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Abstract—Modern IoT devices, that include smartphones and
wearables, usually have limited resources. They require efficient
methods to optimize the use of internal storage, provide com-
putational efficiency, and reduce energy consumption. Device
resources should be used appropriately, especially when employed
for time-consuming and energy-intensive computations such as
positioning or localization. However, reducing computational
costs usually degrades the positioning methods. Therefore, the
goal of this article is to propose and compare compression
mechanisms of the fingerprinting datasets for energy-saving
without losing relevant information, by using adaptive k-means
clustering. As a result, we achieved a compression ratio of up to
15.97 with a small decrease (1%) in position error.

Index Terms—clustering, compression ratio, data compression,
fingerprinting, indoor positioning, k-means, k-nearest neighbors

I. INTRODUCTION AND MOTIVATION

Mass-market wearables are steadfastly developing as one of
the many future markets of Internet of Things (IoT) applica-
tions. Main characteristics of most wearables are that they
are typically power-constrained, size-constrained, and cost-
constrained devices, integrating several mass-market sensors
with various capabilities, ranging from measuring physiologi-
cal parameters to ensuring low-cost wireless communications
and positioning solutions. Many wearables do not have Global
Navigation Satellite System (GNSS) chipsets embedded and
must perform indoor localization based on non-GNSS sensors,
such as Bluetooth Low Energy (BLE), WiFi, ZigBee, Ul-
tra Wide-Band (UWB) chipsets, accelerometers, gyroscopes,
and/or barometers [1].

Indoor Positioning Systems (IPSs) based on wearables are
attracting the attention of the research community more and
more. For instance, Belmonte et al. [1] compared several
IPS solutions for smart homes in Ambient Assisted Living
(AAL) in terms of cost, scalability, obtrusiveness, connectiv-
ity, interoperability, and extensibility. WiFi-based positioning
using fingerprinting with Received Signal Strength (RSS)
measurements was found to offer the best trade-off in terms
of considered criteria. However, energy consumption was not
included in their study.
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The authors in [2] discussed the most common wireless
technologies on wearables and pointed towards BLE as a lower
cost solution than WiFi. Wireless positioning aspects were
only briefly addressed, which was assumed to come primarily
from GNSS chipsets.

Wearable-based positioning with BLE sensors and RSS
measurements has also been addressed recently in [3], by using
Machine Learning (ML) techniques. A 5-layered Artificial
Neural Network (ANN) was 8.5 times faster than k-NN at
the expense of decreasing the accuracy of the label-based
(classification) positioning system by 5%.

The above-mentioned recent research efforts show the in-
creased interest towards building more accurate, more energy
efficient, and robust IPS involving wearable devices. Our paper
focuses on fingerprint-based methods and, in particular, on
the representation of the RSS values in the radio map. The
authors propose a novel compression method to reduce the
data storage requirements for the RSS value, while benefiting
the IPS positioning accuracy in wearable devices.

The main contributions of this paper are:
• A novel approach on applying clustering on RSS datasets.
• A new method for data compression utilizing k-means

clustering and the substitution of RSS measurements with
reduced alphabet representation.

• The validation of the method on 16 different RSS datasets
• The source code for its implementation offered in open

access for the research community.
This article is divided into the following sections. Section

II gives a general overview of the related work. Section
III describes the method developed for fingerprinting data
compression. Section IV presents the experiments and results.
Finally, Section V provides the main conclusions of this work.

II. RELATED WORK

Given that computing efficiency, dimensionality reduction,
and data compression are highly demanded in IPS, different
authors have proposed multiple methods based on clustering
[4], radio-map reduction [5], [6] and other complex-search
algorithms [7]. These methods may be executed in dedicated
servers, smartphones, and even in low profile devices. Addi-
tionally, the combination of IoT, ML, and wearable devices
requires efficient algorithms in order to reduce energy con-
sumption [8].



WiFi fingerprinting is commonly used for indoor positioning
due to the fact that WiFi is widely deployed in multiple
environments (indoor and outdoor). However, this method
requires having one or more datasets (radio maps) that are
necessary to estimate the user’s position. In many cases,
they are large datasets with thousands of samples which are
not suitable for some IoT devices. Moreover, computing the
distances to all fingerprints in the radio map might be too
inefficient [9], especially in large operational areas.

To reduce the size of WiFi radio maps, some authors have
proposed the dimensionality reduction. For instance, Abed et
al. [10] exploit the feature of some APs to transmit more
than one signal (Multiple Service Set Identifiers, MSSID),
and they propose a new dimensionality-reduction technique
based on it. Their objective is to identify the most relevant
APs, improve computational efficiency, and reduce the effects
of multipath propagation. Their approach is divided into two
phases - online and offline phase. The offline phase is devoted
to combining the MSSID vectors for each AP reducing the
multipath effect. Additionally, in this step, a location based
clustering process groups samples in small zones. In the
online phase, the operational fingerprint is compared with
the centroids of each cluster to find the most similar one.
Finally, the author estimates the position by using the k-nearest
neighbour algorithm (or k-NN) with the reference fingerprints
falling into the selected cluster.

Other researchers are focused on the minimal description
length of the data (data compression), for instance, by using
Symbolic Aggregate ApproXimation (SAX) [11], [12], XOR-
based compression, simple 8-b, etc [13]. These algorithms also
provide computational efficiency. For example, Baldini et al.
[14] study the use of SAX approach in RF Fingerprinting,
demonstrating that this algorithm is more computationally
efficient by reducing the execution time to 30% compared to
the original time series.

Doan et al. [15] proposed a new framework based on
lossless compression in order to provide efficient data storage
and data indexing. This framework was divided into six
blocks which are: data encoding, splitting, zigzag encoding,
bit conversion, aggregation, and padding aggregate record. As
a result, they saved 97% of the storage space, which is almost
3% more than the other techniques used for data compression.

Azar et al. [16] studied the effects of using lossy data
compression techniques on time series by using deep learn-
ing. Their main approach is the combination of error-bound
compressor (Squeeze) and Discrete Wave Transform (DWT)
lifting scheme obtaining a high data compression ratio.

Based on the related work, it is obvious that there are
benefits of applying data compression or dimensionality re-
duction over the datasets. In most cases, they provide high
computational efficiency while extending the life time of
IoT devices. However, when we use these techniques, the
compressed data cannot be restored to its original form, and
therefore, some amount of data is lost in the compression
or dimensionality reduction process. This may lead to the
decreased positioning accuracy of IPS.

The approach of utilizing clustering for the purpose of data
compression or improving the performance of the system was
explored in the past, e.g., in [17]. Traditionally, clustering
on the fingerprinting data is realized by finding similarities
in the fingerprints across all features and assigning a cluster
to each fingerprint sample. The assigned clusters are then
utilized to speed up the process of localizing the user by faster
finding similar fingerprints. This paper explores the utilization
of clustering on each measurement separately, thus substituting
the actual measured RSS value with the cluster index. As the
result, the size of the whole dataset is significantly reduced
without reducing the amount of measurements and without the
significant degradation of the dataset quality for localization
purposes. Additionally, the proposed method is able to operate
online, efficiently shifting cluster centroids with each newly
measured fingerprint.

III. PROPOSED DATA COMPRESSION ALGORITHM

The symbols and notations used in this paper are captured
in Table I.

TABLE I
SYMBOLS AND NOTATIONS USED IN THIS PAPER

ceil() Function rounding a number up to the nearest integer
Cn nth cluster’s centroid coordinate
CR Compression ratio
δMSE Mean squared error difference
i Iteration
K Number of clusters
MSE Mean squared error
nbits Number of bits used to represent the dataset
Nn nth cluster’s count in the dataset
NUNIQUE Number of unique values in the dataset
stm tth sample’s value of the mth feature
X Initial dataset used in the first stage
ξKNN 3D positioning error ratio

The method proposed in this paper aims to reduce data stor-
age requirements, and it is based on clustering. Unsupervised
learning method k-means was targeted due to its low com-
plexity and good viability to find patterns in the non-complex
data included in RF fingerprinting datasets. The novelty of our
method comes from the fact that the proposed method reduces
storage requirements by substituting the measured values with
a reduced “alphabet”, which represents the centroids assigned
to each feature of each sample. This is different from the
traditional approaches which typically reduce the number of
features in the dataset, using principal component analysis
(PCA), autoencoders (AEs), or other dimensionality reduction
machine learning approaches.

This section includes a short introduction of k-means clus-
tering, followed by the description of the proposed model for
data compression.

Lloyd’s algorithm, or k-means, is the most commonly and
frequently used clustering algorithm worldwide [18]. There,
each cluster is represented only using the coordinates of
its centroid. The method requires the initial dataset, which
is clustered in two repeating steps similar to expectation-
maximization algorithm used in more complex, stochastic



methods. The algorithm is initiated by selecting the initial
centroids of the clusters, either at random, using given co-
ordinates or using e.g. k-means++ algorithm [19]. In the first
step, each sample is assigned to the nearest cluster centroid,
based on the chosen distance metric, usually Euclidean. The
second step consists of shifting each centroid’s coordinates
to better represent the assigned data, as the mean coordinate
of the assigned samples. These two steps are repeated until
the samples no longer change the assigned clusters, or until a
maximum iteration is reached.

In the first stage our proposed method applies k-means with
k-means++ initiation [19] on the referenced dataset, namely
the radio map with access point (AP) measurements. In the
second stage, which is designed to operate online, new samples
are assigned to the existing clusters and the cluster centroids
are adjusted based on the new sample coordinates. Because
of that, the clusters always represent the whole dataset at the
given time and adjust accordingly with each new sample. The
following paragraphs describe the proposed approach.

A. First Stage

The data in the fingerprinting dataset consist of individual
samples. Each sample consists of a feature vector (power level
measurements from considered APs), and a target vector (a
set of values, usually spatial coordinates). A feature refers to
power level measurement from a single, specific AP across
all samples. In here, we assume that the data is stored
per AP. Alternatively, the data can be also stored per each
measurement point [17].

At the beginning of the first stage, the multiple features
are either merged, if they represent the same physical entity,
e.g. RSS measurements from separate APs or antennas, or
are kept separate if they represent differing attributes, for
example, time of arrival and angle of arrival. The merged
features then share the same cluster centroids. In this paper,
we consider datasets with only RSS measurements. Under the
assumption of equivalent APs, all features can be merged for
the clustering.

Next, the number of clusters is calculated from the initial
RSS data. In this paper, we calculate the number of clusters
for each dataset (or for each group of features in case of
more than one group of merged features) by linearising the
two dimensions of the radio map (samples and features) and
applying formula shown in Eq. 1 to all RSS single values.

K =
√
unique(X(:)) (1)

Where K refers to the number of clusters, X(:) refers to the
whole radio map reshaped into a single vector and unique()
is a function finding the number of unique values in its input.

Based on the required compression ratio (CR) and tolerance
of the method, the number of clusters can be adjusted. The
k-means clustering is then applied to the dataset, resulting
in each feature of each sample (every single measurement)
being assigned to a single cluster. The dataset is then stored
as the set of cluster indexes, instead of the measured values.

Along with the clustered dataset, the centroid coordinates and
the number of RSS measurements in each cluster are recorded
and stored. Due to the limited number of clusters, each dataset
entry can be stored using a significantly reduced number of
bits, as shown in Eq. 2, instead of using e.g. 64 bits, as is
the standard for double floating point format. The table that
converts cluster indexes to coordinates and the array with the
number of measurements assigned to each cluster must be
stored as the necessary overhead.

nbits = ceil(log2K) (2)

Where nbits refers to the minimum number of bits required
to store one feature of the sample and ceil function rounds a
number up to the nearest integer, if necessary.

B. Second Stage

In the first stage, the initial dataset was clustered and
compressed. The second stage of the method is fed with a
set of independent fingerprints not used in the first stage,
e.g. samples from testing set or newly measured ones. In the
second stage of the algorithm, the new sample is obtained
and processed, to be added to the existing dataset. After the
assignment of the features to clusters based on the given
distance metric, the sample is added to the existing compressed
dataset. Next, each cluster centroid and its count, assigned to
the sample are updated as shown in Eq. 3 and Eq. 4.

Ci+1
n =

Ci
n ·N i

n + stm
N i

n + 1
(3)

N i+1
n = N i

n + 1 (4)

where i and i + 1 refer to the current and the following
iteration, respectively, Cn refers to the nth cluster’s centroid
coordinate, Nn refers to the nth cluster’s count in the dataset
and stm refers to the tth sample’s value of the mth feature. In
other words, each new sample’s feature updates its assigned
cluster’s centroid coordinate based on its distance from the
last centroid coordinate and number of features assigned to
that cluster.

The centroid updates enable the dataset to best represent all
the assigned data, rather than only the initial dataset, as would
be the case without the updates. For computational efficiency,
the updates can be performed in batches, instead of with each
sample. The algorithmic description is described in Algorithms
1 and 2, whereas the workflow is depicted in Fig. 1.

Algorithm 1: First Stage
1: Load the initial dataset
2: Calculate the number of clusters (as in Eq. 1)
3: Apply k-means clustering to all RSS measurements in

the dataset
4: Count the number of RSS measurements in each cluster
5: Save the clustered dataset, centroid coordinates and RSS

measurement counts per cluster



Algorithm 2: Second Stage
1: Acquire new sample
2: Calculate the distances of the sample’s RSS

measurements to each centroid
3: Find the closest centroids and cluster the sample
4: Update the centroid coordinates and RSS measurement

counts of the used clusters (as in Eq. 3 and Eq. 4)
5: Add newly labeled sample to the dataset

Training
Data

Number of
Clusters

k-means

CentroidsLabeled
Data

Update Centroid
Coordinates

Find Closest
Centroid

New
Sample

Labeled
Sample

Second Stage

First Stage

Fig. 1. Workflow of the proposed method

To summarize, the proposed method enables the efficient
dataset compression using a reduced ”alphabet” of values,
without reducing the number of samples or features them-
selves. The method considers the features representing the
same physical entities together, reducing the required overhead
of the conversion table. The trade-off between the degree of
compression and data distortion due to the compression can
be adjusted by increasing or reducing the number of clusters.

IV. EXPERIMENTS AND RESULTS

Nowadays, it is important to fulfill three main considerations
which are repeatability, replicability, and reproducibility. They
are essential in the research area, while repeatability is also
mentioned in the ISO/IEC 18305:2016 [20]. In this section,
we provide all of the information required to reproduce the
experiment. Also, the source code is available online on
Zenodo [21].

A. Datasets

This work uses 16 Wi-Fi fingerprinting datasets [22] for
evaluation, created by Tampere University, Finland (TUT 1&2
[23], [24], TUT 3&4 [25], TUT 5 [26] and TUT 6&7 [27]),
Universitat Jaume I, Spain (UJI 1&2 [28] and LIB 1&2 [29]),
University of Minho, Portugal (DSI 1&2 [30]), and University
of Mannheim, Germany (MAN 1&2 [31], [32]).

The datasets consist of Wi-Fi RSS measurements in dBm
in different environments. Each dataset is separated into train-
ing and testing dataset. For the purposes of this work, the
training dataset was used for the first stage including k-
means clustering. The testing dataset served as the source
of individual samples for the second stage of the algorithm.
Additionally, all datasets include position references for each
sample, containing the coordinates, building and floor indexes.

B. Evaluation metrics

To evaluate the performance and viability of the proposed
method, the following metrics are considered. First, the mean
squared error (MSE) between the original dataset samples and
the recovered dataset was calculated in two instances. MSES1

evaluates the MSE between the original and recovered data
from the initial dataset after the first stage. MSES2 evaluates
the MSE between the original of the testing dataset and its
recovered version after the second stage of the algorithm.
Second, δMSE , representing the difference between MSES1

and MSES2 as shown in Eq. 5, is utilized to evaluate the
capability of the method to adapt to the new data.

δMSE =MSES1 −MSES2 (5)

The impact of the compression on the data quality and the
amount of information it contains was evaluated by comparing
the positioning accuracy based on the k-Nearest Neighbor (k-
NN) classifier. Each dataset was evaluated using 10-Nearest
Neighbour (10-NN) classifier both before and after compres-
sion, and the mean 3D positioning error ratio ξKNN before
and after compression was calculated, as shown in Eq. 6. The
same classifier (i.e., 10-NN) was used to evaluate each dataset
under the same conditions and hyperparameters. Finding the
optimal value for the number of considered neighbors for each
dataset is outside of the scope of this paper, as the classifier
only compares the performance of the uncompressed and the
compressed data.

ξKNN =
MSEreconstructed

MSEoriginal
(6)

Where MSEoriginal refers to the mean positioning error
of the original dataset and MSEreconstructed refers to the
mean positioning error of the recovered dataset, using the
10-NN classifier after the second stage. 3D positioning error
ratio larger than 1 represents the increase of the positioning
error, while ξKNN lower than 1 means the positioning error
decreased due to the compression.

Finally, the compression ratio (CR) of the method was eval-
uated to reflect the efficiency of the proposed model to reduce
the storage requirements of the method. It was calculated as
the ratio between the original dataset size and its reduced
size using optimum coding (see Eq. 2). Smartphones usually
provide quantized RSS values within range [−105, . . . ,−30]
dBm, which can be represented with 7 bits. In case of RSS
post-processing, such as averaging the measurements over a
specified area in datasets TUT 1, TUT 2, TUT 5 and MAN 2,
the resulting RSS are stored in double (64 bits) format.



C. Numerical results

In our experiment, k-means clustering was independently
executed over 16 selected datasets to create the new alphabets.
We used Eq. 1 to set the value of k and the remaining k-means’
hyperparameters include, for all datasets, Euclidean distance
metric, a maximum number of 100 iterations, 100 replicates
and the initialization proposed in k-means++ [19]. Then, the
10-NN algorithm was executed using original datasets and the
reduced ones to evaluate the proposed radio map reduction.
The results are reported in Table II.

TABLE II
RESULTS COMPARISON USING DIFFERENT DATASETS

Dataset Num. of Num. of
MSES1 MSES2 δMSE ξKNN CRSamples Clusters

DSI 1 1717 8 0.568 0.566 0.003 0.992 2.33
DSI 2 924 8 0.560 0.548 0.012 1.010 2.33
LIB 1 3696 7 0.250 0.541 -0.291 0.998 2.33
LIB 2 3696 8 0.290 0.299 -0.009 1.007 2.33
MAN 1 14760 8 1.311 1.361 -0.050 0.984 2.33
MAN 2 1760 37 0.065 0.069 -0.004 0.958 10.50*
SIM 11710 7 1.004 1.000 0.004 0.932 2.33
TUT 1 1966 29 0.037 0.030 0.007 0.992 12.78*
TUT 2 760 14 0.181 0.102 0.079 1.014 15.97*
TUT 3 4648 9 0.162 0.160 0.002 0.999 1.75
TUT 4 4648 9 0.160 0.161 -0.001 0.996 1.75
TUT 5 1428 80 0.003 0.002 0.001 0.999 10.96*
TUT 6 10385 9 0.152 0.149 0.002 0.993 1.75
TUT 7 9291 9 0.094 0.097 -0.002 0.997 1.75
UJI 1 20972 11 0.107 0.092 0.014 0.979 1.75
UJI 2 26151 11 0.107 0.110 -0.003 0.979 1.75

Average 0.316 0.330 -0.015 0.989 2.04
12.55*

* 64-bit representation

First, the number of clusters vary depending on the dataset
being around 7–9 in most of cases. Datasets UJI 1&2 have
larger number of clusters because one device reported unusual
RSS values in smartphones, above −20 dBm. Datasets with
RSS post-processing have the largest number of RSS unique
values as they are Real-valued numbers (IR).

The table shows the varying MSES1 and MSES2 values
across the datasets, which are in all cases but two below
1 dB. The results also show that δMSE is less than -0.015 dB,
proving the property of the method to adapt well to new data.
ξKNN is 0.989 on average, which corresponds to 1% decrease
in positioning error across the datasets due to compression.
The results show that although the compression reduces the
number of values in the dataset, the quality of the dataset for
positioning purposes actually increases. A CR of 12.55 was
achieved across all real-valued datasets (64-bit representation)
on average and 2.04 across the integer valued datasets (7-bit
representation). The repeating values of compression ratios in
integer valued datasets are caused by constant ratio between
the original and the reduced bit representation, as the overhead
is negligible (e.g. CR of 1.75 is achieved by compressing 7-
bit values into 4-bit representation). The trade-off between the
CR and ξKNN (as well as all MSE metrics) can be controlled
by increasing the number of clusters of the method.

D. Discussion

The authors have presented the proposed dataset compres-
sion method and validate its usability on 16 different datasets.
In comparison to e.g. SAX, the method does not require the
assumption of Gaussian distribution of the data, nor any prior
knowledge about the data statistics. However, this fact may
lead to underfitting of the dataset by choosing the number
of clusters too low, and resulting in significant information
loss due to the compression. The method is also vulnerable to
changes in the environment, which is the common problem of
the fingerprinting datasets, as the changes in sample distribu-
tions will lead to the decrease of accuracy. In such cases, the
new initial dataset should be created as the original samples
from the first dataset do not reflect the reality anymore.

The significant differences in the number of clusters
between the datasets are caused mostly by dataset post-
processing of TUT 1, TUT 2, TUT 5 and MAN 2 datasets
due to the larger number of unique values in them [22]. It
is also worth mentioning, that the datasets LIB 1&2 contain
measurements from the same area and device, measured 10
months apart. Despite this, each of the datasets got assigned
different number of clusters, probably caused by rounding of
the ceil() function in the first stage. Also, the presence of
outlier devices providing untrusted RSS values might degrade
the IPS. Regulating the automatic selection of the number of
clusters will be studied and improved in the future.

The authors acknowledge the lack of the validation set in
the datasets, which will be added later as the paper presents
the results of the preliminary study.

Future work will also concentrate on thorough comparison
of the method with the current state-of-art methods, as well
as combining the feature-reduction methods such as PCA or
AE with the proposed one, to further increase the compression
efficiency without losing positioning accuracy.

V. CONCLUSIONS

This paper explores a novel approach on clustering of
RSS datasets for RSS-based indoor positioning on wearables,
towards more energy efficient solutions. It introduces a new
and efficient method of data compression based on k-means
clustering and substitution of RSS measurements with a re-
duced alphabet representation.

The developed compression method allows for optimizing
the storage space used by the WiFi fingerprinting datasets,
resulting in reduced computational load on the online phase
of this positioning technique. The proposed method achieved
significant dataset compression, as well as slightly improved
the accuracy of the position estimation (see Section IV B). As
a result, the proposed method acquired a CR of 12.55 in the
real-valued datasets, 2.04 in the integer-valued datasets, and
the positioning error was reduced by 1% on average.

Finally, the paper discusses the shortcomings of the current
method, highlighting the challenge of automatic selection for
the number of clusters. In future work, this method will be
compared with other existing compression methods in order
to test the efficiency and robustness of the proposed work.
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