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Giga-voxel multidimensional fluorescence imaging
combining single-pixel detection and data fusion
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Time-resolved fluorescence imaging is a key tool in
biomedical applications, as it allows to non-invasively
obtain functional and structural information. However,
the big amount of collected data introduces challenges
in both acquisition speed and processing needs. Here,
we introduce a novel technique that allows to acquire a
Giga-voxel 4D hypercube in a fast manner while only
measuring 0.03% of the dataset. The system combines
two single-pixel cameras and a conventional 2D array
detector working in parallel. Data fusion techniques
are introduced to combine the individual 2D & 3D
projections acquired by each sensor in the final high-
resolution 4D hypercube, which can be used to identify
different fluorophore species by their spectral and tem-
poral signatures. © 2021 Optical Society of America
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During the last few decades, the amount of data being col-
lected by optical systems has been growing at an exponential
rate. Nowadays, bio-imaging researchers are not only interested
in obtaining high-resolution (over millions of pixels) images,
but also in measuring additional physical properties of light,
such as polarization, wavelength, and fluorescence lifetimes
[1, 2]. Furthermore, state of the art biological research spans
from the study of thin microscopic 2D samples to full organisms
in vivo, thus requiring 3D, fast, and highly-dimensional imaging
systems [3, 4].

This increase in the amount of acquired data presents several
challenges. First, imaging systems need to be designed with the
capability to sense not only light intensity, but also other physi-
cal parameters (wavelength, polarization, time-resolved decays
on the ps timescale, etc.) and to operate in real-time. Current
detector and electronics technology are limited mainly by the
fact that detectors are sensitive only to the intensity of light and
the technical limitations when building a sensor. Manufactur-
ing places a bound in the number of pixels that can be fitted
in a given sensor size, and working conditions (cooling, power

supply, etc.) generate trade-offs between the number of phys-
ical parameters which can be measured and any combination
of frame-rate, pixel size, sensitivity, quantum efficiency, and/or
pixel number. Another main challenge is that, even when multi-
dimensional systems can be built with adequate specifications,
the amount of data generated tends to be so big that bottlenecks
in transmission, storage, and computational power limit the
capability of such systems to perform in real-time [5].

Recently, single-pixel (SP) imaging systems have been pro-
posed as a way to tackle some of these limitations. SP cameras
operate with a single bucket detector and a spatial light modula-
tor (SLM). The SLM is used to sample the scene by using coded
masks, and the total intensity of the superposition among the
masks and the scene is measured with a detector using just one
pixel [6]. In contrast with a conventional camera, which uses
millions of pixels to provide sharp images, SP imaging systems
shift the spatial sampling process to the SLM. By doing this,
simple but extremely specialized detectors can be used, which
allow to build very efficient multidimensional systems [7–9].
Moreover, image recovery in SP systems is very well suited to
signal processing techniques, such as compressive sensing or
machine learning [10, 11], which help alleviate the aforemen-
tioned data processing hurdles. However, SP systems are not
exempt of limitations. As the SLM needs to generate multiple
masks to sample the scene, SP systems are sequential in nature,
and thus are bounded by a trade-off between spatial resolution
and frame-rate.

Using a different approach, data fusion (DF) techniques aim
to combine any number of individual datasets into one single
dataset that provides richer information than any one of the
starting ones. In the same way humans merge information from
sight, smell, or touch to determine if it is safe to eat some food,
multidimensional data fusion systems are able to provide novel
insights on sample characteristics from a combined view of mul-
tispectral, time-resolved, and/or polarimetric views of the scene.
Historically, the main field of application of DF has been remote
sensing, where satellite design imposes hard constraints on the
energy consumption, bandwidth, and number and size of detec-
tors [12, 13]. Given these limitations, it is quite normal to have
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multiple sensors, each one being sensitive to a different spectral
range or to the polarization state of light. After capturing all
the data, the fusion procedure helps to obtain rich chemical and
morphological information about the surface. With the same
spirit, there has been a recent spark of interest on DF in the life
sciences, as merging information from different imaging modali-
ties has proven to give insights that individual sources cannot
provide [14–17].

In this letter we present a novel technique that combines
both the SP and DF paradigms. By doing so, it allows to cap-
ture high spatial resolution, multispectral, and time-resolved
fluorescence images. Both spectral features and fluorescence
lifetimes provide fundamental insights about the photophysical
processes of many different samples. In particular, emission
spectra allow to distinguish among different chemical species,
while fluorescence lifetimes, being strongly dependent on the
fluorophores microenvironment, provide useful functional in-
formation (e.g. pH, temperature, energy transfer, etc.). The
capture process is achieved while still using simple detectors
that individually gather information about a reduced number
of dimensions (space, time, wavelength). Our system relies on
the combined use of three different sensors: two SP cameras
capturing multispectral and time-resolved information, and a
conventional array detector capturing high spatial resolution
images. After the measurement process, DF techniques are intro-
duced to combine the individual 2D/3D projections acquired in
parallel by each sensor in the final 4D hypercube. This provides
an efficient system that is not affected by bottlenecks in data
transmission or storage limitations, as each individual sensor
only measures a small fraction of information. Furthermore,
the DF procedure is done by simply solving a regularized in-
verse problem via gradient descent without the requirement of
the calculation of the Hessian, which typically entails memory
limitations.

Our system combines the images obtained with two SP cam-
eras with an image obtained with a CMOS camera (see Fig. 1).
Individually, each SP camera provides either multispectral or
time-resolved images with a low spatial resolution, while the
CMOS sensor captures a high spatial resolution image of the
sample, but neither spectral nor time-resolved. The DF proce-
dure makes it possible to retain the SP benefits of using simple
specialized detectors while still obtaining high spatial resolution
images. This allows to acquire full 4D reconstructions (x, y, wave-
length, time) of a fluorescent sample with multiple fluorophore
species.

We model our system in the following way. For each camera,
we can formulate a forward model that represents the acquisition
of a projection of the 4D hypercube (x) over several dimensions.
For example, for the single CMOS image we have ycmos = S · T ·
x, where S and T represent the spectral and temporal integration
operators (i.e. S and T, in combination, project the 4D hypercube
over the 2D space). In the same way, we can define forward
models for both the spectral and time-resolved SP cameras. For
the spectral camera we have yspectral = RL · T · x, where RL
is a downsampling operator in the spatial domain (as the SP
cameras acquire low spatial resolution images). Last, for the
time-resolved camera we have ytemporal = RL · S · x. Given ycmos,
yspectral , and ytemporal , the problem then resides on finding an
estimation of the hypercube, x̂, that is compatible with all the
individual measurements. To do so, we formulate the following
minimization problem:

x̂ = arg min
x

F(x) (1)

Fig. 1. Spatio-temporal-spectral data fusion framework. A
CMOS camera acquires a high spatial resolution image with
neither temporal nor spectral resolution. A SP multispectral
camera acquires a low spatial, but high spectral resolution dat-
acube, using a spectrometer as its detector. Last, an additional
SP camera measures a low spatial, but high temporal resolu-
tion datacube, using a fast bucket detector. All three datasets
are combined via regularization to obtain a 4D high resolution
spatial, temporal, and spectral hypercube.

F(x) =
1
2
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β‖RLTx− yspectral‖2
2.

(2)

The first term in Eq. 2 minimizes the difference between
the measurements obtained with the CMOS camera and the
projection of the 4D hypercube over the 2D space. The second
term minimizes the difference between the time-resolved SP
measurements and the projection of the 4D hypercube over a
low-resolution 3D space (x, y, time). Last, the third term mini-
mizes the difference between the SP multispectral measurements
and the projection of the 4D hypercube over a low spatial resolu-
tion 3D space (x, y, wavelength). Both α and β are regularization
parameters that tune the weight of each penalty function. In or-
der to find the x̂ that minimizes Eq. 1, we use a gradient descent
algorithm. Given the gradient of the objective function:

∇F(x) = TTST(STx− ycmos) + αSTRT
L (RLSx− ytemporal)+

+ βTTRT
L (RLTx− yspectral),

(3)

we iteratively obtain x̂ by repeating x̂n+1 = x̂n − τ∇F(x̂n) un-
til the solution converges [18] (see Supplement for additional
information and an outline of the code).

A proposal for the experimental implementation of the sys-
tem is shown in Fig. 2. A 40 MHz pulsed supercontinuum laser
source (Fianium, SC450) spectrally filtered through a band-pass
filter (CW=480 nm,±5 nm), illuminates the sample under study,
which consists of a plaque with three letters (U, J, and I). The U
character contains the laser dye 4–dicyanomethylene–2–methyl–
6–p–dimethylaminostyryl–4H–pyran (DCM), painted on a white
paper, while the characters J and I are made of fluorescent plas-
tic slides, respectively emitting in the green and orange region.
The illumination area is 2.5× 2.5 cm2. A CMOS camera is used
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Fig. 2. Optical implementation of the system. The object is
illuminated in reflectance geometry with a laser beam. The
camera records a high-resolution 2D image of the object. An
image of the object is also projected on the DMD. A sequence
of Hadamard patterns is codified on the DMD at a high frame
rate. For each pattern, the light emerging from the DMD is
collected simultaneously by a time-resolved bucket detector
and a spectrometer coupled with a detector array.

to acquire an image of the sample over a single spectral band
(ycmos). In parallel, a relay system images the sample onto the
surface of a digital micromirror device (DMD, Discovery Kit
4100, Vialux). The DMD sequentially codifies the structured
binary masks for SP image acquisition. In order to speed-up
acquisition and to improve light efficiency, we use both reflec-
tion arms of the DMD in parallel. In one reflection direction,
we place a time-resolved detector, which makes it possible to
follow the temporal evolution of the fluorescence emission. In
the other reflection direction, we combine a spectrometer with
a detector array that allows to measure the different spectral
components. After all the masks are generated by the DMD, the
signal from each detector can be used to recover a low spatial
resolution multispectral (yspectral) or time-resolved (ytemporal)
image by a simple multiplexing procedure that can easily be
done on-the-fly.

In our experiments, we acquired a 512× 512 px image with
the CMOS camera (Grasshopper3 GS3-U3-23S6M, Point Grey
Research). The multispectral SP camera produced a 32× 32× 16
datacube (32× 32 pixels with 16 spectral channels covering a
range between 510 and 650 nm). It consisted of an imaging spec-
trometer (Acton, sp-2151i, Princeton Instruments) coupled to a
16-channel Photo-Multiplier Tube (PML16-C, Becker & Hickl).
The time-resolved SP camera is based on a Hybrid-PMT (HPM-
100-50, Becker & Hickl) connected to a Time-Correlated Single-
Photon Counting board (TCSPC, SPC130EM, Becker & Hickl)
board, which is capable of providing photon time-of-flight his-
tograms on a temporal window of about 25 ns. The overall data
provided by the SP camera is a 32× 32× 256 datacube (32× 32
pixels with 256 time bins of 48.8 ps each).

Given the nature of SP imaging, both the multispectral and
the time-resolved images share the same point of view of the
scene. Nevertheless, the CMOS sees the scene under a differ-
ent perspective. In order for the DF algorithm to work, we
applied a pre-processing step that consisted on a spatial reg-

Fig. 3. Time-resolved multispectral results. a) Measured
datasets. Top: CMOS image. Center: spatial projection of the
multispectral SP datacube. Bottom: spatial projection of the
time-resolved SP datacube. b) Spatial projection of the DF-
recovered 4D hypercube and temporal-spectral traces for the
different shapes present on the sample (labeled U, J, and I).
Insets show the increased spatial resolution when compared to
the SP datasets.

istration between the SP images and the CMOS image. This
was performed using the Registration Estimator App (registra-
tionEstimator), available in Matlab. After the registration was
done, a geometrical transformation was applied to the CMOS
image in order to overlap its field of view with that of the SP
images. The spatial projection of the results of each individual
acquisition can be seen in Fig. 3.a. After this procedure, the
three datasets were fed to the DF algorithm, which produced a
512× 512× 16× 256 ≈ 1 giga-voxel hypercube. The complete
reconstruction procedure consisted in 17 gradient descent steps,
which took about 40 minutes. The computation was done using
Matlab in a PC with an Intel Core i7-9700 CPU, with 64 Gb of
RAM. A movie showing the individual temporal evolution of
all the spectral channels can be found in Visualization 1.

Fig. 3.b shows the DF recovery provided by fusing the three
individual datasets. An increase in the spatial resolution of
the images when compared to the SP measurements can be
easily seen. While the improvement might not seem so high,
acquiring 512 × 512 spatial resolution hypercubes only with
the two SP systems would entail acquisition times 256 times
longer (due to the sequential nature of SP imaging). We also
show the temporal-spectral traces for different regions of the
sample. In this visualization we can notice that the regions
with the J and I characters present very similar fluorescence
emission lifetimes, while the regions with the U and I characters
have very similar spectral signatures. Exploiting both spectral
and temporal information we can identify the three fluorescent
species present in the sample. From the individual datasets
alone, it would not be possible to do this classification.

In order to test the quality of our results, we compared the
recovered spectra and fluorescence lifetimes with a reference of
the species present in the sample. For the fluorescence lifetimes,
we measured the decay time of each fluorescent region with a
fast detector (1024 temporal bins of 12.2 ps each). We show both
the normalized data extracted from our DF reconstruction and
the reference lifetimes in the top graph of Fig. 4. From each
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Fig. 4. Temporal-spectral traces quality estimation. Temporal
(top) and spectral (bottom) traces for the three species present
in the sample (U, J, and I characters). Lines correspond to the
reference lifetimes and spectral signatures present in the sam-
ple, while the markers correspond to the values extracted from
our 4D reconstruction. To ease visualization, we only show
one of every two intensity values recovered by the DF algo-
rithm in the emission lifetimes.

one of the curves, it is possible to estimate the decay time by
fitting the data to an exponential function. The values extracted
from the DF reconstruction for the U, J, and I characters are
τDF

U = 2.07 ns, τDF
J = 9.06 ns, and τDF

I = 10.8 ns, showing a
very good agreement with the reference decays for the three
fluorophores. Following the same spirit, we measured the fluo-
rescence emission spectra for the three fluorophores in the scene
using a high-resolution spectrometer (Hamamatsu TM-VIS/NIR
C10083CA-2100), which also shown excellent agreement with
the DF results.

In summary, we have introduced a novel DF-inspired mul-
tidimensional SP imaging system that can be used to identify
different fluorescent species by their spectral and temporal sig-
natures (i.e. their fluorescence spectra and/or emission lifetimes)
and to study their photophysical properties. The system utilizes
both array and SP detectors, combining their strengths while
mitigating their drawbacks. In order to combine the individ-
ual datasets acquired by each camera, we have introduced a
straightforward yet powerful DF recovery algorithm based on
the minimization of a cost function that takes into account all
the measurement processes. By doing so, we have demonstrated
that it is possible to obtain high quality results in a fast manner
while actually measuring a very small fraction of the information
contained by the sample. In fact, if we consider the number of
measured (M) vs. reconstructed (N) voxels for our experiments,
we can think of the system as a compressive time-resolved mul-
tispectral camera, where the measurement ratio can be defined
as M.R. = M/N = 512×512+32×32×16+32×32×256

512×512×16×256 ≈ 0.0003. In
the future, we envision the use of more sophisticated cost func-
tions introducing additional information of the system, such as
sparsity constraints. This will further decrease the amount of
measured information. While the results shown here consist
of spatial-spectral-temporal information, the technique can be

applied to any system consisting of multiple specialized cam-
eras, and we expect that the DF paradigm will be useful for
the bio-imaging community by also adding polarization and/or
phase information.
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