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The purpose of this paper is to study the dynamics of the weighted composition operator
Cuwp 1 | = w(fop) on the weighted Banach spaces of entire functions H,, (C) and H, (C),
where v,,(2) = e, z € C, m > 0, is an exponential weight. More precisely, we study
when C,, , is power bounded, (uniformly) mean ergodic and hypercyclic. We refer to the
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Introduction and outline of the paper

next section for the precise notation and definitions.

Weighted Banach spaces of holomorphic functions have been widely studied. They
appear in a natural way in the study of the growth of analytic functions. See for example

[9] and [26] and the references therein.
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Composition operators between weighted spaces of holomorphic functions have been
studied by several authors. Boundedness and compactness on weighted Banach spaces of
holomorphic functions on the disc D were characterized by Bonet, Domanski, Lindstrom
and Taskinen in [12], and on weighted inductive limits of Banach spaces of holomorphic
functions defined on arbitrary open subsets of C by Bonet, Friz and Jorda in [13]. There is
a vast literature about composition operators on Banach spaces of holomorphic functions.
We refer the reader to the books by Cowen and MacCluer [18] and Shapiro [32].

The study of C,, ,, on different spaces of functions has been a very active area of research.
For example, it is well-known that all isometries of the Hardy spaces H?(D) for 1 < p < oo,
p # 2, are weighted composition operators [18]. The boundedness and compactness of C,, ,,
on weighted Banach spaces of holomorphic functions on the disc D have been characterized
by Contreras and Herndndez-Diaz in [17] and by Montes-Rodriguez in [29].

The dynamics of composition and weighted composition operators on spaces of holo-
morphic functions has recently attracted the attention of many researchers. See for instance
5], [6], [7], [11], [16], [21] [22], [27], [31], and the references therein.

Concerning weighted Banach spaces of holomorphic functions on ID; Bonet and Ricker
[15] studied the mean ergodicity of multiplication operators, Miralles and Wolf [28] the
hypercyclicity of the composition operator C,,, and Liang and Zhou [23] the hypercyclicity
of its multiples A\C,, A € C. The power boundedness and mean ergodicity of weighted
composition operators on H,(ID) have been studied by Wolf in [33].

To our knowledge, this is the first attempt to study weighted composition operators
on weighted Banach spaces of entire functions and their dynamics. In Section 2 we fix
the notation and review some basic results. In Section 3 we characterize the continuity
and compactness of C,, , on general weighted Banach spaces of entire functions, obtaining
analogous results to those in [17] and [13] for the corresponding spaces on the disc and
for unweighted composition operators, respectively. It is known (see [2, Corollary 30| and
[14, Proposition 3.1]) that if the composition operator C, on H,,, (C) and on H) (C) is
continuous, then the symbol ¢ must be affine, that is, ¢(z) = az + b for some a,b € C. In
Proposition 6 we give a condition under which the continuity of the weighted composition
operator also implies the affinity of the symbol. In Theorem 8 we characterize the conti-
nuity and compactness of Cy,, on H,, (C) and on H) (C) for affine symbols:

Theorem A

Given ¢(z) = az + b, a,b € C, the weighted composition operator C,, , is continuous

on H,,(C) and on H? (C) if and only if [|Cy || = sup.ec [w(z)[eme= =) < oo, and
m(laz+bl=I2l) — 0. As a consequence we get:

compact if and only if limy.| . |w(z)|e
(i) If Ja| > 1, Cy can never be continuous on H,, (C), neither on HY (C).
(ii) If |a| = 1, Cy,, is continuous if and only if w = A, A € C, and it is never compact.

(iii) If |a| < 1, the continuity and compactness depends on the multiplier. For instance:

a) Cy,, is continuous and compact if w is a polynomial.



b) If w(z) = pn(2)e™ ) with py and gy polynomials of degrees N and M # 0 :
- Cy, is continuous if and only if w(z) = py(2)e?** and |b;| < m(1 — |a)
or w(z) = Aeb*t X e C, and |by| = m(1 — |a]).
- Cy is compact if and only if w(z) = py(z)e* ™ and [bs| < m(1 — |al).

In Section 4 we study the spectrum of the composition operator and the power bound-
edness, (uniform) mean ergodicity and hypercyclicity of C,, , on the spaces H,, (C) and
HY (C) when ¢(z) = az + b. We compile the main results of Proposition 15 and Theo-
rems 16, 18, 19 and 20 in the next Theorem. The case a = 1 refers to multiples of the
translation operator. It should be noted that it provides an example of a uniformly mean
ergodic operator whose iterates converge to 0 in the strong operator topology but not in
the operator norm. It is also worth mentioning that in the case of |a| < 1 we provide an
example of a power bounded operator on H?(C) which is not mean ergodic.

Theorem B
Given ¢(z) = az+b, a,b € C, the operator Cy,, on H,,,(C) and H) (C) is never weakly
supercyclic if a # 1. Moreover it satisfies:

(i) When |a| < 1 and w(z) = py(2)e?***% by, by € C, py a polynomial of degree N :

a) If |by| < m(1 — |al), then C,,, is uniformly mean ergodic whenever it is power
bounded. This is satisfied, for instance, if w is a polynomial.

- If w(z) = NeP*+% X € C, power boundedness, mean ergodicity and uni-
b1b
formly mean ergodicity are equivalent to |\ < ea=1- | Moreover, [|C* || —
y g y q » 1w
b1b
0 if |A] < |es 1],
- I w(z) = Mz — =) Vebr=tho N £ 0, |CE |l = 0, so it is always power
bounded and uniformly mean ergodic.
b) If w(z) = XeP*t0 X\ € C, ancl b|bl| = m(1 — |a]), by # 0, then C,, is power
bounded if and only if [A] < |eat1 %],

b1b
- If[A] < |ea 17| then ICE |l = 0,50 Cy,y, is power bounded and uniformly
mean ergodic.
bib
- If |A] > |ea 17| | then Cly, is neither mean ergodic nor power bounded.

b1b
“IfA=e1 ™andac R, a > 0, then C,, is power bounded but not mean
ergodic on H) (C).

(i) When |a| =1,a # 1, Cy,, which is necessarily of the form AC,, A € C, satisfies:

a) If [\| < 1, |C Il = 0, thus it is power bounded and uniformly mean ergodic.

b) If |A\| > 1, it is neither power bounded nor mean ergodic.



¢) If [\| = 1, it is power bounded and mean ergodic on HY (C). It is uniformly
mean ergodic if and only if a™ = 1 for some ng € N. If " # 1 for every n € N,
it is not mean ergodic on H,, (C).

(iii) When a =1, b # 0, Cy,,, which is necessarily of the form AC,, A € C, satisfies:

a) If [\| < e7™ ||C% || — 0, then it is power bounded, uniformly mean ergodic
and not hypercyclic on HY (C).

b) If [A| > =™l it is neither power bounded nor mean ergodic. In this case, it is
hypercyclic if |A| < ™! and not hypercyclic if || > e™/l,

c¢) If [\ = el it is power bounded, hence not hypercyclic, and C’{fw — 0 in
HY (C) in the strong operator topology but not in the operator norm. It is

uniformly mean ergodic if and only if A # e~/

In the last section of the paper we compile the results for the relevant case w = 1, that
is, for composition operators.

2 Notation and preliminaries

Our notation is standard. We denote by H(C) the space of entire functions endowed with
the compact open topology 7., of uniform convergence on the compact subsets of C, and
by D the open unit disc centered at zero. Given two entire functions w and ¢, the weighted
composition operator C, , on H(C) is defined by

Cue(f) =w(foy), feH(C).

The function ¢ is called symbol and w is called multiplier. C,, , combines the composition
operator Cy, : f — f o ¢ with the pointwise multiplication operator M, : f — w - f.

We say that v : C —]0, oo[ is a weight if it is continuous, decreasing and radial, that is,
v(2) = v(|z]) for every z € C. It is rapidly decreasing if limr¥v(r) =0 for all k € N,

r—00
For an arbitrary weight v on C we consider the weighted Banach spaces of entire func-

tions with O- and o-growth conditions

H.(€) = { € H©O): Ifl, == supv()|f(2)] < o}

HY(©) = {f € H(T): lim v(2)|f ()] =0},

(Ho(C), | [lv) and (H;)(C), || ||.) are Banach spaces, and (Hy(C), || [l.) < (Hu(C), | [|.) =
H(C), 7.,) with continuous inclusions. If we assume v is rapidly decreasing, then H(C)
nd H,(C) contaln the polynomials. We denote by B, and B? the closed unit balls of
H,(C) and H?(C), respectively. B, is compact with respect to 7.

—~
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Given a weight v, its associated weight v is defined as

1 1
sup{[f(2)] : f € Ho(C), Ifllo <1} [10:]lmr.cy”

where 0, : H,(C) — C, f + f(2) is the continuous evaluation at z.

It is known (see [9, Proposition 1.2]) that v < v, H,(C) = Hy(C) isometrically and
HY(C) is a closed subspace of H(C). Although the last two spaces do not coincide in
general, it follows from results in [8] and [12] that for rapidly decreasing weights, H?(C) =
HY(C). A weight v is said to be essential if there exists a constant C' > 0 such that
v(z) <v(z) < Cu(z) for all z € C. As mentioned in [9], many results on weighted spaces
of analytic functions and on weighted composition operators defined on them have to
be formulated in terms of the associated weights and not directly on the given weights,
since they satisfy nice additional properties. The spaces under consideration H,, (C) and
H? (C), are associated to the essential weights v,,(z) = e™™* m > 0.

Let X be a Banach space and T : X — X a continuous and linear operator on X. We
say that xg € X is a fized point if T'(xg) = xg, and that it is periodic if there exists n € N

such that T"(zg) = x¢, where T" :=To ) oT. The operator T is said to be power bounded
if sup,, ||7"|| < oo and it is called mean ergodic if the Cesaro means (T, )n,

0(z) =

R
T[”] :ZEZTJ> n €N,
j=1

converge to some P in the strong operator topology, i.e., if for every z € X the limit
limy, o0 Tiny () exists in X. If (T},)), converges in L(X) then T is called uniformly mean
ergodic.

A power bounded operator 7' is mean ergodic precisely when X = Ker(I —T) &
Im(I — T). Moreover, ImP = Ker(I —T') and KerP = Im(/ — T). Clearly, if T is mean
ergodic, then lim,, . [|[T"x||/n = 0 for each z € X, and if it is uniformly mean ergodic,
lim, o0 || 77| /n = 0. If this condition is satisfied, Lin proved in [24] that the operator T is
uniformly mean ergodic if and only if Im(/ — T') is closed. For a Grothendieck Dunford-
Pettis space X, Lotz proved that and operator T' € L(X) satisfying ||T"/n|| — 0 is mean
ergodic if and only if it is uniformly mean ergodic [25]. H,,, (C) is a Grothendieck Dunford-
Pettis space (see [26]).

An abstract result of Yosida and Kakutani ([34, Theorem 4 and Corollary on pages 204-
205] implies that every compact power bounded operator on a Banach space is uniformly
mean ergodic. Yosida (see [30, Theorem 1.3]) also proved that in power bounded operators
on Banach spaces, the convergence of the Cesaro means in the strong operator topology
is equivalent to the convergence in the weak operator topology. Troughout the paper, we
will use the following well-known fact: if 7" is power bounded and the sequence (7f,)n
converges to a continuous operator 7' on some dense set D C X, then T is mean ergodic.

An operator T : X — X is called topologically transitive if, for any pair U,V of non-
empty open subsets of X, there exists some n € N such that 7T"(U) NV # (), and T

bt



is called topologically mizing if there exists some N € N such that T"(U) NV #  for
alln € N, n > N. T is said to be hypercyclic if it has a dense orbit, that is, if there is
some z € X such Orb(T,z) = {T"x : n = 0,1,...} is dense in X. Any such vector is
called a hypercyclic vector. By the Birkhoff’s transitivity criterion, T is hypercyclic if and
only if it is topologically transitive. If Orb(7,span{z}) = {\T"z : A € C,n = 0,1,...}
is dense in X, we say that T is supercyclic and x is a supercyclic vector for T, and if
span{Orb(7T,z)} = span{T™z : n =0,1,...} is dense, it is said to be cyclic and x is called
a cyclic vector. In the case we consider the density in the weak topology, the operator
is said to be weakly hypercyclic, weakly supercyclic or weakly cyclic, respectively. An
operator T : X — X is called chaotic if it is hypercyclic and it has a dense set of periodic
points.

For a good exposition of ergodic theory we refer the reader to the monograph by [30],
and for the subject of linear dynamics, to the monographs by Bayart and Matheron [1]
and by Grosse-Erdmann and Peris [20].

3 Boundedness and compactness of weighted compo-
sition operators

We begin this section characterizing the continuity and compactness of weighted com-
position operators on general weighted Banach spaces of entire functions. The first two
lemmata follow by an adaptation of the proofs of [17, Proposition 3.1 and Proposition 3.2],
stated for weighted Banach spaces of holomorphic functions on the unit disc (see also [12]
and [13, Proposition 5]).

Lemma 1 Given two weights uy and uy on C, the following are equivalent:
(1) Cup: Hy (C) = H,,(C) is continuous.
(i) Cup(Huy (C)) © Huy(C).

(i) (G = supcc HEL2C) < o,

w()lua(z)

u1(p(2) o0

If uy is essential, Cy, , 1s continuous if and only if sup,cc

Lemma 2 Given two rapidly decreasing weights uy and us on C, the following are equiv-
alent:

(i) Cuy = HY (C) — HY (C) is continuous.
(it) Cuwo(H,),(C)) € Hy,(C).
(iii) w € HY,(C) and ||Cy | := sup,ec "Lzl < oo,

wz)luz(z)

ui((2) 0.

If uy is essential, Cy, , 1s continuous if and only if w € HSZ(C) and sup,cc

6



The next lemma follows proceeding as in the proof of [13, Theorem 8|, where the result
is stated for unweighted composition operators.

Lemma 3 Given two weights u; and us, consider the following assertions:
(i) Cup : Hyy (C) = HY (C) is compact.
(i) Cup 2 Hy (C) = Hy,(C) is compact and Cy, (H,,(C)) C Hy (C).
(i) Cu,p : Hy (C) — Hy (C) is compact.

) 1 lw(z)|ua(z) _

(iv) lim;| e o) =0.
Then (i) = (ii), (i) = (iii) and () = (i). If we assume BY "~ = B, then (iii) = (iv)
and all the conditions are equivalent.

Now we look at the symbol of the operator. If |p(2)] = O(]|z]), it is trivial that ¢ must
be affine. In the next results we give some conditions under which only affine symbols can
induce continuous weighted composition operators.

Remark 4 For an essential weight v satisfying u(¢(2)) = O(u(z)), if the operator C, ,

is continuous on H,(C), by Lemma 1 there exists C' > 0 such that sup,.c|w(z)| <

C'sup,cc “(U“Z(ZZ))) < 00, and so, w = X for some A € C. Then, if C,, = AC,, the sym-

bol must be affine by [2, Corollary 30] (see also [14, Proposition 3.1]). In particular:

o IfCy,: H,(C) = H,(C) is continuous and there exists R > 0 such that |z| < |p(2)]
for every |z| > R, then ¢ must be affine. Thus, if ¢(z) = py(2), N > 2, that is,
a polynomial of degree greater than or equal to 2, the operator C, , can never be
continuous.

o If Cy,: H,, (C) = H,, (C) is continuous and there exists R > 0, M > 0 such that
|z2| < M +|p(z)| for all |z| > R, then ¢ must be affine.

The proof of the next result is analogous to the one in [14, Proposition 3.1], stated for
unweighted composition operators.

Proposition 5 Consider two weights u; and us such that, for some a > 1,

lim [C@N) _

|z| =00 ul(az)

If the operator Cy,, : Hy, (C) — H,,(C) is continuous, then ¢ is affine, that is, there exist
a,b € C such that p(z) = az + b.



Proof. It is enough to see that sup,cc .1 ‘ﬁ(j) < oo. If we assume the contrary, then
there exists (z;)x such that |zx| — oo and |p(zx)| > k|zx| for every k € N. This fact and
the continuity condition in Lemma 1 imply

|w(zr) [ua (1) |w (k) [ua(21)

sup —= < sup — < sup — < 00,
ke ur(ozg) wen Uy (kzi) ken U (p(zr))
a contradiction. O

In the rest of the section we study the continuity and compactness of C,, , on the spaces
H,, (C) and H? (C), vy(2) = e ™= m > 0. As the weight v, is essential, Lemma 1 and
Proposition 5 yield a condition under which continuity implies the symbol must be affine:

Proposition 6 Assume w is a multiplier such that there exists o > 1 with

|Zl‘i£noo Jw(z)|elFmet) = o0, (3.1)

If Cpy i Hy, (C) — H,, (C) is continuous, that is, if sup,cc |w(z)|e™#EN=1) < oo, then
@ must be affine. As a consequence, if Cy, is continuous, then ¢ must be affine.

Example 7 The following multipliers satisfy (3.1), and so, only can induce continuous
weighted composition operators on H,, (C) with affine symbols:

e w € H) (C) such that |w(z)| > d for every |z| > R, for some R, > 0. For instance,
if w is a polynomial.

o w(z) = py(2)e™ @) with py and g polynomials of degrees N > 0 and M < 1,
respectively.

However, for w(z) = py(2)e®™ ) M > 1, (3.1) is not satisfied.

In the rest of the paper, we focus on affine symbols p(z) = az + b, a,b € C. As the
weights v,,, m > 0, are rapidly decreasing, we get the following:

Theorem 8 C,,, is continuous on H,, (C) and on HY (C) if and only if

1Cu.oll = sup [w(z)[e™#=HIHD < oo, (3.2)
zeC
and Cy,, is compact on both spaces if and only if
lim |w(z)|emUa=+ol=lzD — @, (3.3)

|z|] =00

Observe that (3.2) implies that the multiplier w must belong to HY (C) and the compactness
on H,, (C) yields Cy, ,(H,,, (C)) C H) (C). As a consequence we get:

(i) If |a| > 1, Cyp can never be continuous on H,, (C), neither on H) (C).

8



(i) if la] =1, Cyy is continuous on H,, (C) and on HY (C) if and only if w = X for
some X € C. In this case, ||Cy || = [N||C,|| = |Ale™ and C,,, is never compact.

(111) If |a| < 1, the continuity and compactness depends on the multiplier. For instance:

a) Cy is continuous and compact if w is a polynomial. In particular, \Cy, is
compact for every A € C.

b) Ifw(z) = pn(2)e™ ) with px and qar polynomials of degrees N > 0 and M > 0,
respectively, we get:
- Cuy.p is continuous if and only if w(z) = pn(2)e”* 0 and [by| < m(1 — |a),
or w(z) = Ae*t% and |by| = m(1 — |a).

- Cyp 18 compact if and only if w(z) = py(2)e* ™™ and |by] < m(1 — |al).

Proof. Lemmata 1 and 2 yield the characterization of continuity, since (3.2) implies w €
Hgm((C). B_SWTCO = B,, because the weights are rapidly decreasing, so Lemma 3 yields the
characterization of compactness of Cy,, : H) (C) — H_ (C). AsC,, : H,,,(C) — H,,,(C)
is its bitranspose (see [10, Corollary 1.2 and Example 2.2]), we also get the characterization
holds on H,,, (C). Moreover, compactness yields Cy, (H,, (C)) € H) (C).

Let us see first the continuity in (i) and (ii). Assume the operator is continuous and |a| > 1.
We have

m|az+b| mhﬂ—mw—mbh>e—mw

> sup fw(z)e sup [w(z)],

|Cuwl| = sup [w(z)le
zeC zeC zeC

so w must be constant, that is, there exists A € C such that C,, , = AC,,. Now, (3.2) yields
the conclusions. The compactness of (ii) follows by (3.3), since for |a] = 1, |\|em{e=+bl=Iz) >
A=l for every z € C.
(iii) a) If w(z) = pny(2), that is, a polynomial of degree N, it is easy to see that

|z| =00 |z| =00
b) Given py(z) = Z;V:O a;z?,a; € C, and qp(z) = ij‘io bjz7,b; € C, consider py(z) =
Z;V:o laj|2?,a; € C, and qpr(z) = Zjﬂio b;|27,b; € C. Then for every z € C we have

oy (2)e2 ) |gmllaz+b—12) < 5\ ((5])e@ (=D —ml=l1—a]) gmib]

which yields the conditions for the continuity. Moreover, as the last inequality implies
My, 00 |pav(2) et () |emazb1=12D) = 0 if M =1 and |b1] < m(1 — |a|), we get compactness
in this case. On the other hand,

sup ‘pN(Z)éJM(Z) ‘em(laerb\*IZ\) > el sup ’pN(Z)"eqM(Z)fmIZ\(lflal) ‘

zeC zeC

So, for M > 2 the operator can not be continuous. If M = 1, then ¢y/(2) = b1z + by and
we get that there exists ¢ € C, |¢| = 1, such that

sup |pN(,z)eqM(Z) |€m(\a2+b\—|2\) > gmlbl |eb0‘ sup |pN(CT)|e|b1|r—mr(1—|a|)7
zeC r>0
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which yields the assertion about the lack of continuity. When [b;| = m(1 —|a|) and N = 0,
the last inequality yields

‘l|im |w(z)|emUaztbl=lzD > o=mibl| yebo| —£ (3.4)
Z|—00
and so the operator can not be compact. O

4 Dynamics of weighted composition operators

In this section we study the dynamics of C,,, on H,,,(C) and H_ (C). The iterates have
the expression

Clo = (waz))) F(&H(=), k€ N.J € H,,(©).

In what follows, denote wyy(2) = H?;S w(¢?(z)), z € C. Observe that the symbol p(z) =

az+ b, a,b € C, has a fixed point zg = ﬁ if and only if @ # 1, and for k € N, we get

k 1—aP k b b
k a"z + b =at(z — 1) + 2 ifa £ A
— a a a 1
7 {z+bkifa:1. (4.1)

Let us study first some general preliminary results.

Proposition 9 Consider a weight u on C such that C,, , : H,(C) — H,(C) is continuous.
Then:

(1) If |lw(zo)| > 1 for zo € C a fized point of ¢, then C.,, is neither power bounded nor
mean ergodic.

(ii) If Cy is power bounded, then there exists C' > 0 such that ||wyy|l. < C for every

ke N.

lwplle _ 0.

(iii) If Cy, is mean ergodic, then limy —

Proof. (i) follows easily from the fact that, for zy € C a fixed point of ¢, then

€% Wllu 1€ (1) (20)] _ |w(zo)*
k: > k; u(zg) = - u(zo).

For (i) and (iii), observe that there exists C' > 0 such that [|C} (1)|l, = [Jwyll. < C for

k
every k € N if C,, , is power bounded, and limy, w = limy, Hw[+”“ = 0 if the operator

is mean ergodic. O

Since C’?’fj’w, k € N, is a weighted composition operator associated to the symbol ¢* and
the multiplier wyy(z) = Hf;é w(¢?(z)), Lemmata 1 and 2 provide a characterization for
the power boundedness of C,, ,:

10



Proposition 10 Given a weight u, the operator Cy, ., : H,(C) — H,(C) is power bounded
if and only if there exists C' > 0 such that, for every k € N,

ICE 1 = s (H Iw(soj(Z)N) o <c 2)

u(*(2))

If u is essential, we replace U by u in (4.2). In the case of Cy, : HY(C) — HY(C), we also
need w € H(C) and u rapidly decreasing.

Corollary 11 The operator C.,, is power bounded on H,, (C) and on H) (C) if and only
if there exists C' > 0 such that, for all k € N,

k—1
|C6 o]l = sup (H Iw(wj(Z))l) IO < 0 (43)
zE §=0

The next theorem relates the spectrum of the operator to uniform mean ergodicity. The
necessary condition is due to Dunford [19, Proposition 3.1] and the sufficiency is proved
by Lin [24].

Theorem 12 (Dunford-Lin) An operator T on a Banach space X is uniformly mean
ergodic if and only if (Hj;@—n”)n converges to 0 and, either 1 € C\ a(T) or 1 is a pole of order
1 of the resolvent Ry : C\ o(T) — L(X), Rr(\) := (T — XI)~'. Consequently, if 1 is an
accumulation point of o(T'), then T is not uniformly mean ergodic.

In the following result we calculate the spectrum of the composition operator. It will
be useful in order to study the dynamics.

Proposition 13 Given ¢(z) = az +b, a,b € C, and C, : H,,, (C) - H,,, (C) or C, :
H) (C) — H) (C), we get:

(1) Ifla| <1, a#1, 0(C,) ={a”, n=0,1,...}.
(ii) If a =1, o(Cp) = {e’, ]3] < m|b|}.

Proof. As the bitranspose of C, : H} (C) — H) (C)is C,, : H,, (C) — H,,,(C) (see [10,
Corollary 1.2 and Example 2.2]), we get that the spectrum is the same in both spaces.

(i) If a # 1, then C, (z—ﬁ)n =a" (z—ﬁ)n, n € Ny, so {a", n=0,1,...} C o(C,).
Moreover, by (4.3), 7(C,,) = limy [|CE[[V/* < limy exp (1) = 1, thus, 0(C,) € D. Pro-
ceeding as in the proof of [21, Proposition 3.3(i)], we get that a nonzero eigenvalue in
C must be of the form a™ for some positive integer n € Ny. If |a] < 1, C, is compact
by Theorem 8, then its spectrum contains only zero and eigenvalues, then the conclu-
sion holds. Now, consider the case |a|] = 1. If there exists n € N such that a” = 1,
then C7} = I, therefore (o(C,))" = o(C}) = {1} by the spectral mapping theorem and

so, 0(Cy) C {a®, n=0,1,...}. Otherwise, if |[a| = 1 and a™ # 1 for every n € N,

11



we get T C o(Cy). C, has Cyp-1 as a continuous inverse, where ¢~ '(z) = 1z — b and

r(Cp1) = limy [|CE L [[VF < limy, exp(kﬁﬂb/la‘) = 1. From this, together with r(C,) <1, we

get 0(C,) C T, as we wanted to see.

(ii) If @ = 1, then C,, is the translation operator Ty, : H,, (C) — H,, (C), f(z) — f(z+b).
Observe that it is indeed the differential operator ¢(D) associated to the exponential func-
tion ¢(z) = €. So, again by the spectral mapping theorem and [3, Proposition 5.10], we
get 7(Cy) = §(o(D)) = $(mb) = {e, |u| < m}. .

In what follows we study the power boundedness, (uniform) mean ergodicity and hy-
percyclicity of C,, ., associated to the symbol ¢(2) = az+b, by distinguishing the following
b

three possible cases for the parameter a: (1) if |a| < 1, that is, if 20 = 7 is an attractive

fixed point of ¢; (2) if |a|] = 1,a # 1, that is, if ¢ is a rotation around z; = %; or
(3) if @ = 1, that is, if ¢ is a translation. Hypercyclicity is considered only in the case
a = 1, since otherwise ¢ has a fixed point and [7, Proposition 2.1] yields C,,, can not be
weakly supercyclic. In the case a # 1, by the next remark we can consider without loss of

generality that b = 0.

Remark 14 If a # 1, and X = H,(C) or X = H?(C), it is easy to see that the dynamical
systems C,, : X — X, f+— f(az+0b) and C,, : X — X, f — f(az) are conjugated through
the homeomorphism 7' : X — X, f(2) = f(z — &), since Tt 0 C,, o T = C,,.

l—a

4.1 Case |a| <1

Proposition 15 Given ¢(z) = az +b, a,b € C, |a| < 1, the operator Cy,, : H,, (C) —
H,, (C) and Cy, : H) (C) — H) (C) satisfies:
(i) If w(z) = pn(2)e* 0 where py is a polynomial of degree N > 0 and by, by € C are
b1b
such that C, , is continuous, it is not power bounded if \pN(ﬁ)Hel%ﬁbo\ > 1. In

b1b
particular, this is satisfied if w(z) = \zNeb1# b0 and || |ﬁ’N > \eﬁ_bol.

(ii) If w(z) = XeP**% |by| < m(1—la|), it is power bounded if and only if |\ < |e%7l’0|.

b1b —bo k
If Al < le==17], then ||Cy |l = 0 as k — oo,

(iti) If w(z) = XNz — £=)NeP= o |by| < m(1 — |a]), N # 0, it is always power bounded.
Even more, ||C} || = 0 as k — oo.

Proof. (i) follows directly by Proposition 9(i).

12



For the cases (ii) and (iii) we need some estimates. If w(z) = A(z — -2 )Nebr#t0 N >0,

1-a

k k o Nj| bi(a? +b1_“j)+b b e (Ja* +b1—a’“| |2])
Cu = |A al | ETY =T L qup |2 — —— | M AT T T
ICu.ql Al E)H | [)suplz =3,
ok
< P [ T | (o N DR/ <|A||€b113a+bo|>’“sup O B )
B zeC l—a
Nk

< 62‘1@&'(m+‘lb_1l‘)|a|N(k—1)k/2 (|/\||€b11b“+b°|>ksup L b @|z|(1|f1\l\_m) (4.4)

B z€C I—a
(ii) follows by Proposition 9 and because if we put N =0 in (4.4), we get

k
IG5 Il < oD ([ o)
(iii) For |by| < m(1 — |a|) and k big enough, we get
b | b |V lal(m— Lt
sup |z — —— AT < max [ sup [z — OVE qup [z Ve Hm= 1)
z€C l1—-a el 2 l—a el oL
2 ok -\
< max (’ 1 : m ) : (4.5)
—al e(m—1557)
Therefore, by (4.4) and (4.5), for k big enough we obtain
Y
N
ICh Nl < 62|1lﬁ‘a\(m+\lb—1¢‘1\)|a|N(’f—1)k/2 |)\||€b1ﬁ+bo| ( QNkb | ) i o}
e(m — 177,7)

which yields the conclusion. O

In the last assertion of the next theorem we provide an example of a power bounded but
not mean ergodic operator on H (C). This differs from the corresponding result obtained
when considering the space H(C). In this case, the operator is power bounded, and thus,
uniformly mean ergodic (see [6, Theorem 3.10]).

Theorem 16 Consider o(z) = az+b, 2 € C, a,b € C, |a| < 1, and w(z) = py(z)e?= 00,
bo,b1 € C, where py is a polynomial of degree N > 0. The operator Cy,, : H,, (C) —
H,, (C) and Cy, : H) (C) — H) (C) satisfies:

a) If |b1| < m(1—lal), then Cy,, is uniformly mean ergodic whenever it is power bounded.
This is satisfied, for instance, if w is a polynomial.
- If w(z) = APt X € C, power boundedness, mean ergodicity and uniformly

b1b b1b
mean ergodicity are equivalent to || < |e==1 |, If |A| < |ea-1 | we even get
ICE =0 as k — .

13




- Ifw(z) = Mz — $2)Neh=tho N £ 0, Cyp is always uniformly mean ergodic.

Even more, ||C} || = 0 as k — oo.

b) If |by] = m(1 — |a|) and w(z) = Xeb*Tbo X\ € C, we have:

bi1b
S If A < lem ™| then Cu,p is uniformly mean ergodic and ||Cf || — 0 as
k — oo.
b1b
S If|A > |ea T | then Cu,p s not mean ergodic.

b1b
-If A= ear1 % gnd a € R, a > 0, then Cy is power bounded but not mean
ergodic on H) (C).

Proof. a) follows by Theorem 8, since C,, , is compact, and thus, uniformly mean ergodic
whenever it is power bounded. The examples follow by Propositions 9(i) and 15.

b) The case || < exti7t| follows by Proposition 15 and the case || > eati o by

b1b
Proposition 9(i). Consider A = e=-1 ™ and a € R, a > 0. By Remark 14 we can assume
without loss of generality that b = 0, and thus, that w(z) = €”* and ¢(z) = az. Observe

1—

ak biz
that for f =1 and a fix z € C, we obtain C}, (f)(z) = ¥ e - eT-e as k tends to oo.
So, if we assume the operator is mean ergodic on Hgm((C), then the Cesaro means of f must

b1z b1z
converge to eTa € Hf}m(C). But this is a contradiction, since lim;|_ eTa | e~ # 0.
Indeed, as |b;| = m(1 — |a|), we can find ¢ € C, |¢| = 1 such that
bier [by[r
el—a e_mT e 6|1—a\€_mr — 1
O

By Proposition 15 and Theorem 16, in the case of multiples of composition operators,
we get:

Corollary 17 Consider p(z) = az+ b, z € C, |a| < 1, and the operator \C,, A € C, on
H,, (C) and on H) (C). The following are equivalent:

(1) A\Cy is power bounded.

(i) \Cy, is mean ergodic on H,, (C) and on H) (C).
(111) ACy, is uniformly mean ergodic.

(i) [N <1

In the case |\| < 1, we get |[(AC,)*|| = 0 as k — oo.
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4.2 Case |a|] =1,a # 1

In Theorem 8 we have seen that continuous weighted composition operators when |a| =
1,a # 1, are just those of the form AC,, A € C. In the next theorem we characterize power
boundedness and mean ergodicity.

Theorem 18 Let ¢(2) = az + b, |a| = 1,a # 1, and consider the operator \Cy,, A € C.
The following is satisfied:

(i) If |\ < 1, the sequence (ACy)* converges to 0 on H,,,(C) and on HY (C). Thus, the
operator is power bounded and uniformly mean ergodic.

(ii) If |\| > 1, the operator is neither power bounded nor mean ergodic on H,, (C) neither

on H (C).

(1) If [\| = 1, the operator is power bounded and mean ergodic on HY (C). Moreover, it
satisfies:

a) If a™ =1 for some ng € N (consider the smallest ng) the operator is uniformly
mean ergodic on H) (C) and on H,, (C).

- limk%Zle()\C’@)j =0 X\ #1 for every s € N or if A =1 for some
so € N and @’ # § for every j € N.

- Otherwise, if \* =1 for some sy € N and there ezists jo € Ny (consider
the smallest sy and jy) such that @™ = 5, then limy, ¢ Z?ZI(AC’SD)jf(z) =
S0 Qingtio (2 — 20)M0F0 for every f(z) = >, alz — 20)" € H,,,(C).

When A% =1 for some sq € N, the operator is periodic with period m.c.m(ng, So).

b) If a™ # 1 for every n € N, the operator is not uniformly mean ergodic, neither
mean ergodic on H,, (C).

- If there exists jo € Ny such that o’ = 3, then limk%Zle()\Cw)jf(z) =
ajo(z — 20)7 for every f(z) = > 2y w(z — z0)t € HY, (C).

- Otherwise, limy, 1 Z?Zl()\qo)jf =0 for every f € H) (C).
Proof. (i) and the power boundedness of (iii) follow by (4.3), since ||(AC,,)¥| < |)\|k€2m%
for every k € N. For (ii) apply Proposition 9 (ii) and (iii).
(iii) Let us study first the uniform mean ergodicity. By Proposition 13(i), we have that
o(ACy) = {Aa", n=0,1,...}. So, if a” # 1 for every n € N, 1 is an accumulation point of
o(AC,) and then, by Theorem 12, the operator can not be uniformly mean ergodic, neither
mean ergodic on H,, (C). If a™ =1 for some ny € N, the spectrum is finite and we have
the following situation. In the case A° # 1 for every s € N, we have 1 ¢ o(AC,), so the
operator is uniformly mean ergodic by Theorem 12. Otherwise, if A** = 1 for some sy € N,
the operator is periodic with period m.c.m(ng, s¢), thus, uniformly mean ergodic.
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Let us calculate now the Cesaro means of the monomials. Put zy = ﬁ and observe that,
for Jo € N(),

! : , . (z—20)° Coda (2 —z)0 1 — (Na®)F
hin z jzl()\qo)ﬂ(z — 2) = hlrgn — jzl()\ajo)] R hlgn ’ (4.6)
So, we get
1o 0if afo # 1
EZ (ACL) (2 — z) = { (2 — o) if a0 — 1 (4.7)

(a) Assume a™ =1 for some ny € N (consider the smallest). If a/ # + for every j € Ny
(this is always satisfied if A* # 1 for every s € N), we get limy, 1 Z?Zl()\qp)j f =0 for every
f e H,, (C)by (4.7). If * =1 for some sy € N (consider the smallest) and there exists
jo € Ny (consider the smallest) such that a® = § (this yields so|ng) then (4.7) implies
lmny L5 (G F(2) = S5 (= — )00 for every () = Y55l — 20)' €
H,, (C), since &/ = 1 if and only if j = Ing + jo, | € N.

(b) Assume now a™ # 1 for every n € N. If there exists jo € Ny such that @ = 1, this jo
is unique since a is not a root of unity. Thus, (4.7) yields that (; Z?Zl()\(%)j f)x either

converges to m(z —2g)% or to 0 in H,,, (C) for every polynomial f. As the polynomials

are dense in H Om(C) and AC, is power bounded, we obtain the mean ergodicity on H2(C).
O

4.3 Casea=1

In Theorem 8 we have seen that continuous weighted composition operators when a = 1
are just those of the form AC,,, A € C, where C,, is the translation operator 73, : H,, (C) —
H,, (C), f(z) = f(2+0b). Observe that AC,, is the differential operator ¢(D) associated to
the exponential function ¢(z) = Aeb.

In the next theorem we study the power boundedness and (uniform) mean ergodicity of
the operator. In assertion (iii) we provide an example of a uniformly mean ergodic operator

whose iterates converge to 0 in the strong operator topology but not in the operator norm.

Theorem 19 Let p(z) =2 +b, b€ C, b # 0, and consider the operator \C,, A € C. We
get |[(ACL)¥|| = (|\|e™®Y, k € N and the following assertions:

(i) If || < e™™Pl the sequence (AC,)* is morm convergent to 0. Thus, the operator is
power bounded and uniformly mean ergodic on both spaces.

(i3) If |\| > e™™ the operator is neither power bounded nor mean ergodic on H,, (C)
and on H) (C).
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(iii) If |A| = e=™Pl then |[(AC,)E|| = 1 for every k, and so the operator is power bounded
and (AC,)* does not converge to 0. It is mean ergodic on H (C) with limy(ACy)* f =
0 for every f € H3m<C)~ If X # e™ it is uniformly mean ergodic. However, if
A = e ™ it is not uniformly mean ergodic and not mean ergodic on H,, (C).

Proof. (i) and the power boundedness of (i) and (iii) follow by (4.3), since it implies
IAC) | = (IA[e™*)*, k € N.
(ii) Given A € C such that [A| > e ™l consider @ € C such that |a| < m, ab = |a||b] and

IA| > e7leltl > e=mb Then, e,(2) 1= e** € HY (C) and +(AC,)¥(ea(z)) = ea(z)%. As
|Ae®’| > 1, we get the operator can not be mean ergodic on HY (C), neither on H,, (C).

(iii) By Proposition 13(ii), we get o(AC,) = {\e?, |§] < m|b|}. For |§] < m|b|, Ae® = 1
yields e®®) = |1/A| = e™ and thus, A = e~ Therefore, if A # e 1 ¢ o(A\C,) and
so, Theorem 12 yields the operator is uniformly mean ergodic. If A = e~/ then 1 is an
accumulation point of o(AC,). So, the operator is not uniformly mean ergodic by Theorem
12 and not mean ergodic on H,,, (C), as it is a Grothendieck Dunford-Pettis space. Let us

see the mean ergodicity in this case. Consider a € C, |a| < m. Observe that e, € H) (C)
and (AC,)*(ea(2)) = €a(z)(Ae®®)F. As by hypothesis [Ae®| < 1, we get (AC,)F(eq) - 0.
As the set span({eq, |a| < m}) is dense in H) (C) (see [3, Lemma 5.4]) and AC,, is power

bounded, then it is mean ergodic on H (C) with lim;(ACy,)* f = 0 for every f € H) (C).
O

Theorem 20 Given p(z) = z+0b, b € C, b # 0, the weighted composition operator AC,,
A € C, satisfies:

(i) It is mot hypercyclic if || < e ™"l o |A| > ™.

(i) It is hypercyclic if e bl < |A| < e In this case, it is topologically mizing and
chaotic.

Proof. (i) For |A\| < e~™Pl the operator is power bounded by Theorem 19, hence not
hypercyclic. Let us study the case [A| > e™l. By Proposition 13(ii), we get o(\C,) =
{Ae®, 6] < mlb|}, then o(AC,) does not intersect the unit circle T, as |A|[ed] = |A]ef(®) >
|Ae=™l > 1 for every |§| < m|b|. Therefore, by Kitai’s criterion [20, Proposition 5.3], the
operator can not be hypercyclic.

(ii) Consider now the path {a(t) = Al —m <t < m} C a(AC,). If eIl < | )| < emll,
as |a(—m)| < 1 and |a(m)| > 1, 0(AC,) NT # 0 and min{|z| : |A|[e**| = 1} < m. Indeed,
there exists || < m|b| such that |A|[e’| = 1 and e ™" < R < emll by the hypothesis
on A. Thus, min{|z| : [A||e**| = 1} = 1/|b| min{|a| : [A]e®® = 1} = 1/|b| min{[¢| : |\|e* =
1,t € R} < m. As lim, ., e™™"e”" = 0 for min{|z| : |\||e?*| = 1} < B < m, the operator is
topologically mixing, chaotic and not mean ergodic by [4, Theorem 3.1]. O
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5 Composition operators on H, (C) and on H, (C)

In this concluding section, we compile the results for the relevant case w = 1, that is, for
composition operators C,, ¢(z) = az+b, a,b € C. The dynamics in this case is completely
characterized. Multiplication operators are not considered, since they are trivial on these
spaces (see Theorem 8(ii)).

Proposition 21 Let p(z) = az+ b, a,b € C. The composition operator C, satisfies:

(i) C, is continuous on H,, (C) and on H) (C) if and only if |a| < 1. If it is continuous,

Um
then ||C,|| = e™Pl.

(i) Cy, : H,, (C) — HY (C) is compact if and only if C, : H) (C) — HY (C) is so, if
and only if |a| < 1. If C, is compact, it can be approximated by finite-rank operators.

Proof. By Theorem 8, it only remains to prove that for |a| < 1, C,, can be approximated
by finite-rank operators. As H,, (C) and H} (C) are isomorphic to £ and ¢y, respectively
[26], the spaces have the (bounded) approximation property, so as the operator is compact
on them in this case, it can be approximated by finite-rank operators. Indeed, given
f(z) = Z?io ci(z— =) € H,,,(C), we get Cf(z) = Zj 0@l cj(z — 7)1, By the Cauchy
inequalities, |¢;|[|(z — 12) |l < ||flm for every j € N. So,

k ; b ; la[*+1
ICof =D alei(z = 37— llm < Z [l Ll =l = T
=0 j=k+1
and we obtain that C, f belongs to the closure of the polynomials, that is, to HS (C). The
argument above also shows that the finite-rank operators (Cy)n(D 72, ¢;j(z — 1ba)j ) =

N o aei(z — )7 are bounded on H, (C) and that [|C, — (C,)n]|l < |a[v+ 0as N
=0 j 1—a m ® ® 1—|al
tends to oo. O

Theorem 22 Let p(z) =az+b, a,b € C, |a] < 1,a # 1. The composition operator C,, is
always power bounded on H,,(C) and on H) (C), hence not hypercyclic, with

17ak
1—a

m|b|

1ol
IChll =e < ™M= for every k € N. (5.1)
Moreover, we get:
(i) If la] <1, Cy is uniformly mean ergodic with limy, |3 Zfzo CJ — Cﬁ“ = 0, where
C v 1is the evaluation at the fized point 1%
l—a
(1t) If la| = 1,a™ =1 for some n € N, Cy, is periodic and then uniformly mean ergodic.
In this case, for every f(z) = Z;io a;j(z — 20)7 in the space,

o0

k
Z %Z aﬂz+b _aj Zalnz—zo ) (5.2)
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(1ir) If la] = 1,a™ # 1 for every n € N, C, is not uniformly mean ergodic, it is mean
ergodic on HY (C) with limy, 1 Z§:1 Clf = C_v_[ but not mean ergodic on H,, (C).

Proof. Proceeding as in the proofs of [31, Theorems 4 and 5] we get limy ||3 25:0 Cl -
C o || = 0if |a| < 1. The other assertions are a consequence of (4.3) and Theorem 18.

Statements (ii) and (iii) can also be obtained by [22, Proposition 2.3] and Remark 14. O

In the case a = 1, C,, is the translation operator Ty, : H,,,(C) = H,,,(C), f(2) — f(z+
b). It is the differential operator ¢(D) associated to the exponential function ¢(z) = €.
Theorems 19 and 20 yield the following:

Theorem 23 Given p(z) = z+b, b € C, the translation operator C, on H,, (C) and on
H)) (C) satisfies ||CE|| = e™* k€ N, and:

(i) It is topologically mizing and chaotic on H) (C).

(i) It is neither power bounded nor mean ergodic on H) (C) and on H.

Um

(©).

Acknowledgments

The research of the author was supported by the project MTM2016-76647-P.

References

[1] F. Bayart, E. Matheron, Dynamics of linear operators. Cambridge Tracts in Mathe-
matics, vol. 179, Cambridge University Press, Cambridge, 2009.

[2] M.J. Beltrén, Spectra of weighted (LB)-algebras of entire functions on Banach spaces,
J. Math. Anal. Appl. 387 (2012) 604-617.

[3] M.J. Beltran, Dynamics of differentiation and integration operators on weighted spaces
of entire functions, Studia Math. 221 (1) (2014) 35-60.

[4] M.J. Beltran, J. Bonet, C. Fernandez, Classical Operators on the Hormander Algebras,
Discrete and Continuous Dynamical Systems 35 (2) (2015) 637-652.

[5] M.J. Beltran-Meneu, M.C. Gémez-Callado, E. Jorda, D. Jornet, Mean ergodic compo-
sition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 270 (12)
(2016) 43694385.

[6] M.J. Beltran-Meneu, M.C. Gémez-Collado, E. Jordd, D. Jornet, Mean ergodicity of
weighted composition operators on spaces of holomorphic functions, J. Math. Anal.
Appl. 444 (2016) 1640-1651.

[7] J. Bes, Dynamics of weighted composition operators, Complex Anal. Oper. Theory 8
(2014) 159-176.

19



[8] K.D. Bierstedt, J. Bonet, A. Galbis, Weighted spaces of holomorphic functions on
balanced domains, Michigan Math. J. 40 (1993) 271-297.

[9] K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic
functions, Studia Math. 127(2) (1998) 137-168.

[10] K.D. Bierstedt, W.H. Summers, Biduals of weighted Banach spaces of analytic func-
tions, J. Austral. Math. Soc. (Series A) 175 (1993) 70-79.

[11] J. Bonet, P. Domaniski, A note on mean ergodic composition operators on spaces of
holomorphic functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM
105(2) (2011) 389-396.

[12] J. Bonet, P. Domanski, M. Lindstrém, J. Taskinen, Composition operators between
weighted Banach spaces of analytic functions, J. Austral. Math. Soc. 64 (1998) 101-118.

[13] J. Bonet, M. Friz, E. Jord4, Composition operators between weighted inductive limits
of spaces of holomorphic functions, Publ. Math. 67(3) (2005) 333-348.

[14] J. Bonet, E.M. Mangino, Associated weights for spaces of p-integrable entire functions,
Quaestiones Mathematicae (2019), DOI: 10.2989/16073606.2019.1605420.

[15] J. Bonet, W.J. Ricker, Mean ergodicity of multiplication operators on weighted spaces
of holomorphic functions, Arch. Math. 92 (2009) 428-437.

[16] T. Carroll, C. Gilmore, Weighted composition operators on Fock Spaces and their
dynamics, arXiv:1911.07254v1.

[17) M.D. Contreras, A.G. Hernandez-Diaz, Weighted composition operators in weighted
Banach spaces of analytic functions, J. Austral. Math. Soc. 69(1) (2000) 41-60.

[18] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions,
CRC Press, Boca Raton, 1995.

[19] N. Dunford, Spectral Theory I. Convergence to projections, Trans. Amer. Math. Soc.
54 (1943) 185-217.

[20] K.G. Grosse-Erdmann, A. Peris, Linear Chaos, Springer, London, 2011.

[21] K. Guo, K. Izuchi, Composition operators on Fock type spaces, Acta Sci. Math. 74
(2008) 807-828.

[22] E. Jord4, A. Rodriguez, Ergodic properties of composition operators on Banach
spaces of analytic functions, J. Math. Anal. Appl. 486 (2020), 14 pp. 123891,
https://doi.org/10.1016/j.jmaa.2020.123891.

(23] Y.X. Liang, Z.H. Zhou, Hypercyclic behaviour of multiples of composition operators
on the weighted Banach space, Bull. Belg. Math. Soc. Simon Stevin 21 (2014) 385-401.

20



[24] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974) 337-340.

[25] H.P. Lotz, Uniform convergence of operators on L> and similar spaces, Math. Z. 190
(1985) 207-220.

[26] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomophic
functions, Studia Math. 175 (2006) 19-45.

[27] T. Mengestie, Cyclic and supercyclic weighted composition operators on the Fock
space, arXiv:1901.01697.

28] A. Miralles, E. Wolf, Hypercyclic composition operators on H?-spaces, Math. Nachr.
286 (1) 34-41 (2013).

[29] A. Montes-Rodriguez, Weighted composition operators on weighted Banach spaces of
analytic functions, J. London Math. Soc. 61 (2000) 872-884.

[30] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.

[31] W. Seyoum, T. Mengestie, J. Bonet, Mean ergodic composition operators on general-
ized Fock spaces, RACSAM 11 (6) (2020), https://doi.org/10.1007/s13398-019-00738-w.

[32] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, Berlin,
1993.

[33] E. Wolf, Power bounded weighted composition operators, New York J. Math. 18 (2012)
201-212.

[34] K. Yosida, S. Kakutani, Operator-theoretical treatment of Markoff’s Process and Mean
Ergodic Theorem. Ann. Math. 42 (1941) 188-228.

21



