

APPLICATION FOR ATTENDEES OF A

TALK SHOW EVENT

Carlos Hernández Prieto

Final Degree Work

Bachelor’s Degree in

Video Game Design and

Development

Universitat Jaume I

 September 2021

Supervised by: José Vte. Martí Avilés

2

3

Acknowledgments

First, I want to thank my previous tutors for the patience they have shown and how

understanding they have been with my situation in recent years, but especially José

Vicente Martí Avilés for having supported me by always having kind words,

understanding my problems, and having made a great effort to give me this opportunity.

I would also like to thank my colleague José Antonio Gil Altaba for his patience in

explaining all the concepts that I didn`t know or didn`t understand. Finally, I want to

thank in a special way the patience of my wife and my daughters for the hours and hours

spent in front of the computer without being able to enjoy their company.

4

5

Abstract

This document refers to the technical proposal for a final degree project in the Degree of

Videogame Design and Development.

The work carried out during the development of the project aims to create a mobile

application for the iOS platform, which allows those attending a talk show type event to

be able to participate actively. This is intended to be achieved by creating an in-app

gamification system that will offer a messaging wall, a program feed, and live quizzes.

Attendees within the application will have a username, email (access) and password, a

user profile, an agenda, a list of sponsors, a list of guests and attendees, a wall where

they can leave comments, a place in where the program team can share stories and a

leaderboard with a ranking of the attendees which will count the participation to score

points.

6

Contents

1. INTRODUCTION ... 9

1.1. WORK MOTIVATION .. 9

1.2. OBJECTIVES ... 10

1.3. ENVIROMENT AND INITIAL STATE. ... 10

2. PLANNING AND RESOURCES EVALUATION .. 13

2.1. PLANNING .. 13

2.2. RESOURCES EVALUATION ... 14

3. SYSTEM ANALYSIS AND DESIGN .. 20

3.1. REQUIREMENTS ANALYSIS ... 20

3.2. SYSTEM DESIGN ... 22

3.3. SYSTEM ARCHITECTURE .. 32

3.4. DATABASE DESIGN THROUGH FIREBASE... 36

3.5. INTERFACE DESIGN ... 38

4. WORK DEVELOPMENT AND RESULTS .. 46

4.1. WORK DEVELOPMENT .. 46

4.2. RESULTS ... 49

5. CONCLUSIONS AND FUTURE WORK ... 51

5.1. CONCLUSIONS ... 51

5.2. FUTURE WORK ... 51

6. CITED WORKS .. 54

7

Index of tables

Table 1 - Task list and their duration ... 13

Table 2 - Technical features of the equipment employed. .. 14

Table 3 - Economic Planning of the DB and Accommodation ... 15

Table 4 - AWS vs Firebase benefits ... 16

Table 5 - Economic Planning of the database.. 17

Table 6 - Economic Planning of the app .. 17

Table 7 - Final economic planning .. 18

Index of figures

Figure 1 - Initial screen for all the users ... 22

Figure 2 - User interactions (not attendee). ... 23

Figure 3 - User interactions (Attendee) .. 24

Figure 4 - Organizer interactions .. 25

Figure 5 - Administrator interactions ... 26

Figure 6 – Internal app connection ... 27

Figure 7 - User registration .. 28

Figure 8 - Access to the application .. 29

Figure 9 - Access to the application .. 30

Figure 10 - User registration .. 31

Figure 11 – Architecture and swift version ... 32

Figure 12 - Deployment target .. 32

Figure 13. MVP + Clean Architecture ... 33

Figure 14. Feed entity. .. 34

Figure 15. Delete Favorite user use case. ... 34

Figure 16. Adapter to convert favorite item from firebase to a favorite entity. 35

Figure 17 - Traditional vs firebase model. ... 35

Figure 18 - Database table layout .. 36

Figure 19. First registration layout ... 38

Figure 20. Final registration layout .. 38

Figure 21. Initial login view layout ... 39

Figure 22. Final login view layout .. 39

Figure 23. Initial menu view layout ... 40

Figure 24. Final menu view layout ... 40

Figure 25. Initial user list view layout .. 41

Figure 26. Final user list view layout ... 41

Figure 27. User detail view without type functionality ... 42

Figure 28. User detail view with type functionality .. 42

Figure 29. First user profile layout.. 43

Figure 30. Final user profile layout ... 43

Figure 31. Feed view layout ... 44

8

9

1

INTRODUCTION

The work is made up of five sections, covering the planning, the realization and the

results obtained.

The first chapter describes the motivation that led to the realization of this project, the

objectives, and the initial state. It talks about all the decisions that have been made before

starting the project.

1.1. WORK MOTIVATION

The motivation behind this idea for the TFG arises from the need for large companies to

create events in which to promote their brand. These events should provide

gamification, enhance entertainment, and generate extra value for event attendees.

Participating actively in the development of apps for events gave me the idea of creating

an application that can be used for certain television programs of the talk show type and

in this way allow the public to participate actively during the same.

Thanks to the development of this technology, the following needs of the organizers of

an event would be covered:

• Generate motivation in attendees to use the application whether you are going

to attend the event or if you are a follower of the program, creating a community

fan of the program that will receive news, prizes and raffles related to the

programs and their content.

• Create a new television format that allows breaking the barrier of both television

and new technologies, as well as participation within a television show.

• Animate events through a television medium using a gamification system that

achieves the participation of the attendee, promoting both games and challenges

and rewards the best in the ranking of each event.

• Capture the attention of attendees promoting interaction through the application

to achieve rewards.

• Increase the active participation of the attendee to make them feel part of the

show.

10

1.2. OBJECTIVES

• “To create an application from scratch in native development.”

• “To create a user system with an agenda to plan the different shows”

• “To create a ranking system by points with the different users.”

• “To manage a database hosted in the cloud that allows data to be stored and

synchronized between users in real time.”

• “To maintain a system that allows messages to be uploaded in real time to a

messaging wall”

1.3. ENVIROMENT AND INITIAL STATE.

1.3.1. WORK ENVIROMENT

The entire project will be carried out individually, with the help of the tutor provided by

the university and the collaboration of an iOS developer in the form of code review,

resolution of doubts regarding developments and advice on good practices. These

supports will allow to improve the content at a visual and experience level and the code

in terms of optimization of resources and computational costs.

The work done locally from a MacBook pro laptop will be uploaded to a repository

shared with both tutors, to allow review requests, in which they can give feedback on

improvements to be made, malfunctions or errors made in the code.

1.3.2. INITIAL STATE

The project begins during the viewing of a television program in which the audience is

allowed to interrupt and participate in the program.

When working in an events company, look at the possibility of making an application

that allows the public to be part of a community linked to the program and that allows

users who attend the program to participate directly through the application.

The database and the project application are made from scratch considering all the

possibilities and details required for this specific case.

1.3.2.1. INTERNAL DECISIONS

1. The project must have a database that allows to store the data of the different users,

quickly offer responses to the requests to the database and store the following data:

• User information.

• Program information.

• Content of the publications.

11

2. This database must be hosted on an online server.

3. Users will have access to all the information pertinent to their profile and will be

able to make modifications.

4. The information of the programs and the content of the publications must be

inserted by the organizers.

1.3.2.2. EXTERNAL DECISIONS

1. In the future, the data will be accessible through Android development.

2. To carry out the project, a technical proposal, an analysis and design document, and

a final report must be made.

3. All the documentation must be in English.

4. Within the application, the user's profile must be filled out by the user himself.

12

13

2

PLANNING AND

RESOURCES

EVALUATION

In this section, the planning and description of all tasks is shown, accompanied by the

work time, including the Technical Proposal and its presentation. It also details the

evaluation of the resources that are necessary for the correct development of the work,

both human and team with an approximate cost.

2.1. PLANNING

Table 1 shows the list of main tasks for the project. This list shows the task to be done and

the estimated duration of hours invested to get it completed.

Tasks of the work to be performed.
Estimated

duration. (hours)

• Develop an access system for users that allows them to create

their password and access the application.
40

• Create a menu and a user interface.
40

• Generate a database project that allows users to access with

their email and password.
40

• Create the different submenus and bind them to the

database. Users, casting, wall messages, feed, etc.
40

• Implement a scoring system for the user’s leader board.
30

• Create the different endpoints to be able to manage the

message wall of the attendees and the ranking of scores.
40

• Make the technical proposal
15

• Perform final memory
40

• Prepare final presentation
15

• Total number of hours planned 300

Table 1 - Task list and their duration

14

2.1.1. TECHNICAL PROPOSAL PLANNING

The final degree work proposal was made individually. With the intention of taking

advantage of the knowledge acquired during the university and the short career as an

iOS developer, the development of the technical proposal that was finally presented was

studied. The breakdown of this process is divided into the following subtasks and their

time cost.

Subtasks

• 10 Hours of realization.

• 2 Hours of layout.

• 3 Hours of transcription and correction into English.

2.2. RESOURCES EVALUATION

To achieve the results shown in this project, it would take around 270h assuming there

will be only one worker. Below is a rough estimate of the costs (excluding VAT) and the

earnings that person would have.

2.2.1. REQUIRED EQUIPMENT

To develop the application, the following components and services are required:

• A portable computer with an iOS operating system capable of running the

xcode environment. To develop the project, a MacBook Pro (15 inches, 2019) has

been employed with the technical features shown in Table 2.

Components Features

CPU 2,3 GHz Intel Core i9, 8 cores

Graphics card
Radeon Pro 560X 4 GB

Intel UHD Graphics 630 1536 MB

Hard disk 500GB

RAM 32 GB 2400MHz DDR4

Table 2 - Technical features of the equipment employed.

• Internet connection.

• Xcode 12.4, it is possible to use previous versions.

• Firebase, online service for database development. The service is free if the

margins detailed in Table 3 are not exceeded.

15

Table 3 - Economic Planning of the DB and Accommodation

2.2.2. WHY FIREBASE?

Firebase is a platform acquired by google in 2014 which offers a free service that allows

users to create serverless applications, storing and synchronizing JSON data between

database users in near real time with robust user-based security (Moroney, L. & Anglin:

2017). It has several products that are very useful for the development of the application.

Firebase Realtime Database is a cloud-hosted NoSQL database that enables customers

to store and synchronize data between users in real time. This tool allows:

• Build serverless apps: The real-time database links to a web or mobile SDK

to enable developers to create applications without the need for servers.

• Optimized for offline use: If users go offline, the Realtime Database SDK

uses the local device to publish and store changes, syncing this data

automatically when the device is connected again.

Cloud Storage helps the customer to quickly and easily store and process user-generated

content such as photos and videos. The characteristics of this tool are:

• Infrastructure designed to move easily from the prototype to the production

stage.

• Automatically stops and resumes transfers when the application loses and

regains mobile connectivity, saving users time and bandwidth.

Both Realtime Database and Cloud Storage integrate with Firebase Authentication to

provide intuitive and easy authentication for developers.

This tool allows our app to work correctly even if the app is used by many users. The

prices are free, the firebase service only has a cost when the need for more functions

increases, which would be acceptable as the application would generate a lot of profit.

16

2.2.2.1. FIREBASE VS AWS

Along with firebase, AWS Amplify is another of the most powerful application

development platforms. Backed by Amazon services, it uses a set of open-source java

script libraries that facilitate web and mobile application development.

AWS Amplify benefits Google Firebase benefits

Open source Real time having a robust API

Local device datastore Easy-to-use and fully integrated console

Supports SQL and No-SQL databases Runs on Google's cloud

Supports GraphQL and REST API Scalability

Scalability Provides user side high security

Table 4 - AWS vs Firebase benefits

Among the listed benefits of firebase and AWS Table 4, the main features that led to the

choice of firebase is that it is a real-time database. This feature is ideal for participating

in a talk show event by posting messages on the wall or answering questions about

gamification. On the other hand, although it is inconvenient to have to develop a No-

SQL database, access to the data in these databases is much faster. The last point for the

choice to have been firebase has been the high security that firebase offers on the user

side.

2.2.3. HUMAN RESOURCES

The real cost of this project would incorporate a part of web development and services,

to be able to manage and organize in the most optimal way all the details of the users, to

be able to add new guests, manage the publications of the walls and control the

gamification section (questions to attendees) more easily.

The project developed for this work does not incorporate the development of services or

web. In this project, only the development costs of the database in firebase are taken into

account, which are shown in Table 5 and the application development cost that is

explained in Table 6. This means a lower cost, but it translates into a smaller system with

the limitations of managing only from the application itself.

The project is developed only for iOS. This implies that carrying out the development

for Android would duplicate the economic planning section shown in that table.

17

Construction of the DB Duration Price Total

Creation of DB 100 €/Data tree 500 €

Maintenance 2 h/month 70 € 35 €

Modifications 35 €/hour
According to stipulation made

for the proposed modification.

Table 5 - Economic Planning of the database

Maintenance would take approximately two hours a month to avoid or solve possible

problems that may arise. Regarding the growth of the database, the planning will be

balanced if necessary due to an increase that requires future modifications.

Generation and

approximate annual cost.
Price by unit Units Total

Develop 300€ / functionality 12 3600€

Design 150€ / view 12 1800€

Design modifications 50€ - 100€ / section
To be evaluated by the

technical team
50 - 100€

Maintenance 500€ / Year 500€

Final app price 5400€

Maintenance and extras 500€ – 600€

Table 6 - Economic Planning of the app

2.2.4. FINAL PRICE AND SALARY

The final price to develop the project with the indicated functionality would be around

7139 euros, VAT included. The calculation of the final prices is shown in Table 7.

The approximate cost of hours to complete the development of the project will be 270

hours, which is equivalent to 34 days of work. The daily cost would be 209,97 euros,

which is equivalent to 26,44 € / hour. This price falls into the price range per hour for

freelancers and development companies, according to a study published by Luis

Picurelli, CEO of Yeeply.

18

Subsequent maintenance, modification, and extension work on the application would

provide a later amount of variable revenue that has not been considered in the initial

planning since it cannot be quantified with complete certainty.

Final Price of the DB 500€

Final Price of the APP 5400€

Combined Price. 5900€

VAT (21%) 1239€

Final Price. 7139€

Table 7 - Final economic planning

19

20

3

SYSTEM ANALYSIS

AND DESIGN

This section presents the analysis of the system through functional and non-functional

requirements and the design of the system through diagrams, flowcharts, and database

tables. Requirement’s analysis and job architecture topics are also addressed.

3.1. REQUIREMENTS ANALYSIS

The analysis is going to focus first on describing and analysing the different functional

requirements that form the basis of the application and then on exposing the non-

functional requirements of the application.

3.1.1. FUNCTIONAL REQUIREMENTS.

The mobile application will be developed with the premise of being able to provide users

with the following actions:

• The system will allow creating users.

• The system will allow users to be deleted, both by the user who owns the

account and by the administrator.

• The system will allow users to be listed.

• The system will allow users to view their profiles.

• The system will allow users to view the details of other users.

• The system will allow users to post comments.

• The system will allow users to have favourite users.

• The system will allow users to view the organization's notifications.

The following describes the input and output of the different requirements and a brief

description of your task.

Input: Create user.

Output: Add a new field with the user's data in the users table in the DB.

The application sends a username and password to the database to register a new

user in the application.

21

Input: Delete user.

Output: Deletes the field from the users table in the DB.

The application sends a username to the database requesting to be removed and all

stored fields that are linked to the user are removed.

Input: List users.

Output: The database returns a list based on the input condition.

The application requests users, a cast member or an assistant and the database

return a list according to the request made.

Input: View user profile.

Output: The database returns a profile based on the input condition.

The application requests the profile of a user, and the database searches and returns

the profile selected by the user.

Input: Add/delete user to favourite list.

Output: The database a (Badal & Luis, 2020)dd or delete user from favourite user

list.

The application sends a user to be added or removed from the requesting user's

favourites list. The database adds or removes the received user from the requesting

user's favourites list.

Input: View user’s details.

Output: The database shows the details of a user.

The application requests the details of a specific user and the database searches and

displays the details of the selected user.

Entry: Post comment.

Output: The database records a comment from a user on a wall.

The application requests the database to create a new comment for user "x" in place

of "y".

Input: View publications.

Output: The database shows the posts of a wall.

The application requests the publications of a specific wall and the database

searches and returns the publications.

22

3.1.2. NON-FUNCTIONAL REQUIREMENTS.

The development of the mobile application seeks to offer users the following

requirements that, although not essential, will offer a better user experience:

• Being an efficient system that manages and controls many simultaneous users.

• Being a system that allows data and information to be stored and made

available in real time, keeping them updated.

• To be an easy-to-use system in which users do not find it difficult to access

internal sections.

• Being a system with a simple and secure registration, Firebase offers an

authentication system that allows registration, manages accesses, and

achieves greater security and protection of data.

• Being a system with a certain degree of storage in the cloud, offering a storage

system in the cloud, where the application files can be saved.

3.2. SYSTEM DESIGN

Next, a series of diagrams are exposed to facilitate the understanding of the project and

provide a better vision of the system design. These diagrams show the actions that users

can perform in the application, as the different classes are intertwined with each other

and the flows of the most prominent interactions.

3.2.1. USE CASE DIAGRAMS

In each of these sections a diagram and a brief description of the elements involved are

shown. The diagrams represent each of the four actors that can intervene in the

application, as well as their possible actions.

3.2.1.1. USER

The user will be able to carry out different types of interactions depending on their

condition in the application. However, all users share the initial screen. This use case is

shown in Figure 1.

Figure 1 - Initial screen for all the users

23

INTERACTIONS

• Access: The user must be registered in the system by email, username, and

password. If the user already has an account, he can access through the initial

access system. If the user does not have an account, the user has an automatic

registration that will allow him to create an account.

• Register: The user must register in the system giving a series of data (username,

email (access) and password. Once the registration is completed, the system will

send the user to the initial view where they can access the application.

The user within the application is divided into three ranges of access to content: basic

user, assistant user, team user or staff member and administrator user. Users who are

not attendees will have the functionalities shown in Figure 2.

Figure 2 - User interactions (not attendee).

INQUIRIES

• View list of users: The user will be able to consult a list with all the users who

are registered in the application.

• View session agenda: The user will be able to see all the sessions available to

him in the agenda.

• View Organization Feed / Post: The user will be able to view all the organization

posts that have been created.

• See the “TV CREW” list: The server will show the user a list of “TV CREW” with

guests, presenters, collaborators, and staff.

24

INTERACTIONS

• Edit the profile: The user will be able to edit its profile information. To change

the username, the system will validate that there is no other username equal,

while to change the email, the system will verify the email account by sending

an email.

• Add to favourites: The user will be able to add other users as favourites.

Users who are attendees have the same level as basic users but will be able to perform

more actions related to the show they attend, as shown in Figure 3. These actions are a

complement to the interactions they already had as users of the application.

Figure 3 - User interactions (Attendee)

INQUIRIES

• View messages: The attendees will be able to consult the messages on the

comment wall.

• View attendee list: The attendee will be able to view all the users who will attend

the session.

INTERACTIONS

• Publish messages: Then user of type attendee can post messages on the comment

wall for attendees to the event.

• Answer questions: The assistant user will be able to answer the various

questions that are proposed from the organization.

• Add comments: The assistant user will be able to add comments to the posts on

the wall.

25

The program will have a type for user to be able to carry out the organization functions

of the different sections of the application. This user will be able to perform the functions

shown in Figure 4.

Figure 4 - Organizer interactions

INQUIRIES

• View the options for add or delete events, feeds, questions, and guests:

Organizer type users can see, within certain sections, special functionalities that

belong to their type to manage the organization of the event.

INTERACTIONS

• Add or delete feeds: Organizers can add or remove text posts or also include

images to provide information about the session or globally about the program.

This information will be displayed in the program's feed.

• Add or delete questions: Organizers can add or remove questions for a specific

event. Later they can see the answers and give a score to each attendee according

to the answer offered.

• Add or delete events: Organizers can add or remove events to the calendar so

that other users can see it.

• Add or delete guest profiles: Organizers can add, modify, or delete guest

profiles with their permission.

26

The user with more access is the administrator type user, it can be seen in Figure 5. This

user can change the range to users to be basic users (assistant or not), organizer or

administrator, and delete any user from the application. With these features, the

administrator will be able to create new organizers who can oversee uploading content

to the program's feed, or selecting the questions to upload in each show, among other

things, they can also change users to the administrator type.

The administrator must bear the risks of changing to a role user.

Figure 5 - Administrator interactions

INQUIRIES

• See the type of user: Administrators will be able to check the type of each user

and see special functions.

INTERACTIONS

• Delete users: Administrators will be able to delete any user by accessing the user

details.

• Change type of users: Administrators will be able to change the type of each

user.

27

3.2.2. CLASS DIAGRAMS

In this section, the methods and attributes are omitted, showing only the connection

between the different classes / views of the application. The intention of this section is to

show the internal connection that the application has, this is shown in Figure 6.

Purple lines indicate navigation from the main menu. As you can see, users can access

the login, user profile, calendar, user list, cast list, attendee list, and news message list.

To access the details of a user, users must access through the list of users or attendees in

case the user attends the show of the program. On the other hand, when a user wants to

access the detail of a crew, the user will have to search the crew list or through the

calendar, enter the session in which the crew that the user is looking for participates and

enter on the detail of the crew.

Figure 6 – Internal app connection

28

3.2.3. FLOWCHARTS

The flowcharts that are outlined are intended to observe the behaviours of the system

with the user. First, it will be focused on the course that the application follows when a

user registers. Then the access and the main actions available to the user are shown.

3.2.3.1. REGISTRATION

When the application is executed, a username and password are requested to be able to

access. In this situation there is the possibility of making two options, registering, or

accessing the system. If the user's email is not in the database, the user must register

before being able to access the system. To register, the user must enter a username that

cannot match another user, an email that should not be registered in the database and a

personal password. With this data, the system will verify the email account by means of

a verification message that is sent to the user when the registration is completed.

The system will allow the user to insert only the username if the inserted name is already

in the database. This has been done with the intention of making the search for a

username more pleasant and that this new name does not matches that of other users.

The system provides three paths when a user is in the registration section of the

application, this is shown in the flow diagram of Figure 7.

• Valid username, email, and password Access to the application menu.

• Incorrect username, email, and password Enter new data or exit.

• Wrong username, correct email, and password Enter new username or exit.

Figure 7 - User registration

29

3.2.3.2. USER LOGIN

For access, as shown in Figure 8, the user must enter the email and password that was

entered at the time of registering in the application. One of the proposed future

modifications is that the application allows the login with the username or email

indistinctly.

On this screen the system generates two possible results:

• Valid email and password information Access to the application menu.

• Incorrect email and password data Show error and allow user to start over.

Figure 8 - Access to the application

30

3.2.4. INTERACTION DIAGRAMS

In these diagrams, several use case scenarios are recreated, but this time focusing on

showing the interaction between the user, a set of objects (system and database) that

cooperate with each other for the correct operation of the application.

3.2.4.1. LOGIN

This is the user's first interaction with the system. Figure 9 shows, as mentioned above,

that the user must fill in the email and password fields. When the Login button is

pressed, the system sends the data written by the user to the database and checks if the

information is correct.

Figure 9 - Access to the application

• If there is incorrect data: The database communicates with the system to issue

an error message, indicating the reason for the error (email or password).

• If there is correct data: The database communicates to the system that the process

has been carried out correctly and the system allows the user to access the main

menu.

31

3.2.4.2. USER REGISTRATION

Figure 10 shows the registration process for a new user. To register, a user who does not

have an account must press the button to create an account in the application. The system

shows three fields to complete (username, email, and password). This information is

mandatory and necessary to register the user.

Figure 10 - User registration

When the user inserts the data and clicks the “Log in” button, the system verifies the data

of the fields. This causes three possible options:

• Incorrect data (email or password): The system informs the user that an error

has occurred in one of the fields (email or password), all the fields are reset,

and the flow returns to its starting point.

• Incorrect data (username): The system informs the user that an error has

occurred in the username field, the username field is restarted, and the flow

returns to its starting point but showing the email and password fields full.

• Correct data: The system sends an email with a verification link to the user's

account, when the user enters the link, the user's account is activated and can

be accessed through the access screen.

32

3.3. SYSTEM ARCHITECTURE

This article describes the necessary hardware and software requirements, a brief

explanation of what service Firebase uses and the benefits of using that service.

3.3.1. HARDWARE AND SOFTWARE REQUIREMENTS

Figure 11 shows the compilation language used (Swift 5) and the architecture (standard

- arm64, armv7)

Figure 11 – Architecture and swift version

To use this application, a mobile phone is needed with an internet connection and an

operating system iOS 13.5 or higher as shown in Figure 12. This decision has been made

because iOS versions lower than 13.5 imposes high restrictions on the use of libraries

and look at the market shares of the different versions.

Version 13 has a 5.06% market share, while previous versions have 4.49%. Being the

remaining 90.46% share for iOS 14, thus obtaining a total market share of 95.52%.

Figure 12 - Deployment target

On the other hand, among the points to consider for the development of this project is

the internet connection. According to a study (Laura, 2019), in our country there are

around 46.4 million people and almost 43 million already have access to the internet. If

this data is converted to a percentage, 92.67% is obtained.

One of the most difficult decisions has been to develop in the iOS environment.

According to a study (Fernández, R.: 2021), in Spain there are 54 million mobile lines,

Apple being the second most used operating system, with a market share of 12.7%.

Occupying the first place is Android with 87.1% and leaving 0.2% for Windows. Even

knowing this statistic, it has been decided to implement the application in the most

favourable environment, this is due to the work experience achieved, but continuing

with the development in the future implies that one of the first steps to follow is to

release the application for Android and thus achieve a market share of 99.8%.

33

When the above data is gathered, an approximation of the number of people who could

use this application. If there are 54 million mobile lines in Spain, 6,858,000 have an iOS

operating system. However, only 95.52% have an operating system equal to or greater

than iOS13.5, the final figure being 6,550,761 potential users.

3.3.2. MODEL VIEW PRESENTER + CLEAN

ARQUITECTURE

For the development of the application, it has been chosen to use the Model View Presenter

(from now MVP) architecture in the user interface layer and to follow a clean architecture to

request external services. This implemented methodology can be seen in Figure 13. MVP + Clean

Architecture

Figure 13. MVP + Clean Architecture

The MVP architecture is commonly implemented for user interfaces, allowing to

perform unit tests of the graphical interface.

The model is distributed in three basic components:

• Model: Allows entry to the domain layer. It is the input to the user interface layer.

The model only communicates with the presenter. It has the logic to acquire and

persist data from external services.

• Presenter: It oversees carrying the logical load of each view to show. It acts as an

intermediate point between model and view. Also update the model if necessary.

The presenter does not communicate directly with the view, it implements an

interface.

34

• View: It oversees displaying the data and receiving user interactions to send

them to the presenter.

This design pattern comes from the Model View Controller (MVC). MVP improves

presentation logic concerns through great control of view-presenter interaction (Carrera,

J. G.: 2014).

In addition to the MVP pattern, the so-called clean architecture is implemented.

Although the term “clean architecture” really refers to the organization of the project. This

aims to be more understandable, with a decoupled code, robust, scalable, adaptable to

changes and sustainable (Martin, R. C.: 2012). To achieve these purposes, a series of

components are established that perform important functions in the code.

• Entities: These contain the rules

that are critical for development.

They belong to the business so it

will always meet that

requirement. These rules are

created as structures within the

project and are unknown to the

other layers. These are

completely independent of other

classes. The Figure 14 is an

example of an entity, that could

be that of feedback that has a

unique and mandatory

identifier, which may have a title

and must be of the text type,

which will have likes and

dislikes, or it may not have any.

Figure 14. Feed entity.

• Use case: These are independent

components that perform a

specific logic in the project. Use

cases interact with entities, but

do not reach other layers in the

project. Example of this

component is a use case that

removes a user from the user's

favorites list, Figure 15.

Figure 15. Delete Favorite user use case.

35

• Adapters: These components

transform the information that

enters and leaves to decouple the

external elements of our code.

Create an abstraction layer over

the use cases. They are also on

the interface side, transforming

the data and information of the

views to the understandable by

the use cases. As an example, an

extension is shown that converts

elements from an external type

to an internal one of the project,

Figure 16.

Figure 16. Adapter to convert favorite item

from firebase to a favorite entity.

3.3.3. FIREBASE

Firebase is a BaaS (Backend as a Service) that provides customers with various

services when creating a mobile application, such as user creation and

authentication, database, storage, analytics, error management and notifications...

There are several services, which considerably reduce the development time of the

application thanks to their unification. The difference between traditional versus

BaaS can be seen at the Figure 17.

Figure 17 - Traditional vs firebase model.

36

3.3.4. ADVANTAGES AND DISADVANTAGES OF A

BACKEND PLATFORM AS A SERVICE

BaaS provides many benefits, but the most important ones for the application to be

developed will be detailed below:

• Agile and fast provisioning: It is not necessary to hire servers, databases or

install software.

• Faster development: Eliminates the need to program all layers and unifies

the backend into one, reducing time considerably.

• Security: Provides tools to keep user`s private information safe.

However, there are also disadvantages that come from using a backend as a service:

• Less flexibility compared to custom programming.

• A lower level of customization compared to a custom backend.

• Dependence on a provider.

As can be seen, the disadvantages of this service are insignificant compared to the

advantages it brings to the project.

3.4. DATABASE DESIGN THROUGH FIREBASE

Figure 18 shows the database containing the following tables: cast, user, attendee,

session, source, news, feed comments, and wall.

Figure 18 - Database table layout

37

3.4.1.1. CAST

This table stores the cast data, such as social networks, a summary of their work, what

they do, age, etc.

3.4.1.2. USER

Base user of the application, here you will find all the information of the users: name,

email, surname, social networks, work, age, description, type, and summary.

3.4.1.3. ATTENDEE

Assistant user, only those who are in a session on the same day of the session will be

assistant users. This table will be updated daily to accommodate only attendees. The

information that is stored is more limited: name, age, job, and summary.

3.4.1.4. SESSION

Table that allows linking the sessions with the cast and the attending users.

3.4.1.5. FEED

Table of messages from the organizers, which are composed of an image, text.

3.4.1.6. FEED COMMENTS

Table that stores the comments of the feed, the id of the user who makes it and the date.

3.4.1.7. WALL

The wall is a storage place for the messages of the users attending the day of the event.

It will provide a kind of unique chat in which to comment on anything.

38

3.5. INTERFACE DESIGN

This section shows the entire interface, with the different screens of the application and

their respective explanation.

Figure 19. First registration layout

Figure 20. Final registration layout

Registration view

For the user registration it has been obtained by a subview that requests the necessary data.

This subview is superimposed on the previous one. In the first design, Figure 19, no special

colors were set for this view.

The final design, Figure 20, shows various enhancements such as a translucent background,

text colors, and the application of a shadow effect around the view.

This screen shows the different fields that the user must complete (Username, email,

password)

39

Figure 21. Initial login view layout

Figure 22. Final login view layout

Initial view

Figure 21 shows the initial design, Figure 22 shows the final design. The redesign of the

application to have a more current appearance is noticeable between the two figures.

This view displays the fields so that users can log into the application and access the main

menu.

It has two bars where you enter your email and password.

The password bar shows the hidden text, making it visible by pressing the button on the right.

To access you must click on the central login button.

The user will be able to access the registration menu through the text at the bottom.

The version of the application is displayed at the bottom right.

40

Figure 23. Initial menu view layout

Figure 24. Final menu view layout

Menu view

The main menu is an icon-based view of the different sections. The first layout, Figure 23,

offered smaller icons in rows of three items, but in the final layout, Figure 24, a large bottom

button is implemented to allow logout and a series of icons in rows of two items.

As you can see from the screenshots, a banner can be entered at the top and applied at the

bottom together or separately from the top.

41

Figure 25. Initial user list view layout

Figure 26. Final user list view layout

User list view

The upper figures are two different designs of the view of the list of users of the application.

In the initial design, Figure 25, the background of the table was opaque, the texts were less

highlighted according to their category and the favorite button was part of the user image. In

the final design, Figure 26, changes are made so that the list is more integrated and with a

more professional design.

From this view the user can access the different details of the users, as well as add or remove

users from their favorites. When the leaderboard is implemented, it will be possible to see

through an icon that users have obtained a trophy in gamification games.

42

Figure 27. User detail view without type

functionality

Figure 28. User detail view with type

functionality

User detail view:

In this view the user can learn more data about a particular user, Figure 27. Access to the view

is through the list of users. In the view there is the "favorite" button to mark the user as a

favorite, the "note" button to add a note about it or the buttons to access the user's social

networks. In addition, if an administrator type user accesses, an extra functionality is shown

that allows modifying the type of user and thus being able to add more administrators,

organizers or even change a user as an assistant manually, this can be seen in Figure 28.

43

Figure 29. First user profile layout

Figure 30. Final user profile layout

User Profile:

One of the most important views is that of the user profile, the initial design can be seen in

Error! Reference source not found. and the final design can be seen in Figure 30. This view

allows users to change and review their data, although there is non-modifiable data such as

email or username, or change the profile photo. These data will be visible in the user's details

except for the name, surname and email to preserve the user's confidentiality.

44

Figure 31. Feed view layout

Feed view:

In the Figure 31, the final design of the feed view is shown. This view shows the posts

that organizers will create to provide information to users. The view is divided into

two subviews that contain the posts that refer to the current session and the posts that

refer to global events. In this view you can see an image, a title or first and last name,

and a summary of the news that is referenced. Users can click the Like or Dislike

button or comment on the post.

45

46

4

WORK

DEVELOPMENT

AND RESULTS

Next, the most relevant aspects of the project will be explained, the problems

encountered when carrying out each section, the objectives that have been achieved

during the project and the results of carrying out the work.

4.1. WORK DEVELOPMENT

4.1.1. OBJECTIVES ACHIEVED

Develop an access system for users that allows them to create their password, access the

application and retrieve the password in their email.

The result of this section has been much higher than initially expected. At this point, not

only a system has been implemented that allows the user to access the application with

a password and email. Rather, it provides several substantial improvements to that

section.

The first, verification by sending email to the user. The user accesses the email received

and clicking on the link ensures that he is the owner of that email, avoiding duplicate

email accounts.

The second, an own and unique username for each user, providing a user identifier that

allows it to be recognized by other users and offers the possibility of improving the login

in the future by changing email for username.

The third improvement consists of an improvement when the application is accessed

again once you have been logged in. With this improvement, it is possible to access the

menu without having to enter the username and password each time it is opened.

Finally, users will have a unique avatar as soon as the account is created. This avatar is

linked to their username, the user can change it from the profile at any time and is

achieved through an automatic online avatar generator.

Service web API to generate a random avatar image for users

https://api.minimalavatars.com/avatar/<NombreDeUsuario>/png

https://api.minimalavatars.com/avatar/%3cNombreDeUsuario%3e/png

47

Create a menu and a user interface.

This point has been achieved and its behavior has also been improved with that initially

proposed. A more intuitive app has been created for users, with a more refined aesthetic

and that in general terms offers a better user experience. Banners have been

implemented that allow advertising to be inserted within the application and a loading

screen that can be customized with the desired image. The appearance of the application

itself has been refined twice because the first design seemed rough and outdated, giving

way to a much more current design in tune with the design of the television show itself.

Generate a firebase project that allows users to access with their email and password.

This development has been exceeded meeting expectations. Users have a registration

area in which their data is processed safely. The necessary characteristics have been

fulfilled so that users can collect global information from the database, obtain the details

of each user and an online storage space has been created for the images of the user's

avatars.

Create the different submenus and bind them to the database. Users, wall messages, feed, etc.

In this case, the problems found within the different user implementations have resulted

in the development for casting, questions, or leaderboard not being finalized. On the

other hand, if the development of users and favorites has been completed, having

managed to create their firebase tables. As an improvement on this point, several new

tables have been created. These tables are unique usernames linked to user identification

and stored images of each user.

Implement a scoring system for the user’s leaderboard.

This point has remained without being able to implement since the valuation of hours

was too optimistic. The lack of knowledge of the time cost of generating certain views of

the application has led to a delay in developments.

Create the different endpoints to be able to manage the message wall of the attendees and the

ranking of scores.

In this section, the message storage system has been completely generated in the feed,

but it has not been possible to cover the development of punctuation and questions to

users.

Make the technical proposal

The technical proposal has been generated successfully, complying with what is

established within the university guidelines.

Perform final memory

The final report has been successfully generated and completely revised.

48

Prepare final presentation

This item has been successfully completed within the correct time frame.

4.1.2. PROBLEMS FOUND

Several problems have been encountered in the development of this final degree project.

First, the development has been done with the knowledge of a junior developer in the

field of programming in Swift. The ignorance of certain functionalities of the native

classes of the language and that making views that seemed simply took longer when the

desired implementation was not achieved has caused a delay in the entire project.

Another problem encountered that has delayed development the most has been the

search to implement a correct model and a clean architecture.

This development would have been much faster using only an MVP architecture without

more, but it has been desired to apply a clean architecture based on use cases, entities,

and adapters to improve the requests to the database, as well as avoid the existence of

parts of the code dependents. Over time, this implementation offers greater testing ease

and allows modifications to be less expensive, but initially it has caused poor

implementation of entities to generate extra debugging work and in which several days

of work have been lost due to misuse of entities within classes.

Finally, the development of the views in the Xcode environment, although more visual,

is much more complex than in the Android Studio environment, since “constraints”

must always be applied with respect to the other elements or the views. These

constraints are difficult to handle and not placing them correctly causes display failures

or compilation errors. During the development of this project, much has been learned

how to hold the elements in different ways using these constraints, making the work of

generating a view less expensive.

4.1.3. RELEVANT ASPECTS

The development of the application has followed the model-view-presenter (MVP)

pattern complemented by the clean architecture based on repositories.

Following this pattern has led to the development being initially more expensive in

terms of time, because in addition to the views necessary to implement this pattern, use

cases must be generated that use adapters to feed from external repositories and entities

as information containers. All this architecture avoids that a dependency is created with

any service external to the development and thus it is easier to modify the conditions of

use or change the service according to the needs.

49

4.2. RESULTS

After completing the development of the Project, an application has been generated in

which the users of the television show can meet, get to know each other, and receive

feedback from the program.

50

51

5

CONCLUSIONS AND

FUTURE WORK

5.1. CONCLUSIONS

The conclusion obtained from this development is that, although I was working as a

developer for iOS when I started to develop the project, I did not have enough notions

to assess the temporary costs of carrying out its execution. A developer who enters a

project and works making modifications does not learn or learns very little about the

costs of generating from scratch, the views, and the implementations of the different

classes.

Thanks to the development of the project, we have learned much better how to deal with

requests for external services, how to execute the implementations of use cases that

perform a single function in the code and to better understand the different internal

classes and their multiple properties that facilitate the development of the final

application.

5.2. FUTURE WORK

One of the first jobs to be done in the future is to generate a version for Android devices.

This version will be made in Kotlin to take full advantage of both the language

similarities with Swift and the new features that Android offers to developers and that

are only accessible for this language.

On the other hand, another great advance would be to offer a Backend service for the

application since in this way the application could provide a much greater service in

addition to allowing better management of all the administration procedures of the

displayed elements.

Of course, the gamification, leaderboard, casting and agenda sections would have to be

finished.

In turn, if the program is persuaded to incorporate this application into its services, it

would be necessary to add different sections such as access to its sales website.

52

As interesting features, a video stream system could be introduced that would allow

users to see the program in real time and be able to participate in it. It would also be

interesting to be able to group people by interests or allow users to know how many they

are favourites or an internal messaging system.

53

54

6

CITED WORKS

Moroney, L., Moroney, & Anglin. (2017). Definitive Guide to Firebase (pp. 51-71).

Apress.

https://www.yeeply.com/blog/cuanto-cuesta-crear-una-app/

Fernández, R. (2021, April 29). Statista. Retrieved from

https://es.statista.com/estadisticas/473759/tasa-penetracion-sistema-operativo-

smartphone-espana/

Laura. (2019, 21 May). Orange.es. Retrieved from https://blog.orange.es/noticias/acceso-

internet-mundo

Carrera Guanoluisa, J. G. (2014). Análisis comparativo de la productividad entre los

patrones de dieño Modelo Vista Controlador (MVC) y Modelo Vista Presentador (MVP)

aplicado al desarrollo del Sistema Nómina de Empleados y Rol de Pagos de la

Distribuidora Soria CA (Bachelor's thesis).

Martin, R. C. (2012). Código limpio. Anaya Multimedia.

	Acknowledgments
	Abstract
	Contents
	Index of tables
	Index of figures

	1 INTRODUCTION
	1.1. WORK MOTIVATION
	1.2. OBJECTIVES
	1.3. ENVIROMENT AND INITIAL STATE.
	1.3.1. WORK ENVIROMENT
	1.3.2. INITIAL STATE
	1.3.2.1. INTERNAL DECISIONS
	1.3.2.2. EXTERNAL DECISIONS

	2 PLANNING AND RESOURCES EVALUATION
	2.1. PLANNING
	2.1.1. TECHNICAL PROPOSAL PLANNING

	2.2. RESOURCES EVALUATION
	2.2.1. REQUIRED EQUIPMENT
	2.2.2. Why firebase?
	2.2.2.1. Firebase vs aws

	2.2.3. HUMAN RESOURCES
	2.2.4. FINAL PRICE AND SALARY

	3 SYSTEM ANALYSIS AND DESIGN
	3.1. REQUIREMENTS ANALYSIS
	3.1.1. FUNCTIONAL REQUIREMENTS.
	3.1.2. NON-FUNCTIONAL REQUIREMENTS.

	3.2. SYSTEM DESIGN
	3.2.1. USE CASE DIAGRAMS
	3.2.1.1. User
	INTERACTIONS
	INQUIRIES
	INTERACTIONS
	INQUIRIES
	INTERACTIONS
	INQUIRIES
	INTERACTIONS
	INQUIRIES
	INTERACTIONS

	3.2.2. CLASS DIAGRAMS
	3.2.3. FLOWCHARTS
	3.2.3.1. REGISTRATION
	3.2.3.2. User login

	3.2.4. INTERACTION DIAGRAMS
	3.2.4.1. LOGIN
	3.2.4.2. USER REGISTRATION

	3.3. SYSTEM ARCHITECTURE
	3.3.1. HARDWARE AND SOFTWARE REQUIREMENTS
	3.3.2. Model View Presenter + CLEAN ARQUITECTURE
	3.3.3. FIREBASE
	3.3.4. ADVANTAGES AND DISADVANTAGES OF A BACKEND PLATFORM AS A SERVICE

	3.4. DATABASE DESIGN THROUGH FIREBASE
	3.4.1.1. Cast
	3.4.1.2. User
	3.4.1.3. Attendee
	3.4.1.4. Session
	3.4.1.5. Feed
	3.4.1.6. Feed Comments
	3.4.1.7. Wall

	3.5. INTERFACE DESIGN

	4 WORK DEVELOPMENT AND RESULTS
	4.1. WORK DEVELOPMENT
	4.1.1. OBJECTIVES ACHIEVED
	4.1.2. PROBLEMS FOUND
	4.1.3. RELEVANT ASPECTS

	4.2. RESULTS

	5 CONCLUSIONS AND FUTURE WORK
	5.1. CONCLUSIONS
	5.2. FUTURE WORK

	6 CITED WORKS

