
β�α

‖aβ − aαaβ‖ = lim
β

‖aβ − aαaβ‖ = 0 for every α ∈ Λ,

lim
α∈Λ2
α�β

‖xαβ − aαaβ‖ = lim
α∈Λ2
α�β

‖aα − aαaβ‖ = lim
α

‖aα − aαaβ‖ = 0 for every β ∈ Λ.

Hence, in each case, X1 approximates segments of Tu
AB and X2 approximates segments of T l

AB.
It is clear that X1 is vertically injective and X2 is horizontally injective. Since by assumption, the norm 

of each xαβ is one and X1∪X2 is an orthogonal �1(η)-set, Theorem 3.12 provides a linear isometry of �∞(η)
into A∗/WAP(A). In particular, A is non-Arens regular.

This isometry together with the condition η ≥ d(A) implies, by Lemma 3.13, that there is an isometry 
of A∗ into A∗/WAP(A). A is therefore isometrically enAr. �
4. Extreme non-Arens regularity of the weighted convolution algebras

We apply in this section Theorem 3.12 to the weighted semigroup algebra of an infinite discrete weakly 
cancellative semigroup, the weighted group algebra and the weighted measure algebra of an infinite locally 
compact group. In each case, the algebra is r-enAr, where r is at most equal to the diagonal bound of the 
weight. When the weight is multiplicative, these algebras are all isometrically enAr. When G is non-discrete, 
the weighted group algebra is isometrically enAr for any weight.

Some Definitions 4.1. We first introduce some terminology concerning weighted convolution algebras, for a 
more detailed discussion we refer the reader to [8].

Let S be a semigroup with a topology.
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(i) A weight on S is a continuous function w : S → (0, ∞) which is submultiplicative, that is, with

w(st) ≤ w(s)w(t) for every s, t ∈ S.

If S is a group with identity e, we shall assume in addition that w(e) = 1.
(ii) Following [3] and [7], we let Ω be the continuous function on S × S given by

Ω(s, t) = w(st)
w(s)w(t) .

Note that 0 < Ω(s, t) ≤ 1 for every s, t ∈ S.
(iii) The weight function is called diagonally bounded on S if there exists c > 0 such that

w(s)w(t) ≤ cw(st) whenever s, t ∈ S.

In other words, the weight function is diagonally bounded if Ω(s, t) ≥ 1
c for every s, t ∈ S.

When S is a group, it is usual to define the weight w as diagonally bounded by c > 0 when

sup
s∈S

w(s)w(s−1) ≤ c.

It is easy to check that the two definitions are the same in this case.
(iv) Let G be a locally compact group. For a function space F(G) contained in L∞(G), the corresponding 

weighted space is defined, following [19] and [8] as

F(G,w−1) = {f : S → C : w−1 f ∈ F(G), }

with the norm given by ‖f‖w = ‖w−1f‖∞, for any f ∈ F(G, w−1).
If F(G) is contained in L1(G), then the weighted space for w is defined as

F(G,w) = {f : S → C : w f ∈ F(G)}

and the norm given by ‖f‖w = ‖wf‖1, for any f ∈ F(G, w).
The space L∞(G, w−1) can then be identified with the Banach dual space of L1(G, w) via the pairing

< f, φ >=
∫
G

f(x)φ(x)dx

for each f ∈ L1(G, w) and φ ∈ L∞(G, w−1). When w ≥ 1, L1(G, w) is called Beurling algebra and is 
studied for instance in [8].
In the same vein, M(G, w) will denote the space of all complex-valued measures regular Borel measures 
on G such that

‖μ‖w =
∫
G

w(s)d|μ|(s)

is finite. (M(G, w), ‖μ‖w) can be identified with the Banach dual space of C0(G, w−1) as defined above.
(v) When S is a discrete semigroup, we shall consider the semigroup algebra �1(S), its Banach dual space 

�∞(S) of all bounded functions on S, and their corresponding weighted spaces �1(S, w) and �∞(S, w−1)
which are defined exactly as done above in the group case.
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Remark 4.2. Let WAP(G) be the space of weakly almost periodic functions on a locally compact group (or 
on a discrete semigroup) G. The literature contains a number of different definitions for the weighted space 
WAP(G, w−1) of WAP(G). The latest is in [8], where the space WAP(G, w−1) is defined as a subspace of 
L∞(G, w−1), as in 4.1 (iv) above. With this definition, using the fact that L∞(G)/WAP(G) contains an 
isometric copy of L∞(G) (proved in [12, Theorem B] for the non-discrete case, and [5, Theorem 4.3] or [16, 
Theorem 3.3] for the discrete case), it is very quick to show that the quotient L∞(G, w−1)/WAP(G, w−1)
contains an isometric copy of L∞(G, w−1) for any infinite locally compact group G. However, this does not 
show that L1(G, w) is enAr, for WAP(G, w−1) can be different from WAP(L1(G, w)). They can actually 
be very different. If w is the weight on Z given by w(n) = (1 + |n|)α, with α > 0, it is shown in [8, 
Example 9.1] that �1(Z, w) is Arens regular, i.e., WAP(�1(Z, w)) = �∞(Z, w−1). Since, as mentioned above, 
the quotient �∞(Z, w−1)/WAP(Z, w−1) is at least as large as �∞(Z, w−1), we conclude that WAP(Z, w−1)
is much smaller that WAP(�1(Z, w)) in this case.

A more suitable definition for the weighted almost periodic functions in the context of Arens regularity 
was given by Baker and Rejali in [3]. We will not need this definition of the space of functions WAP(G, w−1)
in this paper. Theorem 3.12 deals directly with the space of functionals WAP(L1(G, w)). We will not go 
any further with this matter at the moment, but we hope to return to it in forthcoming work.

4.1. Weighted semigroup algebras

We start with the weighted semigroup algebra of an infinite, discrete, weakly cancellative semigroup. We 
see here that, whenever the weight is diagonally bounded by some c > 0, Theorem 3.12 applies and shows 
that �1(S, w) is r-enAr, where r ≤ c. When w is multiplicative, �1(S, w) is therefore isometrically enAr. This 
latter fact was proved also in [16], in [5, Theorem 4.5] and [12, Theorem 6.4] when w = 1.

Recall first that a semigroup S is called weakly cancellative if the sets

s−1t = {u ∈ S : su = t} and ts−1 = {u ∈ S : us = t}

are finite for every s, t ∈ S. We shall use the notations

s−1B = {t ∈ S : st ∈ B} and A−1B =
⋃
s∈A

s−1B,

where s ∈ S and A, B ⊆ S. The sets Bs−1 and BA−1 are defined similarly.

Theorem 4.3. Let S be a weakly cancellative, infinite, discrete semigroup, and let w be a weight on S that 
is diagonally bounded with bound c. Then the weighted semigroup algebra �1(S, w) is r-enAr, where r ≤ c.

In particular, �1(S, w) is isometrically enAr when c = 1.

Proof. Let the weight w on S be diagonally bounded by c > 0 so that

1
c
≤ Ω(s, t) = w(st)

w(s)w(t) ≤ 1

for every s, t ∈ S.
Let Λ denote the initial ordinal with cardinal η := |S| and note that tr(Λ) = η. Let as well {Sα}α<η be 

an increasing cover of S made of subsets with |Sα| ≤ α for every α < η, and collect by induction a faithfully 
indexed set X = {sα : α < η} such that

(Sαsα) ∩ (Sβsβ) = (sαSα) ∩ (sβSβ) = ∅ for every α < β < η. (4.1)
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This is possible since S is weakly cancellative, and so, for every α, β < η,

|(S−1
β Sαsα) ∪ (sαSαS

−1
β )| ≤ max{α, β} < η.

Note that for each α < η, there exists β(α) < η, β(α) > α such that

sαsβ ∈ Sβsβ for every β ≥ β(α). (4.2)

Similarly, for each β < η, there exists α(β) < η, α(β) > β such that

sαsβ ∈ sαSα for every α ≥ α(β). (4.3)

Split Λ into two cofinal subsets Λ1 and Λ2, let

A =
{

δsα
w(sα) : α ∈ Λ1

}
and B =

{
δsα

w(sα) : α ∈ Λ2

}
and note that

δsα
w(sα) ∗

δsβ
w(sβ) =

δsαsβ

w(sα)w(sβ) .

Now, for each α < η, define

xαβ =
δsαsβ

w(sα)w(sβ) , if β ∈ Λ1, β ≥ α(β),

and for each β < η, define

xαβ =
δsαsβ

w(sα)w(sβ) , if α ∈ Λ2, α ≥ β(α).

Then put

X1 = {xαβ : α < η, β ∈ Λ1, β ≥ α(β)} and

X2 = {xαβ : α ∈ Λ1, β ∈ Λ2, α ≥ β(α)},

that is, X1 and X2 are double-indexed by the vertically and horizontally cofinal sets

{(α, β) ∈ Λ × Λ1 : β ≥ α(β)} and {(α, β) ∈ Λ2 × Λ : α ≥ β(α)},

respectively. Using properties (4.1), (4.2) and (4.3), we see that X1 and X2 are disjoint and are, respec-
tively, vertically and horizontally injective (and hence have cardinality η). Since S(δs/w(s)) = w(s)1{s} ∈
�∞(S, w−1) for each s ∈ S, and 1

c ≤ ‖xαβ‖w ≤ 1 for every xαβ ∈ X1 ∪X2, we see that X1 ∪X2 is an orthog-
onal �1(η)-set with bound 1 and constant K = 1/c in the sense of Definition 3.5. Since X1 approximates 
segments in Tu

AB and X2 approximates segments in T l
AB, we see that all conditions of Theorem 3.12 are 

met so that the desired result that �1(S, w) is r-enAr with r ≤ c.
When c = 1, �1(S, w) is clearly isometrically enAr. �
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4.2. Weighted group algebras

We start with the weighted analogue of [30, Theorem 2]. With the same proof, this result is valid for any 
weight function w on G.

Lemma 4.4. Let G be a locally compact group. Then for any weight w on G, we have WAP(L1(G, w)) ⊆
UC(G, w−1).

Theorem 4.5. Let G be an infinite, non-discrete, locally compact group and F(w) be any closed sub-
space of CB(G, w−1). Then there exists a linear isometric copy of L∞(G, w−1) in the quotient space 
L∞(G,w−1)/F(w).

Proof. By [12, Theorem 6.3], there is a linear isometry of L∞(G) into L∞(G) which is 1-preserved by CB(G). 
Since L∞(G) and CB(G) are linearly isometric to their weighted analogues, this gives a linear isometry of 
L∞(G, w−1) into L∞(G, w−1) which is 1-preserved by CB(G, w−1). Lemma 3.8 provides then the desired 
linear isometry L∞(G, w−1) into L∞(G, w−1)/F(w). �

This leads immediately to the isometric enArity of L1(G, w) for any weight w on G when G is infinite 
and non-discrete.

Corollary 4.6. Let G be an infinite, non-discrete, locally compact group and w be any weight on G. Then 
the weighted group algebra L1(G, w) is isometrically enAr for any weight function w on G.

Proof. Since Lemma 4.4 shows that

WAP(L1(G,w)) ⊆ UC(G,w−1) ⊆ CB(G,w−1),

Theorem 4.5 provides the required isometry

L∞(G,w−1) → L∞(G,w−1)/WAP(L1(G,w)). �
Here are our corollaries.

Corollary 4.7. Let G be an infinite locally compact group.

(i) If G is not discrete, then the weighted group algebra L1(G, w) is isometrically enAr for any weight w
on G.

(ii) If G is an infinite discrete group, then the weighted group algebra �1(G, w) is r-enAr, where r ≤ c, for 
any weight w on G that is diagonally bounded with bound c.

Remark 4.8. As mentioned earlier, with the weight given on Z by w(n) = (1 + |n|)α, α > 0, the weighted 
group algebra �1(Z, w) is even Arens regular. So when w is not diagonally bounded, Corollary 4.7 fails badly.

4.3. Weighted measure algebras

Let G be an infinite locally compact group. Next theorem deals with M(G, w), where w is diagonally 
bounded. As in Remark 4.8, the theorem fails when w is not diagonally bounded.
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Theorem 4.9. Let G be an infinite locally compact group G and w be a diagonally bounded weight on G with 
bound c > 0. Then the weighted measure algebra M(G, w) is r-enAr with r ≤ c. In particular, M(G, w) is 
isometrically enAr when w is multiplicative.

Proof. For η = |G|, let A, B, X1 and X2 be as in the proof of Theorem 4.3. Regarding these as subsets of 
M(G, w) and regarding the elements S(δs/w(s)) = w(s)1{s} as projections in M(G, w)∗, all the conditions 
for Theorem 3.12 to apply are satisfied. Therefore, we have a linear isomorphism of �∞(η) in the quotient 
M(G, w)∗/WAP(M(G, w)) with distortion at most c.

Since by [23, Theorem 5.5], |G| is the density of M(G), Corollary 4.7 yields the theorem. �
5. The Fourier algebra

We summarize first the basic facts on the Fourier algebra that will be needed in the remainder of this 
section. For more details, the reader is directed to [11] or Chapter 2 of [25].

The Fourier algebra is the collection of all functions h on G of the form h = f ∗ g̃ with f, g ∈ L2(G) and 
g̃(s) = g(s−1). The norm of A(G) is given by

‖h‖ = inf{‖f‖2‖g‖2 : h = f ∗ g̃, f, g ∈ L2(G)}.

We may remark that, when G is abelian, A(G) identifies with L1(Ĝ) via the Fourier transform. The results 
stated in Section 4 for the group algebra show therefore that the Fourier algebra A(G) is isometrically enAr 
when G is Abelian. Non-Arens regularity of A(G) has however turned out to be more resistant and a 
complete solution to the regularity problem for the Fourier algebra is not known yet.

The Banach dual of A(G) is isometrically isomorphic to the group von Neumann algebra VN(G), which 
is the closure in the weak operator topology of the linear span of {λ(x) : x ∈ G} in B(L2(G)), where λ is the 
left regular representation of G on L2(G). This linear isometry identifies each T ∈ V N(G) with an element 
ϕT ∈ A(G)∗ such that

ϕT

(
f ∗ ǧ

)
= 〈Tg, f〉,

where ǧ(s) = g(s−1) and the bracket refers to the L2(G) inner product.
Under this identification, normal sates of V N(G) correspond to the set

P1(G) = {ϕ ∈ A(G) : ϕ is positive definite and ‖ϕ‖ = ϕ(e) = 1}.

So here, a TI-net is a net {ϕα : α ∈ Λ} in P1(G) with the property

lim
α

‖ϕαϕ− ϕα‖ = lim
α

‖ϕϕα − ϕα‖ = 0 for every ϕ ∈ P1(G).

We apply, in this section, Theorem 3.12 to show that

(1) for every locally compact group G, there is a linear isometry from �∞(χ(G)) into V N(G)/WAP(A(G)), 
and

(2) the existence in G of an open, non-compact, amenable subgroup implies that there is a linear isometry 
from �∞ into V N(G)/WAP(A(G)).

Since the density character of A(G) is max{κ(G), χ(G)}, (1) shows automatically that the Fourier algebra 
A(G) is isometrically enAr for those groups with χ(G) ≥ κ(G). This implies Hu’s theorem [21] to the effect 
that in this situation, A(G) is enAr in the sense of Granirer. See also [22] for further results on quotients 
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of V N(G). The interesting application of (2) is when G is discrete (otherwise, (2) is an easy consequence 
of (1) even without assuming that G has an amenable subgroup). So when G is a countable discrete group 
with an infinite amenable subgroup (such as the free group Fr with r generators, where r ≥ 2), statement
(2) implies that A(G) is isometrically enAr.

Our approach is based on the following two lemmas:

Lemma 5.1 (Theorem 2.4 of [6]). Let {an}n∈N be a sequence of normal states of a von Neumann algebra V
such that limn ‖an − a‖ = 2 for each normal state a ∈ V∗. Then there exist positive integers n1 < n2 < · · ·
and a sequence of normal states {bj}j∈N such that

(i) limj ‖anj
− bj‖ = 0 and

(ii) The sequence {bj}j∈N is an orthogonal �1-set.

Lemma 5.2. Let G be a locally compact group and let Q be a projection in V N(G). Take h ∈ L2(G), with 
Qh �= 0 and define φ = 1

‖Qh‖2
Qh ∈ L2(G) and ψ = φ ∗ φ̃. Then ψ ∈ A(G) ∩ P1(G) and S(ψ) ≤ Q.

Proof. It is clear that ψ ∈ A(G) ∩ P1(G). To prove that S(ψ) ≤ Q, we only have to recall that S(ψ) is the 
smallest projection in V N(G) with 〈ψ, S(ψ)〉 = ‖ψ‖ and observe that:

〈ψ,Q〉
〈A(G),V N(G)〉

= 〈Qφ, φ〉
〈L2(G),L2(G)〉

= 1
‖Qh‖2

2
〈QQh,Qh〉

〈L2(G),L2(G)〉

= 1 = ψ(e) = ‖ψ‖. �
Next we proceed to check that the Fourier algebra of a non-discrete locally compact group contains 

TI-nets which are orthogonal �1(χ(G))-sets.

Theorem 5.3. If G is a non-discrete locally compact group, then A(G) contains a TI-net of true cardinality 
χ(G) that is an orthogonal �1(χ(G))-set.

Proof. If G is metrizable, this was shown by Chou in [6]. The proof there consists in observing that every 
TI-sequence in P1(G) satisfies the conditions of Lemma 5.1 (this is [6, Lemma 3.2]) and, hence, has a 
subsequence that can be approximated by another TI-sequence which is also an orthogonal �1-set. TI-
sequences that are orthogonal �1-sets can therefore be found as long as TI-sequences are available, which is 
the case in non-discrete groups, see [29, Proposition 3] or [13, Lemma 5.2].

We now assume that G is not metrizable. Let η = χ(G) and {Uα : α < η} be a base of symmetric 
neighbourhoods of the identity e. For each α < η, let Vα be a neighbourhood of e with V 4

α ⊂ Uα and put 
B = {Vα : α < η}.

We consider the family of compact subgroups {Nα : α < η} given by the Kakutani-Kodaira theorem for 
the base B (see [20, Proposition 4.3 and its proof]). Recall, in particular, that Nα+1 ⊂ Nα ∩ Vα for every 
α < η. Consider then the projections

Pα : L2(G) → L2(G/Nα+1)

given by Pα(f) = λNα+1 ∗ f , where L2(G/Nα+1) stands for the functions of L2(G) that are constant on 
the cosets of Nα+1 and λNα+1 stands for the regular representation of Nα+1. This is an increasing net of 
projections. Putting Qα = Pα+1 − Pα, we obtain an orthogonal net of projections {Qα : α < η}.
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Since Nα+1 \ Nα+2 �= ∅ and Nα’s are closed, we may pick for each α < η, a symmetric compact 
neighbourhood Wα ⊂ Vα of e such that Nα+1 \Nα+2Wα �= ∅, and so Nα+1Wα \Nα+2Wα has non-empty 
interior in G. Define hα := 1Nα+2Wα

. Put

φα = 1
‖Qαhα‖2

Qαhα and ψα = φα ∗ φ̃α.

Note that Pα+1hα = hα, and so Qαhα = hα−Pαhα for each α < η. We claim that hα �= Pαhα so that Qαhα

is not zero for each α < η. Let x = pw be any point in Nα+1Wα \ Nα+2Wα with p ∈ Nα+1 and w ∈ Wα. 
Then hα(x) = 0, while

Pαhα(x) = Pαhα(w)

=
∫

Nα+1

hα(t−1w)dλNα+1(t) = λNα+1 (wWαNα+2 ∩Nα+1) �= 0,

where the latter value is non-zero because the interior in Nα+1 of the set wWαNα+2 ∩Nα+1 is non-empty 
since it contains Nα+2.

Hence Pαhα and hα differ on the set Nα+1Wα \ Nα+2Wα, which is of positive measure in G (having 
non-empty interior). We conclude that Pαhα �= hα for each α < η, as wanted.

Lemma 5.2 then implies that S(ψα) ≤ Qα, showing that {ψα : α < η} is an orthogonal �1(η)-set.
Since the support of Qαhα = hα−λNα+1 ∗hα is clearly contained in Nα+1Wα, which is in turn contained 

in V 2
α , we see that

supp(ψα) = supp
(
φα ∗ φ̃α

)
⊆ V 4

α ⊆ Uα for each α < η,

and [29, Proposition 3] proves that {ψα : α < η} is a TI-net as well. Since this net is directed with the 
natural order of the ordinal η, its true cardinality is η. �

An easy argument (see Theorem 4 of [29]) shows that accumulation points in V N(G)∗ of TI-net in A(G)
are topologically invariant means on V N(G). Theorem 5.3 therefore yields an easier and shorter proof to 
Hu’s theorem on the number of topologically invariant means on the von Neumann algebra VN(G) when 
G is not metrizable.

Corollary 5.4 (Theorem 3.3 of [6] for metrizable G and Theorem 5.9 of [20] for nonmetrizable G). Let G be 
a nondiscrete locally compact group. Then the number of topologically invariant means on the von Neumann 
algebra V N(G) is 22χ(G) .

Proof. Let {ψα : α < η} be the orthogonal TI-net constructed in Theorem 5.3, where η = χ(G). Let η
have the discrete topology and consider the map I : η → B, where B is the unit ball in V N(G)∗, given by 
I(α) = ψα for α < η. Extend this map to Ĩ : βη → B, where βη is the Stone-Čech compactification of η. The 
TI-net being orthogonal implies immediately that the map Ĩ is injective. For if x and y are distinct in βη, 
pick two disjoint subsets X and Y in η with x ∈ X and y ∈ Y (the closure is in βη). If S =

∑
α∈X S(ψα), 

then 〈Ĩ(x), S〉 = 1 while 〈Ĩ(y), S〉 = 0. The map Ĩ being injective yields the claim since the cardinality of 
βη is 22η . �

Theorem 5.3 will be applied in Corollary 5.6 to prove that A(G) is isometrically enAr when χ(G) ≥ κ(G). 
If G is discrete, and so χ(G) < κ(G), this approach cannot be followed. But when G is in addition amenable, 
TI-nets can be replaced, to the same effect, by weak bounded approximate identities.
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Following [11], let P (G) be the space of continuous positive definite functions on G and B(G) be its the 
linear span. The space B(G) is a Banach algebra, called the Fourier-Stieltjes algebra, and if C∗(G) is the 
group C∗-algebra of G, then B(G) is its Banach dual.

Theorem 5.5. If G is a locally compact group that contains a σ-compact, non-compact open amenable sub-
group H, then A(G) has an orthogonal weak bai.

Proof. It is a well-known theorem of Leptin that A(H) contains a sequential bai {vn}n∈N , see, e.g., [25, 
Theorem 2.7.2]. It is then clear that, in the σ(B(H), C∗(H))-topology, limn vn = 1 where 1 denotes the 
constant 1-function.

Since H is not compact, the regular representation of H is disjoint from the trivial one-dimensional 
representation. It then follows from [2, Corollaire 3.13] (or [25, Proposition 2.8.9]) that, for any u ∈ A(H),

‖1− u‖
B(H) = 1 + ‖u‖

A(H) .

Let now u ∈ A(H) be an arbitrary positive definite function with ‖u‖A(H) = 1 (i.e., an arbitrary normal 
state u of V N(H) = A(H)∗). Given ε > 0 there is then Tε ∈ C∗(H) with ‖Tε‖ ≤ 1 such that

|〈1 − u, Tε〉| > 2 − ε.

As a consequence, there is nε ∈ N such that, for n ≥ nε,

|〈vn − u, Tε〉| ≥ 2 − ε.

It follows that

lim
n

‖vn − u‖
A(H) = 2. (5.1)

Lemma 5.1 now provides an orthogonal �1-sequence {uj}j∈N and a subsequence {vnj
}j∈N of {vn}n∈N such 

that

lim
j

‖vnj
− uj‖A(H) = 0. (5.2)

We next consider the restriction and extension maps, R : A(G) → A(H) and Φ: A(H) → A(G), the latter 
one defined by Φ(u)(s) = u(s) if s ∈ H and Φ(u)(s) = 0 if s /∈ H. The adjoint R∗ : V N(H) → V N(G) of 
R is then a multiplicative linear isometry (see [9, Proposition 7.3.5], this is considerably easier when H is 
open) and ‖Φ(u)‖A(G) = ‖u‖A(H), see [25, Proposition 2.4.1].

The sought after orthogonal weak bai will be the sequence (Φ(uj))j∈N as we check next.
Let {S(uj)}j∈N be the family of orthogonal projections corresponding to sequence {uj}j∈N , and consider, 

for each j ∈ N, the operator in V N(G) given by R∗(S(uj)).
Since normal states of V N(G) correspond precisely to positive definite functions of A(G) and these are 

clearly preserved by R, R∗ must preserve self-adjointness. This, together with the multiplicative character 
of R∗, implies that the operators R∗(S(uj)) are projections. Finally, since

〈Φ(uj), R∗(S(uj))〉 = 〈uj , S(uj)〉 = 1 = uj(e) = Φ(uj)(e)

for each j ∈ N, we deduce according to Definition 3.4, that S(Φ(uj)) ≤ R∗(S(uj)) for each j ∈ N. Thus 
(Φ(uj))j∈N is orthogonal in the sense of Definition 3.5.
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That (Φ(uj))j∈N is a weak bai follows from the bai property of the sequence (vnj
)j∈N , the approximation 

property (5.2) and the following inequality, valid for every j, k ∈ N:

‖Φ(uj)Φ(uk) − Φ(uk)‖A(G) = ‖ujuk − uk‖A(H)

≤ ‖ujuk − vnj
uk‖A(H) + ‖vnj

uk − uk‖A(H) . �
Corollary 5.6. Let G be a locally compact group. A(G) is isometrically enAr if G satisfies any of the following 
conditions:

(i) χ(G) ≥ κ(G), or
(ii) G is second countable and contains a non-compact open amenable subgroup.

Proof. (i) To obtain the linear isometry of V N(G) into V N(G)/WAP(A(G)), simply combine Theorems 3.17
and 5.3 and the fact that, under the hypothesis of (1), d(A(G)) = χ(G).

(ii) We only have to put together Theorems 5.5 and 3.17. �
Final remarks. We believe the techniques of the present paper can be applied to many other instances. 
Obvious candidates are Fourier-Stieltjes algebras and weighted Fourier algebras.

It is natural to wonder how much the concept of extreme Arens regularity introduced in Definition 2.1
strengthens the original one by Granirer. We have been unable to produce an example of a Banach algebra 
that is extremely non-Arens regular in the sense of Granirer’s and is not in our sense. Another question we 
could not answer is whether the weighted group algebra �1(G, w) is isometrically enAr for weights diagonally 
bounded by c > 1, even if G is the additive group Z of integers. The memoir [8], which provides a rich list 
of examples of weighted (semi)group algebras, might be a good starting point to deal with these questions.
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