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Testing similarity between first-order intensities of spatial
point processes. A comparative study
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aMarine Research Institute, Spanish National Research Council, Vigo, Spain; bDepartment of Statistics,
Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compotela,
Spain; cDepartment of Mathematics, University Jaume I, Castell�on, Spain

ABSTRACT
Testing whether two spatial point processes have the same spatial distribu-
tion is an important task that can be addressed from different perspectives.
A Kolmogorov-Smirnov test with asymptotic calibration and a Cramer von
Mises type test with bootstrap calibration have recently been developed to
compare the first-order intensity of two observed patterns. Motivated by
common practice in epidemiological studies, we introduce a regression
test based on the relative risk function with two alternative bootstrap cali-
brations. This paper compares the performance of these nonparametric
tests through both an intensive simulation study, and the application to
wildfire and crime data. The three tests provide good calibrations of the
null hypothesis for simulated Poisson and non-Poisson spatial point proc-
esses, but the Cramer von Mises and regression tests outperform the cost-
efficient Kolmogorov-Smirnov test in terms of power. In the real data ana-
lysis we have seen that the Kolmogorov-Smirnov test does not detect dif-
ferences between spatial point patterns when dealing with sparse data. In
view of these results, it would be preferable using the Cramer von Mises
or regression tests despite their higher computational demand.
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1. Introduction

A common question in the analysis of multitype spatial point processes is whether two types of
events have the same spatial structure. This question arises in a wide variety of areas, such as
ecology, environmental risk assessment, epidemiology or criminology. We can, for instance, com-
pare the spatial distribution of several species in a given region. In the analysis of environmental
risks, we can be interested in assessing if the spatial distribution of arson and natural wildfires in
a given region is the same (Fuentes-Santos, Gonz�alez-Manteiga, and Mateu 2017), or whether the
spatial pattern of earthquakes in a given region changes after the occurrence of extremely large
events (Zhang and Zhuang 2017). Comparison between the spatial distribution of disease cases
and the population at risk in order to identify areas with high disease risk has been a major issue
for epidemiologists (Kelsall and Diggle 1995; Davies and Hazelton 2010). Differences between the
observed patterns imply that they have been generated by different point processes and, conse-
quently, different models should be used to characterize their distribution. In spite of its relevance
when dealing with real data, this issue has received little attention, while the analysis of multitype
point processes has mainly focused on testing for interactions between different types of events
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through Monte Carlo tests based on second-order characteristics such as the K-cross and the mark
correlation functions (Ripley 1981; Diggle 2013). These techniques have been widely used to search
for relationships between different types of wildfires (Hering, Bell, and Genton 2009; Juan, Mateu,
and Saez 2012; Fuentes-Santos, Marey-P�erez, and Gonz�alez-Manteiga 2013), or to analyze species
distribution in plant ecology (Perry, Miller, and Enright 2006; Getzin et al. 2008; Fibich et al. 2016).

A spatial point process is a stochastic process governing the location of a random number of
events, X ¼ fx1, :::, xNg, irregularly placed in a planar region W � R

2: If each event has associated
any measure or mark, we have a marked point process. A multitype point process is a marked
point process with categorical marks that define different groups or types of events (Diggle 2013).
Throughout this paper, point processes and patterns are denoted in bold capitals, and events are
denoted in bold. The spatial distribution of events in Poisson point processes, i.e., those with inde-
pendent events, is determined by the first-order intensity function (Illian et al. 2008; Diggle 2013),
which measures the expected number of events per unit area, and is defined as follows

kðxÞ ¼ lim
jdxj!0

E NðdxÞ½ �
jdxj

� �
(1)

where jdxj and N(dx) denote the area and number of events of X in the infinitesimal disk dx cen-
tered at location x 2 W: Events in a spatial point process may not occur independently, and
interactions between them are characterized through second-order properties such as the K-
function K(r) (Ripley 1977) and the second-order intensity function, defined as k2ðx, yÞ ¼
limjdxj, jdyj!0 E NðdxÞNðdyÞ� �

=jdxjjdyj� �
: The conditional intensity function

kcðxÞ ¼ kc xjyð Þ ¼ k2ðx, yÞ=kðyÞ (2)

determines the intensity at a point x conditional on the information that there is an event in y
(Diggle 2013), and characterizes uniquely the distribution of events in any spatial point process.
In the particular case of a spatial Poisson point process kcðxjyÞ ¼ kðxÞ:

Two spatial point patterns with the same spatial structure can be seen as the type i and type j
patterns of a random labeled bivariate point process, or as independent realizations of a point
process; in both cases their K-functions are equal, KiðrÞ ¼ KjðrÞ (Ripley 1977; Diggle 2013). This
property motivated the use of Monte Carlo tests based on the K-function to check the similarity
between two observed patterns (Hahn 2012). However, differences between the K-functions of
two inhomogeneous spatial point patterns can reflect differences in the first-order intensities or
in the dependence structure, and consequently these tests can lead to wrong conclusions.

This knowledge gap has been recently addressed from different perspectives. Alba-Fern�andez
et al. (2016) and Andresen (2009) introduced area-based tests, which count the number of events
within predefined spatial units (e.g., quadrants, space-filling curves) to measure local and global
discrepancies between two observed point patterns. Zhang and Zhuang (2017) proposed a
Kolmogorov-Smirnov test using the absolute difference between the point densities of the
observed patterns over a p-system as a discrepancy measure. Fuentes-Santos, Gonz�alez-Manteiga,
and Mateu (2017) proposed a Cramer von Mises type statistic that measures the discrepancy
between the densities of event locations of the observed patterns, taking into account that the
intensities of two spatial Poisson point processes with the same spatial structure are proportional.

A main issue in epidemiological studies is testing for spatial variation in the risk of a given
disease, which involves the comparison between the spatial distribution of disease cases and the
population at risk, referred as controls. In this line, Kelsall and Diggle (1995) proposed a kernel
estimator of the relative risk function for independent and Poisson case and control patterns,
defined as the ratio between the first-order intensities of disease cases and the control population
(Bithell 1990). They also proposed a Monte Carlo algorithm to generate tolerance contour surfa-
ces under the null hypothesis of equal spatial distribution of disease cases and controls, and a glo-
bal Monte Carlo homogeneity test. Davies and Hazelton (2010) introduced an adaptive kernel
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estimator of the relative risk function, which is asymptotically normal allowing the generation of
tolerance contours without the need of Monte Carlo simulations. Fuentes-Santos, Gonz�alez-
Manteiga, and Mateu (2018) developed a regression test based on the log-ratio between the
intensity of a spatio-temporal point process and the intensity of its spatial component to test for
separability. In the same line, we propose a regression test based on the relative risk function to
test if two spatial point processes have the same spatial distribution.

Motivated by the fact that there are not currently comparative analysis among these proce-
dures, this work aims to compare the performance of the three tests outlined above in the ana-
lysis of Poisson and non-Poisson point processes. The plan of this work is the following. Sec. 2
introduces the Kolmogorov-Smirnov and Cramer von Mises tests, proposed in the literature, and
we additionally consider a relative risk based procedure to compare the spatial distribution of
inhomogeneous spatial point processes. The performance of these tests is tested through a simula-
tion study in Sec. 3, and through the analysis of two important real data problems, such as wild-
fire patterns in Galicia (NW Spain) and gunfire violence in Rio de Janeiro (Brazil) in Sec. 4. The
paper ends with a brief discussion in Sec. 5 and conclusions in Sec. 6.

2. Nonparametric tests for first-order comparison

Let X ¼ fxigNi¼1 be a realization of a bivariate inhomogeneous spatial point process observed in a

bounded region W � R
2, and let X1 ¼ fxigN1

i¼1 ¼ fx1, igN1
i¼1, X2 ¼ fxN1þjgN2

j¼1 ¼ fx2, jgN2
j¼1, where

N ¼ N1 þ N2, be the spatial patterns of type 1 and type 2 events in X. We denote by k1ðxÞ and
k2ðxÞ the first-order intensity functions of X1 and X2, and by k01ðxÞ ¼ k1ðxÞ=m1, k02ðxÞ ¼
k2ðxÞ=m2 their densities of event locations (Cucala 2006), where mj ¼

Ð
WkjðxÞ, j ¼ 1, 2 is the

mean intensity or expected number of events of each point process.
If X1 and X2 have the same spatial distribution, their conditional intensity functions are pro-

portional. Therefore, we can compare the distribution of two observed patterns testing the null
hypothesis

H0 : kc, 1ðxÞ ¼ xkc, 2ðxÞ; 8x 2 W (3)

for some x > 0: In case of Poisson point processes, whose conditional and first-order intensities
are equal, the null hypothesis reduces to

H0 : k1ðxÞ ¼ xk2ðxÞ; 8x 2 W (4)

This hypothesis can be tested using nonparametric approaches, such as the Kolmogorov-
Smirnov test by Zhang and Zhuang (2017), the Cramer von Mises test by Fuentes-Santos,
Gonz�alez-Manteiga, and Mateu (2017), or the regression test based on the relative risk function
proposed in this work. The Kolmogorov-Smirnov test compares the spatial structure of two inde-
pendent, but not necessarily, Poisson point processes, X1 and X2: The test statistic maximizes the
absolute difference between the empirical point densities over a p-system, avoiding the need of
estimating the first-order intensity of each observed pattern. The Cramer von Mises and regres-
sion tests are based on kernel estimators of the density of event locations and of the relative risk
function of inhomogeneous Poisson point processes. The Poisson assumption is required to guar-
antee the consistency of the kernel estimators, and to obtain the asymptotic null distribution of
the test statistics.

As argued by Zhang and Zhuang (2017), we can ignore the dependence between point pat-
terns, but not the dependence structure of each spatial point process as both regular and clustered
patterns are common in real data analysis. Thus, the Poisson assumption in the kernel-based tests
may seem quite restrictive. It should be noted that these tests can also be applied to compare the
spatial distribution of non-Poisson point processes, in which case these procedures measure the
discrepancy between the conditional intensities, i.e., our null hypothesis is (3). Indeed, as we
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cannot distinguish between heterogeneity and interaction between events in an observed pattern
without additional information (Diggle 2013), common practice is to assume that the spatial
point process is Poisson, estimate its intensity function, and then estimate the second-order char-
acteristics to test for independence between events. In this case, acceptation of the null hypothesis
implies that the observed patterns have the same spatial distribution but not that they have been
generated by the same point process.

2.1. Kolmogorov-Smirnov test

Zhang and Zhuang (2017) developed a nonparametric procedure to test whether two independent
but not necessarily Poisson point processes, X1 and X2, have the same spatial distribution. The
test is based on the fact that the null hypothesis, H0, implies that there exists an x > 0 such that
E N1ðAÞ½ � ¼ xE N2ðAÞ½ � for any Borel set A 2 BðWÞ: Considering this property, the authors define
the discrepancy measure

DxðAÞ ¼ N1ðAÞ � xN2ðAÞ (5)

Then, under H0, E Dx0ðA�Þ ¼ 0
�

for any Borel set A 2 BðWÞ and, consequently jDx0ðAÞj is close
to 0. Zhang and Zhuang (2017) proved that a sufficient condition for H0 to hold is that
E DxðAÞ½ � ¼ 0 for some x > 0 and any A 2 PðWÞ, where P is a p�system that generates BðWÞ:
Replacing x by its empirical estimator, x̂ ¼ N1ðWÞ=N2ðWÞ, in expression (5) we obtain the fol-
lowing test statistic

D̂ ¼ 1
n
sup
A2P

Dx̂ðAÞ

¼ 1
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1ðWÞN2ðWÞ

N1ðWÞ þ N2ðWÞ

s
sup
A2P

				 N1ðAÞ
N1ðWÞ �

N2ðAÞ
N2ðWÞ

				
(6)

where f is a normalizing constant needed to guarantee the convergence of the null distribution of
D̂ to a Brownian bridge, and is estimated by

f̂
2 ¼ 1

K � 1

XK
i¼1

N1 Wið Þ � N̂ 1 Wið Þ

 �2

N̂ 1 Wið Þ þ N2 Wið Þ � N̂ 2 Wið Þ

 �2

N̂ 2 W2ð Þ

" #
(7)

where N̂ 1ðWiÞ ¼ x̂ðN1ðWiÞ � N2ðWiÞÞ=ð1þ x̂Þ, and N̂ 2ðWiÞ ¼ N̂ 1ðWiÞ=ð1þ x̂Þ for a partition
fWigKi¼1 of the observation domain, W. The distribution of the Brownian bridge, WF,Wð�Þ,
depends on K and on F, the function used to define the p�system.

Zhang and Zhuang (2017) introduced two p�systems that may be useful in practice. For W ¼
0,w1½ � � 0,w2½ � � R

2, we can choose t ¼ FðxÞ ¼ ðx1=w1, x2=w2Þ for any x 2 W, which gives the
p� system At ¼ 0, x1=w1½ � � 0, x2=w2½ �: In this case WF,WðtÞ is a bidimensional standard pinned
Brownian sheet, and the corresponding critical value at significance level a ¼ 0:05 is D0, 05 ¼ 1:6522:
In the second case W is an arbitrary region, and we choose t ¼ FðxÞ such that At ¼ 0, 1½ � and
F�1ðAtÞ ¼ fx0 2 W; Fðx0Þ � FðxÞg: Here D̂ converges to the standard Brownian motion whose dis-
tribution can be estimated through a Taylor expansion. It should be noted that we reject H0 if D is
larger than the critical value, but this procedure does not allow us to accept H0 otherwise.

2.2. Cramer von Mises test

Let X be a realization of a bivariate inhomogeneous spatial Poisson point process observed in a
bounded region W � R

2, and X1, X2 are the spatial point patterns of type 1 and type 2 events
in X. Conditional to the number of events, Nj ¼ nj, the observed patterns can be seen as random
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samples of the bivariate random distributions with densities k0jðxÞ, j ¼ 1, 2: Considering this
property, Fuentes-Santos, Gonz�alez-Manteiga, and Mateu (2017) extended the nonparametric test
developed by Duong, Goud, and Schauer (2012) for multivariate data to the spatial point process
framework, and proposed a test statistic based on an L2-distance measure

T̂ ¼
ð
W

k̂01ðxÞ � k̂02ðxÞ
� 
2

dx ¼ ŵ1 þ ŵ2 � ŵ12 þ ŵ21

� 

(8)

where ŵij and ŵi are estimators of wij ¼
Ð
Wk0iðxÞk0jðxÞdx for i, j ¼ 1, 2 and wi ¼

Ð
Wk0iðxÞ2dx,

obtained by kernel smoothing with plug-in bandwidth (Chac�on and Duong 2010). The null distri-
bution of T̂ is asymptotically normal under regularity conditions analogous to those assumed in
the classical multivariate distribution framework. However, in view of the slow convergence rate
to the normal distribution, Fuentes-Santos, Gonz�alez-Manteiga, and Mateu (2017) developed a
smooth bootstrap algorithm to calibrate the test.

Finally, notice that this test can also be used to compare the spatial distribution of non-
Poisson point processes, in which case we test the null hypothesis (3), i.e., we compare the condi-
tional instead of the first-order intensity functions.

2.3. Nonparametric test based on the relative risk function

Let X be a realization of a bivariate inhomogeneous spatial Poisson point process in a bounded
region W � R

2, and X1, X2, the spatial patterns of type 1 and type 2 events in X. The null
hypothesis (4) can be rewriten as H0 : k1ðxÞ=k2ðxÞ ¼ x; 8x 2 W for some x > 0, i.e., the rela-
tive risk function (Bithell 1990), rðxÞ ¼ k1ðxÞ=k2ðxÞ, is spatially invariant. Considering this prop-
erty, we shall follow the same strategy as in Fuentes-Santos, Gonz�alez-Manteiga, and Mateu
(2018) and use a no-effect test that checks the dependence of the log-relative risk function
qðxÞ ¼ log rðxÞ on event locations to compare the spatial distribution of X1 and X2:

To implement this test, we first need to estimate the log-relative risk function. In this case, we
estimate qð�Þ as the log-ratio of the kernel densities of event locations, as proposed by Kelsall and
Diggle (1995)

q̂ðxÞ ¼ log
k̂01, h1ðxÞ
k̂02, h2ðxÞ

 !
(9)

where the kernel estimators of the marginal densities of event locations, k̂0j, hjðxÞ; j ¼ 1, 2, are
given by

k̂0j, hjðxÞ ¼ phjðxÞN

 ��1h�2

XN
i¼1

k h�2 x� xið Þ
� 


I N 6¼ 0ð Þ (10)

where phjðxÞ is the edge-correction term, and hj, j ¼ 1, 2 the bandwidth parameter for the case
and control kernel estimators. We can use different bandwidths in the numerator and denomin-
ator of q̂ð�Þ, but Kelsall and Diggle (1995) showed that the asymptotically optimal estimator with
respect to the mean square error is achieved using the same bandwidth for cases and controls.
This choice leads to a bias cancelation in regions where k01 ¼ k02 and simplifies data-driven
bandwidth selection. Kelsall and Diggle (1995) also proposed a least-squares cross-validation
bandwidth selector that shall be used in this work.

Once estimated the log-relative risk function, we have a regression problem where the log-relative
risk function, Y ¼ fyi ¼ q̂ðxiÞ, i ¼ 1, :::, ng, is a response variable that may depend on the spatial
covariate X ¼ fxi ¼ ðxi1, xi2Þ, i ¼ 1, :::, ng comprising the event locations, and we test for the effect
of X on Y discriminating between two competing models (Bowman and Azzalini 1997)
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H0 : E yijxi
� � ¼ l

H1 : E yijxi
� � ¼ mðxiÞ

The null model l can be estimated by the empirical mean ŷ ¼Pn
i¼1 yi: The alternative model,

m(x) is an unknown smooth function, which can be estimated by kernel regression (Nadaraya
1964; Watson 1964)

m̂ðxÞ ¼ m̂ðx1, x2Þ ¼
Pn

i¼1wg1ðxi1 � x1Þwg2ðxi2 � x2ÞyiPn
i¼1wg1ðxi1 � x1Þwg2ðxi2 � x2Þ (11)

where the kernel, wð�Þ, is a univariate symmetric density function, and g ¼ ðg1, g2Þ is the vector
of smoothing parameters. Three alternative procedures have been commonly used to select this
parameter: (i) bandwidth selector associated to the approximate degrees of freedom, df, of the
regression errors, (ii) least-squares cross-validation, and (iii) an AICC-based method.

Discrepancy between the null and alternative models is measured through the following gener-
alized test statistic

F ¼ RSS0 � RSS1ð Þ= df1 � df0ð Þ
RSS1=df1

(12)

where RSS0 and RSS1 are the residual sum of squares for nonparametric estimators of the null
and alternative models, and df0, df1 denote their respective degrees of freedom.

In the linear model framework, the residual sums of squares and the test statistic follow,
respectively, a v2 and an F distribution. However, these properties are not fulfilled in the context
of nonparametric regression. Bowman and Azzalini (1997) proposed two procedures to estimate
the distribution of F under the null hypothesis: (i) if the errors in the regression model have nor-
mal distribution, the null distribution of F is approximated by a shifted and scaled v2; (ii) a com-
putationally intensive procedure based on permutation tests is applied otherwise.

The permutation test relies on the fact that under H0 the pairing of any particular x and y is
completely random. This calibration procedure has shown a good performance for the separablity
test developed by Fuentes-Santos, Gonz�alez-Manteiga, and Mateu (2018). Here we propose a
modified version of this permutation test taking into account that our null hypothesis implies
that the data can be seen as a single realization of the unmarked point process X, followed by
independent random allocation of events to X1 and X2 with probability proportional to their
respective mean intensity. Therefore, following the Monte Carlo procedure introduced by Kelsall
and Diggle (1995), we propose a calibration that estimates the null distribution of F̂ using a ran-
dom labeling algorithm that computes the test statistic for B realizations of the null hypothesis
generated by random reallocation of case/control marks. The empirical p-value of the test is the
proportion of simulated F-statistics larger than that obtained from the observed data.

The test can also be calibrated through a smooth bootstrap algorithm analogous to that used
for the Cramer von Misss test. The bootstrap calibration is implemented as follows:

(1) Estimate the log-relative risk function and compute the test statistic F̂1 for the observed
patterns, X1 and X2:

(2) Compute the kernel intensity estimator, k̂HðxÞ, of the unmarked point process comprising
the location of type 1 and type 2 events, X0 ¼ X1 [ X2:

(3) For b ¼ 2, :::,B:
(1) Generate a bivariate spatial point process Xb ¼ fX1, b,X2, bg where for j¼ 1, 2, Xj, b

are realizations of spatial Poisson point processes with first-order intensity propor-
tional to that of the unmarked pattern and the same number of events as Xj:

(2) Obtain the bootstrap log-relative risk functions q̂�
b and compute the corresponding

test statistic F̂b:
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(4) The probability of rejecting the null hypothesis is the proportion of bootstrap statistics
fF̂bgBb¼2 larger than F̂1:

3. Simulation study

We have conducted a simulation study to analyze the performance of the relative risk based test
introduced in Sec. 2.3. We first compare the calibration of the null distribution provided by the
random labeling and smooth bootstrap algorithms, and analyze the power of the test. In a second
stage we compare the regression test with the Kolmogorov-Smirnov and Cramer von Mises tests.
These analysis have been conducted through application of the three nonparametric tests to
Poisson, clustered and regular inhomogeneous bivariate spatial point processes. The spatial point
processes simulated in this work are based on the simulation studies conducted by Zhang and
Zhuang (2017) and Fuentes-Santos, Gonz�alez-Manteiga, and Mateu (2017) to check the perform-
ance of their respective tests.

Following Zhang and Zhuang (2017) we simulate Poisson, clustered and regular inhomogen-

eous spatial point processes on the square region W ¼ �10, 10½ �2: We generate inhomogeneous
Poisson point processes with first-order intensity kajðxÞ ¼ kajðx1, x2Þ ¼ jjfajðx1Þfajðx2Þ, where

fajðtÞ ¼
C 2að Þ

C2ðaÞ 2vð Þ2a�1 v2 � t2ð Þ a�1ð Þ
; jtj < v (13)

is the density of the bðaj, ajÞ distribution on �v, v½ �, in this case v¼ 10. jj determines the
expected number of events of the simulated patterns, in this case jj ¼ 500wj, j ¼ 1, 2, with w ¼
ð1=2, 1=2Þ, w ¼ ð2=3, 1=3Þ and w ¼ ð9=10, 1=10Þ for balanced and unbalanced designs. Balanced
and unbalanced designs were considered to check whether the asymmetry in the size of the point
patterns affects the performance of the tests. We have used a1 ¼ 2, and a2 ¼ 2, 3, 4 to generate
the null hypothesis and two alternatives with different degrees of deviation from H0:

Clustered patterns were simulated using a Thomas cluster point process model. We generate
an inhomogeneous spatial point pattern of parent points with intensity function kajðxÞ=c, and
PoissonðcÞ offsprings randomly placed around each parent event according to a symmetric
Gaussian distribution with standard deviation r, in this case c¼ 5 and r ¼ 0:5:

Regular patterns were generated through a simple inhibition point process model. We first
generate inhomogeneous Poisson point processes with first-order intensities proportional to
kajðxÞ, j ¼ 1, 2 and we then apply an inhibition radius of r¼ 0.2. Figure 1 shows the first-order
intensity of the inhomogeneous Poisson point processes and the conditional intensities of the
Thomas cluster and simple inhibition point processes for the null and alternative hypothesis.

Following Fuentes-Santos, Gonz�alez-Manteiga, and Mateu (2017) we generated inhomogeneous
spatial Poisson point processes with first-order intensity kjðxÞ ¼ aj exp ð�3x2Þ, j ¼ 1, 2, for any x ¼
ðx1, x2Þ 2 R

2 on the unit square. Different values of aj, j ¼ 1, 2 were considered to obtain different
proportions of type 1 and type 2 events. The alternative hypothesis was generated adding a random
number of events uniformly distributed on a subregion of the type 2 point pattern, as follows

k1ðxÞ ¼ a1 exp ð�3x2Þ

k2ðxÞ ¼ a2 exp ð�3x2Þ þ 100
a2

�
1
4

� ��2

I x1, x2ð Þ2 0:5, 0:75½ �2

 !
8>><
>>: (14)

As above a1 and a2 were fixed to generate realizations of a bivariate point process with m1 ¼
m2 ¼ 250 in the balanced design, m1 ¼ 1000=3,m2 ¼ 500=3 and m1 ¼ 450,m2 ¼ 50 in the unbal-
anced designs. ð1=4Þ2 in expression (14) is the area of the subregion of the unit square where
100� events are added to generate realizations of the alternative hypothesis in the balanced design,
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and � ¼ 0:4, � ¼ 0:8 determines the number of events added to the type 2 point process, that is
the degree of departure from the null hypothesis. Clustered patterns were generated as Thomas
cluster point processes with c¼ 5, r ¼ 0:02 and intensity of the parent points equal to
kjðxÞ=c, j ¼ 1, 2: Regular patterns were generated through simple inhibition point processes with
an inhibition radius of r¼ 0.02. Figure 2 shows the first-order intensity of the inhomogeneous
Poisson point processes and the conditional intensities of the Thomas cluster and simple inhib-
ition point processes for the null and alternative hypotheses.

For the different scenarios defined throughout this section, we computed the test statistics and the
corresponding empirical p-values for 1000 realizations of each bivariate spatial point process. The
probability of rejecting the null hypothesis at a given significance level, a, was obtained as the propor-
tion of p-values smaller than a. This simulation study was conducted with the help of the spatstat
(Baddeley and Turner 2005), ks (Duong 2013), sparr (Davies, Marshall, and Hazelton 2018) and sm
(Bowman and Azzalini 2014) packages of the R statistical software (R Core Team 2019).

3.1. Comparison of calibration methods in the regression test

We have applied the regression test (Sec. 2.3) with B¼ 200 realizations of the random labeling
and smooth bootstrap calibration procedures to compare the spatial distribution of the different

Figure 1. MODEL I: First-order intensities (Poisson) and conditional intensities (clustered and regular) of the type 1 and type 2
events in the bivariate point process based on the intensity function (13). Null hypothesis in the first row.
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bivariate point processes outlined above. The test has been implemented using the least squares
cross-validation bandwidth selector in the kernel log-relative risk function (Kelsall and Diggle
1995), and the three bandwidth selectors outlined in Sec. 2.3 in the kernel regression function,
m̂ðxÞ: Note that in case of asymmetric designs we consider as cases in the relative risk function
the point process with lower number of events, X2:

Table 1 shows the estimated significance levels for Model I under the null hypothesis. Both
calibration procedures provide reasonable estimators of the nominal significance levels, although
they report different performances for symmetric and asymmetric designs. Random labeling over-
estimates the size of the test, whereas the bootstrap calibration underestimates it for Poisson point
processes. For the Thomas cluster point processes, which have highly inhomogeneous conditional
intensities (see Figure 1), random labeling is conservative for the symmetric design but provides
good calibrations with the two asymmetric designs, whereas the smooth bootstrap is anticonserva-
tive for highly asymmetric designs. Finally, we only observe a slight bias toward overestimating
the nominal significance level with random labeling in the simple inhibition point processes. In
Table 2 we observe that the smooth bootstrap algorithm performs better than random labeling
for Model II. As in the analysis of Model I, we observe some biases toward under or overestimat-
ing the nominal significance levels, and we obtain better calibrations for unbalanced designs than
for the balanced ones.

Figure 2. MODEL I1: First-order intensities (Poisson) and conditional intensities (clustered and regular) of the type 1 and type 2
events in the bivariate point process based on the intensity function (14). Null hypothesis in the first row.
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In Tables 3 and 4 we analyze the performance of the regression test under the alternative
hypothesis considering two different degrees of departure from H0: As expected, the power of the
test increases as differences between the conditional intensities of X1 and X2 get larger. In fact,
prior to focus on the probabilities of rejection, we can see that the bandwidths of the kernel log-
relative risk function are smaller under the alternative hypothesis. The test is able to detect differ-
ences between the marginal patterns even in case of conservative calibrations. The performance
of the test depends on the type of point process under study, with high powers for clustered
point patterns, whereas the probabilities of rejection are low for the simple inhibition point proc-
esses, i,e, those with the smoothest conditional intensity functions. Finally, we obtain lower prob-
abilities of rejection when the bandwidth of the kernel regression function is obtained by the
approximate degrees of freedom selector.

The results of this simulation study do not allow us to choose one calibration procedure over
the other, but random labeling performs slightly better than smooth bootstrap when dealing with
highly unbalanced designs.

3.2. Comparison of nonparametric tests

We now apply the three nonparametric tests introduced in Sec. 2 to compare the spatial distribu-
tion of Poisson, clustered and regular point processes. The regression test has been implemented
as explained in Sec. 3.1. In the Kolmogorov-Smirnov test we have used the two p� systems intro-
duced in Sec. 2.1 with K¼ 6 and K¼ 7. To implement the Cramer von Mises test (Sec. 2.2) we

have used plug-in bandwidth selectors in the kernel estimators of the functionals involved in T̂

Table 1. Probability of rejecting the null hypothesis, p, and 95% confidence interval, ½p0:025, p0:975�, under H0 for Model I
(Figure 1) at significance level a ¼ 0:05:

Random labeling Smooth bootstrap

bw df cv aicc df cv aicc

IPP m2 ¼ m2 11.006 p 0.06 0.062 0.06 0.062 0.06 0.060
p0:025 0.045 0.047 0.045 0.047 0.045 0.045
p0:975 0.075 0.077 0.075 0.077 0.075 0.075

m1 ¼ 2m2 11.46 p 0.072 0.072 0.072 0.06 0.064 0.060
p0:025 0.056 0.056 0.056 0.045 0.049 0.045
p0:975 0.088 0.088 0.088 0.075 0.079 0.075

m1 ¼ 9m2 11.007 p 0.07 0.076 0.074 0.024 0.022 0.024
p0:025 0.054 0.06 0.058 0.015 0.013 0.015
p0:975 0.086 0.092 0.09 0.033 0.031 0.033

TC m1 ¼ m2 11.594 p 0.03 0.032 0.032 0.05 0.052 0.050
p0:025 0.019 0.021 0.021 0.036 0.038 0.036
p0:975 0.041 0.043 0.043 0.064 0.066 0.064

m1 ¼ 2m2 11.278 p 0.04 0.04 0.04 0.04 0.04 0.040
p0:025 0.028 0.028 0.028 0.028 0.028 0.028
p0:975 0.052 0.052 0.052 0.052 0.052 0.052

m1 ¼ 9m2 11.512 p 0.066 0.066 0.066 0.116 0.112 0.114
p0:025 0.051 0.051 0.051 0.096 0.092 0.094
p0:975 0.081 0.081 0.081 0.136 0.132 0.134

SI m1 ¼ m2 11.417 p 0.09 0.105 0.1 0.055 0.055 0.055
p0:025 0.072 0.086 0.081 0.041 0.041 0.041
p0:975 0.108 0.124 0.119 0.069 0.069 0.069

m1 ¼ 2m2 11.144 p 0.054 0.054 0.046 0.044 0.044 0.058
p0:025 0.040 0.040 0.033 0.031 0.031 0.044
p0:975 0.068 0.068 0.059 0.057 0.057 0.072

m1 ¼ 9m2 11.623 p 0.056 0.062 0.06 0.064 0.064 0.066
p0:025 0.042 0.047 0.045 0.049 0.049 0.051
p0:975 0.07 0.077 0.075 0.079 0.079 0.081

Performance of the no effect test with random labeling and smooth bootstrap calibration in application to Poisson (IPP),
Thomas cluster (TC) and simple inhibition (SI) point processes with balanced and unbalanced designs. Calibration procedure
and bandwidth selector for the kernel regression function (11) in columns.
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Table 2. Performance of the F-test under the null hypothesis ro the different scenarios of Model II (Figure 2). see details in
the caption of Table 1.

Random labeling Smooth bootstrap

bw df cv aicc df cv aicc

IPP m1 ¼ m2 0.559 p 0.078 0.078 0.078 0.038 0.04 0.038
p0:025 0.061 0.061 0.061 0.026 0.028 0.026
p0:975 0.095 0.095 0.095 0.05 0.052 0.05

m1 ¼ 2m2 0.57 p 0.034 0.034 0.036 0.03 0.03 0.03
p0:025 0.023 0.023 0.024 0.019 0.019 0.019
p0:975 0.045 0.045 0.048 0.041 0.041 0.041

m1 ¼ 9m2 0.576 p 0.012 0.014 0.012 0.044 0.034 0.036
p0:025 0.005 0.007 0.005 0.031 0.023 0.024
p0:975 0.019 0.021 0.019 0.057 0.045 0.048

TC m1 ¼ m2 0.556 p 0.016 0.016 0.016 0.102 0.102 0.102
p0:025 0.008 0.008 0.008 0.083 0.083 0.083
p0:975 0.024 0.024 0.024 0.121 0.121 0.121

m1 ¼ 2m2 0.551 p 0.038 0.036 0.036 0.086 0.078 0.078
p0:025 0.026 0.024 0.024 0.069 0.061 0.061
p0:975 0.05 0.048 0.048 0.103 0.095 0.095

m1 ¼ 10m2 0.551 p 0.064 0.064 0.064 0.062 0.062 0.062
p0:025 0.049 0.049 0.049 0.047 0.047 0.047
p0:975 0.079 0.079 0.079 0.077 0.077 0.077

SI B2 ¼ m2 0.553 p 0.022 0.018 0.018 0.026 0.036 0.034
p0:025 0.013 0.01 0.01 0.016 0.024 0.023
p0:975 0.031 0.026 0.026 0.036 0.048 0.045

m1 ¼ 2m2 0.542 p 0.044 0.04 0.042 0.076 0.082 0.082
p0:025 0.031 0.028 0.03 0.06 0.065 0.065
p0:975 0.057 0.052 0.054 0.092 0.099 0.099

m1 ¼ 9m2 0.551 p 0.048 0.048 0.048 0.036 0.036 0.036
p0:025 0.035 0.035 0.035 0.024 0.024 0.024
p0:975 0.061 0.061 0.061 0.048 0.048 0.048

Table 3. Performance of the regression test under the null and alternative hypotheses for inhomogeneous Poisson (IPP),
Thomas cluster (TC) and simple inhibition (Si) point processes with first-order an conditional intensities provided in Figure 1.
See details in the caption of Table 1.

Random labeling Smooth bootstrap

bw df cv aicc df cv aicc

IPP a2 ¼ 2 m1 ¼ m2 11.006 0.060 0.062 0.060 0.062 0.060 0.060
m1 ¼ 2m2 11.144 0.072 0.072 0.072 0.060 0.064 0.060
m1 ¼ 9m2 11.623 0.070 0.076 0.074 0.024 0.022 0.024

a2 ¼ 3 m1 ¼ m2 8.229 0.334 0.372 0.368 0.298 0.248 0.272
m1 ¼ 2m2 4.683 0.294 0.304 0.294 0.398 0.394 0.400
m1 ¼ 9m2 7.442 0.218 0.212 0.212 0.214 0.218 0.204

a2 ¼ 4 m1 ¼ m2 5.139 0.748 0.678 0.728 0.776 0.810 0.818
m1 ¼ 2m2 8.338 0.808 0.720 0.720 0.774 0.762 0.764
m1 ¼ 9m2 7.418 0.314 0.340 0.340 0.348 0.336 0.348

TC a2 ¼ 2 m1 ¼ m2 11.594 0.030 0.032 0.032 0.050 0.052 0.050
m1 ¼ 2m2 11.278 0.040 0.040 0.040 0.040 0.040 0.040
m1 ¼ 9m2 11.512 0.066 0.066 0.066 0.116 0.112 0.114

a2 ¼ 3 m1 ¼ m2 0.993 0.908 1.000 1.000 0.838 1.000 1.000
m1 ¼ 2m2 0.986 1.000 1.000 1.000 1.000 1.000 1.000
m1 ¼ 9m2 0.931 0.482 1.000 1.000 0.264 1.000 1.000

a2 ¼ 4 m1 ¼ m2 1.032 0.828 1.000 1.000 0.738 1.000 1.000
m1 ¼ 2m2 0.958 0.870 1.000 1.000 0.860 1.000 1.000
m1 ¼ 9m2 1.169 1.000 1.000 1.000 0.994 1.000 1.000

SI a2 ¼ 2 m1 ¼ m2 11.417 0.090 0.105 0.100 0.055 0.055 0.055
m1 ¼ 2m2 11.144 0.054 0.054 0.054 0.046 0.044 0.044
m1 ¼ 9m2 11.623 0.056 0.062 0.060 0.064 0.064 0.066

a2 ¼ 3 m1 ¼ m2 6.955 0.130 0.080 0.085 0.240 0.275 0.260
m1 ¼ 2m2 4.683 0.140 0.396 0.378 0.212 0.540 0.508
m1 ¼ 9m2 7.442 0.086 0.112 0.104 0.118 0.228 0.214

a2 ¼ 4 m1 ¼ m2 9.024 0.135 0.155 0.155 0.120 0.140 0.140
m1 ¼ 2m2 8.338 0.060 0.058 0.050 0.138 0.160 0.148
m1 ¼ 9m2 7.418 0.272 0.272 0.270 0.232 0.262 0.268
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(Chac�on and Duong 2010), and in the kernel intensity estimator used in the bootstrap calibration
(Fuentes-Santos, Gonz�alez-Manteiga, and Mateu 2016). The bootstrap calibration was conducted
with B¼ 200 realizations of the null hypothesis, as done in the regression test.

Table 5 shows the probability of rejecting H0 with the three tests for the different scenarios
shown in Figure 1. The Kolmvogorov-Smirnov test provides accurate estimators of the nominal
significance level for the Poisson (IPP) and regular (SI) balanced and unbalanced simulated pat-
terns with the two p� systems and partition sizes, whereas for the clustered point processes the
performance depends on K, with a good calibration for K¼ 6, but large probabilities of rejection
for K¼ 7. The Cramer von Mises test provides good estimators of the nominal significance level
for Poisson and regular point processes, except for highly asymmetric patterns in the first case,
and it is slightly anticonservative for clustered point processes. Therefore, under a proper selec-
tion of K, the Kolmogorov-Smirnov test is more robust than the two kernel-based tests in terms
of calibration. The probability of rejecting H0 increases as we deviate from the null hypothesis
for the three tests, and we observe a faster power increase for kernel-based tests than for the
Kolmogorov-Smirnov tests. In fact, this procedure is not able to detect differences between point
patterns for some clustered and regular patterns.

Table 6 shows the probability of rejecting H0 with the three tests for the different scenarios
shown in Figure 2. The Kolmvogorov-Smirnov test provides accurate estimators of the nominal
significance level for the Poisson (IPP) and regular (SI) balanced and unbalanced pattern with the
two p� systems and partition sizes, but leads to large type I errors for the clustered patterns. The
Cramer von Mises test reports slight deviations from the nominal significance level for the
Poisson patterns, it is more anticonservative than the regression test for clustered point patterns,
but less sensitive to the sample designs than the regression test. In case of good calibrations, the

Table 4. Performance of the regression test under the null and alternative hypotheses for inhomogeneous Poisson (IPP),
Thomas cluster (TC) and simple inhibition (Si) point processes with first-order an conditional intensities provided in Figure 2.
See details in the caption of Table 1.

Random labeling Smooth bootstrap

bw df cv aicc df cv aicc

ipp �¼ 0 m1 ¼ m2 0.559 0.078 0.078 0.078 0.038 0.040 0.038
m1 ¼ 2m2 0.570 0.034 0.034 0.036 0.030 0.030 0.030
m1 ¼ 9m2 0.576 0.012 0.014 0.012 0.044 0.034 0.036

� ¼ 0:4 m1 ¼ m2 0.326 0.176 0.216 0.228 0.136 0.130 0.134
m1 ¼ 2m2 0.342 0.152 0.196 0.180 0.138 0.150 0.178
m1 ¼ 9m2 0.454 0.040 0.046 0.038 0.044 0.040 0.046

� ¼ 0:8 m1 ¼ m2 0.148 0.478 0.714 0.866 0.462 0.846 0.894
m1 ¼ 2m2 0.146 0.218 0.726 0.834 0.160 0.632 0.766
m1 ¼ 9m2 0.279 0.174 0.362 0.320 0.282 0.460 0.458

TC �¼ 0 m1 ¼ m2 0.559 0.078 0.078 0.078 0.038 0.040 0.038
m1 ¼ 2m2 0.570 0.034 0.034 0.036 0.030 0.030 0.030
m1 ¼ 9m2 0.551 0.064 0.064 0.064 0.062 0.062 0.062

� ¼ 0:4 m1 ¼ m2 0.326 0.176 0.216 0.228 0.136 0.130 0.134
m1 ¼ 2m2 0.342 0.152 0.196 0.180 0.138 0.150 0.178
m1 ¼ 9m2 0.053 1.000 1.000 1.000 0.998 1.000 1.000

� ¼ 0:8 m1 ¼ m2 0.148 0.478 0.714 0.866 0.462 0.846 0.894
m1 ¼ 2m2 0.146 0.218 0.726 0.834 0.160 0.632 0.766
m1 ¼ 9m2 0.051 1.000 1.000 1.000 0.624 0.998 1.000

SI �¼ 0 m1 ¼ m2 0.553 0.022 0.018 0.018 0.026 0.036 0.034
m1 ¼ 2m2 0.542 0.044 0.040 0.042 0.076 0.082 0.082
m1 ¼ 9m2 0.551 0.048 0.048 0.048 0.036 0.036 0.036

� ¼ 0:4 m1 ¼ m2 0.220 0.296 0.576 0.590 0.438 0.694 0.700
m1 ¼ 2m2 0.351 0.136 0.172 0.172 0.180 0.210 0.204
m1 ¼ 9m2 0.053 0.172 0.200 0.142 0.124 0.184 0.104

� ¼ 0:8 m1 ¼ m2 0.135 0.558 0.872 0.906 0.548 0.902 0.922
m1 ¼ 2m2 0.359 0.058 0.092 0.086 0.072 0.096 0.092
m1 ¼ 9m2 0.051 0.116 0.116 0.092 0.136 0.088 0.038
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power of the kernel-based tests increases as we deviate from the null hypothesis, with faster rates
for clustered point processes, i.e., those with the more inhomogeneous conditional intensities.
However, the power of the Kolmogorov-Smirnov test is considerably small and in some cases,
such as the regular patterns with unbalanced design and � ¼ 0:4, the probability of rejection is
even smaller than the type I error under the null hypothesis.

This simulation study shows that the kernel-based tests perform better that the
Kolmogorov-Smirnov test, which reported a bad calibration for clustered point processes and
was not able to detect differences between regular patterns. Although we cannot choose one
kernel-based test over the other, comparison between them suggests using the regression test
with unbalanced designs, specially with highly inhomogeneous point patterns such as the clus-
tered point processes in this study, whereas the Cramer von Mises test is more suitable for
balanced designs.

4. Application to real data

In this section we compare the performance of the three nonparametric tests through the analysis of
wildfire patterns in Galicia (NW Spain) and gunfire in the Rio de Janeiro metropolitan area (Brazil).
With these examples we illustrate the utility of nonparametric tests to compare the spatial distribution
of point processes in research areas such as environmental risk assessment and criminology.

Table 5. Performance of the nonparametric tests under the null hypothesis for inhomogeneous (IPP), Thomas cluster (TC) and
simple inhibition (Si) with first-order an conditional intensities provided in Figure 1 for balanced (N1 ¼ N2) and unbalanced
(N1 ¼ 2N2¼ designs.

Kolmovorlog-Smirnov
CvM

No-effect

T!a T!b T2a T2b RL SB

IPP a2 ¼ 2 m1 ¼ m2 0.036 0.036 0.044 0.042 0.048 0.062 0.06
m1 ¼ 2m2 0.028 0.02 0.032 0.034 0.052 0.072 0.064
m1 ¼ 9m2 0.05 0.06 0.04 0.05 0.014 0.076 0.022

a2 ¼ 3 m1 ¼ m2 0.102 0.119 0.118 0.143 0.17 0.372 0.248
m1 ¼ 2m2 0.124 0.129 0.13 0.119 0.094 0.304 0.394
m1 ¼ 9m2 0.116 0.126 0.096 0.108 0.088 0.212 0.218

a2 ¼ 4 m1 ¼ m2 0.34 0.406 0.434 0.467 0.442 0.678 0.81
m1 ¼ 2m2 0.399 0.499 0.447 0.489 0.438 0.72 0.762
m1 ¼ 9m2 0.258 0.274 0.23 0.252 0.046 0.34 0.336

TC a2 ¼ 2 m1 ¼ m2 0.05 0.156 0.052 0.128 0.07 0.032 0.052
m1 ¼ 2m2 0.066 0.084 0.048 0.076 0.072 0.04 0.04
m1 ¼ 9m2 0.066 0.084 0.048 0.076 0.072 0.066 0.112

a2 ¼ 3 m1 ¼ m2 0.364 0.75 0.526 0.82 1 1 1
m1 ¼ 2m2 0.642 0.864 0.798 0.93 1 1 1
m1 ¼ 9m2 0.552 0.638 0.448 0.672 1 1 1

a2 ¼ 4 m1 ¼ m2 0.004 0.052 0 0.002 1 1 1
m1 ¼ 2m2 0.92 0.982 0.64 0.84 1 1 1
m1 ¼ 9m2 0.92 0.982 0.64 0.84 1 1 1

SI a2 ¼ 2 m1 ¼ m2 0.044 0.036 0.042 0.048 0.084 0.105 0.055
m1 ¼ 2m2 0.052 0.042 0.052 0.048 0.064 0.054 0.044
m1 ¼ 9m2 0.04 0.036 0.048 0.044 0.064 0.062 0.064

a2 ¼ 3 m1 ¼ m2 0.132 0.156 0.09 0.118 0.256 0.08 0.275
m1 ¼ 2m2 0.042 0.062 0.048 0.082 0.196 0.396 0.54
m1 ¼ 9m2 0.024 0.026 0.022 0.014 0.302 0.112 0.228

a2 ¼ 4 m1 ¼ m2 0.192 0.224 0.132 0.172 0.286 0.155 0.14
m1 ¼ 2m2 0.044 0.038 0.03 0.024 0.34 0.058 0.16
m1 ¼ 9m2 0.092 0.096 0.04 0.05 0.44 0.272 0.262

Probability of rejecting H0 and 95% confidence interval, ½p̂0:025, p̂0:975�, under H0 at significance levels a ¼ 0:05: In columns
Ksi, k denotes the Kolmogorov-Smirnov test, where i¼ 1, 2 denotes the first and second p� system, and K¼ 6, 7 the size of
the partition. T test denotes the Cramer von Mises test. df, aicc and cv denote the Bandwidth selector for the kernel regres-
sion function (11) in the F-test.
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4.1. Comparison of wildfire patterns in Galicia

Wildfire is the most ubiquitous natural disturbance in the world and represents a problem of
considerable social and environmental importance. Galicia (NW Spain, Figure 3) has suffered a
high incidence of arson fires over the last decades, whereas the risk of forest fires caused by nat-
ural factors is low. This problem has motivated an increasing interest in the development of stat-
istical techniques to understand the behavior of wildfires in this region and develop efficient fire
prevention and fighting plans (Fuentes-Santos, Marey-P�erez, and Gonz�alez-Manteiga 2013; R�ıos-
Pena et al. 2015; Boubeta, Lombard�ıa, and Morales 2016).

In this section we consider a dataset comprising the spatial locations and time of occurrence
of arson and natural wildfires in Galicia during the period 2004� 2008: We have applied the
nonparametric tests to compare the spatial distribution of arson and natural fires, and test
whether the distribution of arson and natural wildfires varied between years. The Kolmogorov-
Smirnov test has been implemented using the second p� system introduced in Sec. 2.1, applicable
when W is any region in R

2, and we had to reduce the number of partitions in the normalizing
constant to K¼ 3 to deal with data sparseness. The Cramer von Mises and regression tests have
been applied as in the simulation study with B¼ 200 realizations of the resampling procedures
used for calibration. The regression test has been implemented using the three bandwidth selec-
tors in the kernel regression function, m̂, but here we show the results obtained with the cross-
validation bandwidth because the three procedures provided consistent results.

Figure 4 shows the kernel intensity estimators of the arson and natural wildfires in Galicia for
the 5 years under study. As we can see in the top rows of Table 7, we are dealing with highly
asymmetric designs. The two kernel-based tests found differences between the spatial distribution

Table 6. Performance of the nonparametric tests under the null (a2 ¼ 2) and alternative (a2 ¼ 3, 4) hypotheses for inhomoge-
neos Poisson (IPP), Thomas cluster (TC) and simple inhibition (Si) with first-order an conditional intensities provided in
Figure 1.

Kolmovorlog-Smirnov
CvM

No-effect

T!a T!b T2a T2b RL SB

IPP �¼ 0 m1 ¼ m2 0.060 0.084 0.062 0.082 0.082 0.078 0.040
m1 ¼ 2m2 0.048 0.070 0.040 0.066 0.030 0.034 0.030
m1 ¼ 9m2 0.078 0.098 0.040 0.068 0.076 0.014 0.034

� ¼ 0:4 m1 ¼ m2 0.090 0.150 0.056 0.092 0.202 0.216 0.130
m1 ¼ 2m2 0.066 0.116 0.034 0.070 0.266 0.196 0.150
m1 ¼ 9m2 0.040 0.076 0.032 0.060 0.028 0.046 0.040

� ¼ 0:8 m1 ¼ m2 0.130 0.296 0.048 0.116 0.876 0.714 0.846
m1 ¼ 2m2 0.068 0.200 0.036 0.082 0.724 0.726 0.632
m1 ¼ 9m2 0.022 0.108 0.020 0.062 0.462 0.362 0.460

TC �¼ 0 m1 ¼ m2 0.342 0.514 0.242 0.334 0.098 0.078 0.040
m1 ¼ 2m2 0.220 0.300 0.150 0.220 0.092 0.034 0.030
m1 ¼ 9m2 0.064 0.198 0.032 0.122 0.066 0.064 0.062

� ¼ 0:4 m1 ¼ m2 0.304 0.610 0.416 0.642 1.000 0.216 0.130
m1 ¼ 2m2 0.010 0.026 0.014 0.030 1.000 0.196 0.150
m1 ¼ 9m2 0.328 0.598 0.026 0.090 1.000 1.000 1.000

� ¼ 0:8 m1 ¼ m2 0.962 0.998 0.022 0.096 1.000 0.714 0.846
m1 ¼ 2m2 0.012 0.034 0.004 0.020 1.000 0.726 0.632
m1 ¼ 9m2 0.206 0.480 0.004 0.020 1.000 1.000 0.998

SI �¼ 0 m1 ¼ m2 0.082 0.084 0.064 0.060 0.040 0.018 0.036
m1 ¼ 2m2 0.050 0.036 0.050 0.050 0.032 0.040 0.082
m1 ¼ 9m2 0.028 0.046 0.042 0.046 0.04 0.048 0.036

� ¼ 0:4 m1 ¼ m2 0.15 0.228 0.056 0.092 0.474 0.576 0.694
m1 ¼ 2m2 0.052 0.08 0.032 0.046 0.33 0.172 0.21
m1 ¼ 9m2 0.074 0.082 0.066 0.06 0.246 0.2 0.184

� ¼ 0:8 m1 ¼ m2 0.154 0.268 0.06 0.108 0.844 0.872 0.902
m1 ¼ 2m2 0.068 0.1 0.088 0.132 0.372 0.092 0.096
m1 ¼ 9m2 0.076 0.094 0.042 0.05 0.122 0.116 0.088
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of arson and natural fires for the 5 years under study, whereas the Kolmogorov-Smirnov test did
not reject the null hypothesis. The good performance of the kernel-based tests when dealing with
unbalanced designs in the simulation study and visual inspection of the kernel intensity estima-
tors in Figure 4 suggest that we should rely on the results provided by the kernel-based tests. In
Table 8 we see that the kernel-based tests rejected the null hypothesis for the comparison of arson
fires between years, whereas the Kolmogorov-Smirnov test accepted the null in some cases,
(2004� 2007, 2006� 2007 and 2006� 2008). As well as for comparison between arson and nat-
ural fires, the intensity estimators in Figure 4 (top) suggest that we should rely on the kernel-
based tests. Notice that the Kolmogorov-Smirnov test also reported some difficulties to detect the
alternative hypothesis in the simulation study (Sec. 3). Finally, although the intensity estimators
in Figure 4 (bottom) suggest that the spatial distribution of natural fires varied over years, the
Kolmogorov-Smirnov test did not reject the null hypothesis, whereas the Cramer von Mises and
regression tests provided contradictory results (e.g., 2004� 2005) or did not found clear eviden-
ces to accept or reject H0 (p� value 2 ð0:01, 0:1Þ). These results illustrate the low power and lim-
ited performance of this type of procedures when dealing with small-size point patterns.

Figure 3. Galicia (NW Spain).
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4.2. Comparison of gunfire patterns in Rio De Janeiro metropolitan area

As police departments have created centralized databases of crime reports comprising, among
other information, the location and time of occurrence of each event, point process modeling has
been widely used to predict the risk of future crime. In the particular case of the Rio de Janeiro

Figure 4. Kernel intensity estimators of arson (top) and natural (bottom) wildfires registered in Galicia in the period 2004-2008
(Figures have different scale).

Table 7. Number of arson and natural fires and p-values of the Kolmogorov-Smirnov test with the second p�systesms intro-
duced in Sec. 2.1 and K¼ 3.

2004 2005 2006 2007 2008

Arson 8754 9538 5020 2111 1782
Natural 101 72 119 48 44
KS 2 >0.05 >0.05 >0.05 >0.05 >0.05
CvM <0.005 <0.005 <0.005 <0.005 <0.005
F-test RL <0.005 <0.005 <0.005 <0.005 <0.005
F-test SB <0.005 <0.005 <0.005 <0.005 <0.005

Crameer von Mises test with smooth bootstrap calibration (B¼ 200), and regression test with random labeling (RL) and
smooth bootstrap (SB) calibrations (B¼ 200).

Table 8. Nonparametric comparison of the spatial distribution of arson and natural fires across years. See details in the cap-
tion of Table 7.

Arson Natural

2004 2005 2006 2007 2004 2005 2006 2007

2005 KS1 <0.05 >0.05
CvM <0.005 <0.005
F-test RL <0.005 0.29
F-test SB <0.005 0.355

2006 KS 1 <0.05 <0.05 >0.05 >0.05
CvM <0.005 <0.005 <0.005 <0.005
F-test RL <0.005 <0.005 0.06 0.01
F-test SB <0.005 <0.005 0.04 0.015

2007 KS1 >0.05 <0.05 >0.05 >0.05 >0.05 >0.05
CvM <0.005 <0.005 <0.005 <0.005 0.015 0.015
F-test RL <0.005 <0.005 <0.005 0.015 0.2 0.04
F-test SB <0.005 <0.005 <0.005 <0.005 0.28 0.055

2008 KS1 <0.05 <0.05 >0.05 <0.05 >0.05 >0.05 >0.05 >0.05
CvM <0.005 <0.005 <0.005 <0.005 0.195 0.015 0.065 0.08
F-test RL <0.005 <0.005 <0.005 <0.005 0.08 0.34 0.005 0.385
F-test SB <0.005 <0.005 <0.005 <0.005 0.06 0.34 0.02 0.225
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metropolitan area (Brazil, Figure 5), which has been suffering a continuous increase of gun vio-
lence over the last decades (Arias and Barnes 2017), the ISP-RJ centralizes reports from the 190
crime report hotline, military, and civil police in a global crime database. In parallel with the offi-
cial sources, the collaborative mobile app Fogo Cruzado, which collects real time gunfire reports
and delivers instant alerts to help citizens avoid stray bullets, has generated a valuable data set of
gunfire violence in Rio de Janeiro.

Here we have applied the three nonparametric tests to compare the spatial distribution of the
1141 gunfire events with mortal victims and the 4804 events without victims collected by Fogo
Cruzado in the Rio de Janeiro metropolitan area during 2017 (Fuentes-Santos, Gonz�alez-
Manteiga, and Zubelli 2020). We used the second p� system introduced in Sec. 2.1 for the
Kolmogover-Smirnov test and K¼ 4 partitions in the normalizing constant to deal with data
sparseness. As above, the bootstrap calibrations in the kernel-based tests were ran with B¼ 200
realizations of the null hypothesis. For the regression test we report the results obtained with the
cross-validation bandwidth in m̂ as the three procedures provided similar results.

The Kolmogorov-Smirnov test did not detect differences between gunfire patterns (p-value >
0.05), whereas the two kernel-based tests rejected the null hypothesis (p-value < 0:005). Visual

Figure 5. Rio de Janeiro metropolitan area (Brazil).

Figure 6. Kernel intensity function for the spatial patterns of gunfire events with and without mortal victims (Figures have differ-
ent scale).
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inspection of the kernel intensity estimators (Figure 6) suggests that we should trust on the
Cramer von Mises and regression tests. This example confirms the limited capacity of the
Kolmogorov-Smirnov test when dealing with highly inhomogeneous and sparse data. The small
number of partitions, K, required to deal with data sparseness has an oversmoothing effect on the
test statistic and reduces the power of the test.

5. Discussion

The natural way to compare the spatial distribution of two spatial point pattterns is testing
whether these patterns have the same first-order structure. Two works have recently proposed
nonparametric tests for this purpose. Zhang and Zhuang (2017) proposed a Kolmogorov-Smirnov
test using the absolute difference between the point densities of the observed patterns over a p�
system as discrepancy measure. Fuentes-Santos, Gonz�alez-Manteiga, and Mateu (2017) use a non-
parametric test based on an L2 discrepancy between densities of event locations. Here, we propose
a new nonparametric test based on the log-relative risk function, widely used in epidemiology to
analyze the spatial distribution of a given disease Bithell (1990); Davies, Jones, and Hazelton
(2016); Kelsall and Diggle (1995). Taking into account that the relative risk function of two spa-
tial point processes with the same spatial distribution is constant, we introduce a no-effect test
that checks whether the log-relative risk function depends on event locations. This proposal is in
line with the log-ratio based separability test proposed by Fuentes-Santos, Gonz�alez-Manteiga,
and Mateu (2018) and based on the nonparametric regression test introduced by Bowman and
Azzalini (1997). In this work we have compared the performance of the three tests through a
simulation study and through application to the analysis of two relevant real data problems.

Prior to analyze the performance of the tests, let us compare their formulation and implemen-
tations. Here we focus on three key aspects: (i) the implementation of the test, (ii) regularity
assumptions and (iii) computational demand. The Kolmogorov-Smirnov test does not require the
estimation of first-order properties, avoiding the bandwidth selection problem of nonparametric
estimators. However, it should be noted that this test involves the selection of a p� system and a
number of partitions that can be seen as a smoothing parameter. In contrast, to implement the
Cramer von Mises and regression tests we need nonparametric estimators of some first-order
properties. The first-order intensities and functionals involved in the L2 test have been estimated
through kernel smoothing with plug-in bandwidths (Chac�on and Duong 2010; Fuentes-Santos,
Gonz�alez-Manteiga, and Mateu 2016). The log-relative risk function in the no-effect test has also
been estimated by kernel smoothing with scalar cross-validation bandwidth (Kelsall and Diggle
1995). The consistency of the kernel estimators used in both tests has been proved for Poisson
point processes, a restrictive and unrealistic condition that may be seen as a weakness in com-
parison with the Kolmogorov-Smirnov test, which allows dependence between events. However,
these tests can also be applied to non-Poisson point processes, in which case we compare their
spatial distribution measuring the discrepancy between their conditional intensities. Finally, the
Kolmogorov-Smirnov test is calibrated through the asymptotic distribution of the null hypothesis
and, consequently, computationally efficient, in contrast with the high computational demand of
the resampling algorithms required to calibrate the kernel-based tests.

The results of the simulation study indicate that the three nonparametric tests provide reason-
able estimators of the nominal significance level under the null hypothesis, although with some
deviations from the nominal significance level. Comparison between calibration procedures in the
regression test suggest that the random labeling algorithm performs better for unbalanced
designs, whereas the bootstrap calibration provides more accurate calibrations for balanced
designs. The kernel-based tests perform better than the Kolmogorov-Smirnov procedure in terms
of power. In fact, the later was not able to detect differences between patterns in some cases. We
also observe a faster power increase for Poisson and clustered point processes, whereas

18 I. FUENTES-SANTOS ET AL.



probabilities of rejection for regular point processes are relatively small in both kernel-based tests.
These differences between clustered and regular point processes are linked with the inhomogen-
eity of the conditional intensities. Kernel estimators of point processes with smooth spatial distri-
bution have larger bandwidth parameters than those with highly inhomogeneous distributions;
this higher smoothness in the kernel intensity or log-relative risk function estimators may hamper
the detection of differences between the observed patterns. This problem may be solved using
adaptive instead of fixed bandwidth parameters, as done by Davies, Jones, and Hazelton (2016).
However, the use of adaptive bandwidths may add a considerable computational cost to these
tests limiting their applicability to real data analysis.

The application to the analysis of real data shows that the Kolmogorov-Smirnov test has some
limitations when dealing with sparse data, as this procedure does not detect the observed differences
between arson and natural wildfire patterns. The results provided by the Cramer von Mises and
regression tests agree with the visual inspection of the kernel intensity estimators. However, these
tests may have a poor performance when dealing with small datasets. In view of these results, we
consider that the kernel-based tests could be more accurate than the Kolmogorov-Smirnov tests,
particularly in the analysis of spatial point processes with sparse events. From a practical viewpoint,
the differences found between arson and natural wildfires in Galicia indicate that we should use dif-
ferent covariates or models to predict the occurrence of each type of wildfire. Similar conclusions
can be derived from the analysis of gunfire with and without fatalities in Rio de Janeiro.

6. Conclusions

This work compares the performance of three nonparametric formal tests developed to check if two
spatial point patterns have the same spatial distribution, a computationally efficient Kolmogorov-
Smirnov test with asymptotic calibration and two computationally demanding kernel-based tests
with bootstrap calibration. Kernel-based tests outperform the Kolmogorov-Smirnov test, which
reported a poor performance when dealing with sparse data and highly inhomogeneous patterns.
Comparison between the kernel-based tests suggests using the Cramer von Mises test to compare
spatial point processes with similar number of events, whereas the regression test with random label-
ing calibration is more suitable for unbalanced designs. However, even the kernel-based tests have a
poor performance when dealing with regular patterns and small sample sizes, in both cases derived
from the large bandwidths used in the kernel estimators involved in these tests.

Finally, when these tests find differences between two spatial point processes, gunfire with and
without mortal victims, for instance, we may wonder where did those differences occur. The ker-
nel log-relative risk functions with tolerance contour surfaces can be used as local test to answer
this question, allowing us to detect areas with high mortality risk in the gunfire case study. Here,
as we are interested in differences at local scale, we should use kernel estimators with adaptive
bandwidth parameters, as proposed by Davies, Jones, and Hazelton (2016). However, acceptance
of the null hypothesis does not imply that the observed patterns have been generated by the same
point process. Notice that, although the conditional intensity determines the spatial distribution
of events in a spatial point process, the same conditional intensity can be generated by different
models, a Poisson and a cluster process for instance. Therefore, further information about the
dependence structure of the observed patterns and procedures for the combined analysis of first
and second-order properties are required to test whether two observed patterns are realizations of
the same point process.
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