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Abstract

We study the dynamics of the weighted composition operator Cw,ϕ on the weighted
Banach spaces of entire functions Hv(C) and H0

v (C). We characterize the continuity
and compactness of the operator and, in the case of affine symbols ϕ(z) = az+b, a, b ∈
C, and exponential weights, we analyze when the operator is power bounded, (uni-
formly) mean ergodic and hypercyclic. Continuous weighted composition operators
when |a| = 1 are just multiples of composition operators λCϕ λ ∈ C. When |a| < 1,
we consider as a multiplier w the product of a polynomial by an exponential function.
For multiples of composition operators, we get a complete characterization of power
boundedness and mean ergodicity and we study the hypercyclicity in terms of λ. An
example of a power bounded but not mean ergodic operator on H0

v (C) is provided.
For the case of composition operators, we obtain the spectrum and a complete char-
acterization of the dynamics.
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1 Introduction and outline of the paper

The purpose of this paper is to study the dynamics of the weighted composition operator
Cw,ϕ : f → w(f ◦ϕ) on the weighted Banach spaces of entire functions Hvm(C) and H0

vm(C),
where vm(z) = e−m|z|, z ∈ C, m > 0, is an exponential weight. More precisely, we study
when Cw,ϕ is power bounded, (uniformly) mean ergodic and hypercyclic. We refer to the
next section for the precise notation and definitions.

Weighted Banach spaces of holomorphic functions have been widely studied. They
appear in a natural way in the study of the growth of analytic functions. See for example
[9] and [26] and the references therein.

∗Departament d’Educació i Didàctiques Espećıfiques, Universitat Jaume I, Av. Vicent Sos Baynat, s/n,
E-12071. Castelló de la Plana, Spain.
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Composition operators between weighted spaces of holomorphic functions have been
studied by several authors. Boundedness and compactness on weighted Banach spaces of
holomorphic functions on the disc D were characterized by Bonet, Domański, Lindström
and Taskinen in [12], and on weighted inductive limits of Banach spaces of holomorphic
functions defined on arbitrary open subsets of C by Bonet, Friz and Jordá in [13]. There is
a vast literature about composition operators on Banach spaces of holomorphic functions.
We refer the reader to the books by Cowen and MacCluer [18] and Shapiro [32].

The study of Cw,ϕ on different spaces of functions has been a very active area of research.
For example, it is well-known that all isometries of the Hardy spaces Hp(D) for 1 ≤ p <∞,
p 6= 2, are weighted composition operators [18]. The boundedness and compactness of Cw,ϕ
on weighted Banach spaces of holomorphic functions on the disc D have been characterized
by Contreras and Hernández-Dı́az in [17] and by Montes-Rodŕıguez in [29].

The dynamics of composition and weighted composition operators on spaces of holo-
morphic functions has recently attracted the attention of many researchers. See for instance
[5], [6], [7], [11], [16], [21] [22], [27], [31], and the references therein.

Concerning weighted Banach spaces of holomorphic functions on D, Bonet and Ricker
[15] studied the mean ergodicity of multiplication operators, Miralles and Wolf [28] the
hypercyclicity of the composition operator Cϕ, and Liang and Zhou [23] the hypercyclicity
of its multiples λCϕ, λ ∈ C. The power boundedness and mean ergodicity of weighted
composition operators on Hv(D) have been studied by Wolf in [33].

To our knowledge, this is the first attempt to study weighted composition operators
on weighted Banach spaces of entire functions and their dynamics. In Section 2 we fix
the notation and review some basic results. In Section 3 we characterize the continuity
and compactness of Cw,ϕ on general weighted Banach spaces of entire functions, obtaining
analogous results to those in [17] and [13] for the corresponding spaces on the disc and
for unweighted composition operators, respectively. It is known (see [2, Corollary 30] and
[14, Proposition 3.1]) that if the composition operator Cϕ on Hvm(C) and on H0

vm(C) is
continuous, then the symbol ϕ must be affine, that is, ϕ(z) = az + b for some a, b ∈ C. In
Proposition 6 we give a condition under which the continuity of the weighted composition
operator also implies the affinity of the symbol. In Theorem 8 we characterize the conti-
nuity and compactness of Cw,ϕ on Hvm(C) and on H0

vm(C) for affine symbols:

Theorem A
Given ϕ(z) = az + b, a, b ∈ C, the weighted composition operator Cw,ϕ is continuous
on Hvm(C) and on H0

vm(C) if and only if ‖Cw,ϕ‖ = supz∈C |w(z)|em(|az+b|−|z|) < ∞, and
compact if and only if lim|z|→∞ |w(z)|em(|az+b|−|z|) = 0. As a consequence we get:

(i) If |a| > 1, Cw,ϕ can never be continuous on Hvm(C), neither on H0
vm(C).

(ii) If |a| = 1, Cw,ϕ is continuous if and only if w ≡ λ, λ ∈ C, and it is never compact.

(iii) If |a| < 1, the continuity and compactness depends on the multiplier. For instance:

a) Cw,ϕ is continuous and compact if w is a polynomial.
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b) If w(z) = pN(z)eqM (z), with pN and qM polynomials of degrees N and M 6= 0 :

- Cw,ϕ is continuous if and only if w(z) = pN(z)eb1z+b0 and |b1| < m(1− |a|)
or w(z) = λeb1z+b0 , λ ∈ C, and |b1| = m(1− |a|).

- Cw,ϕ is compact if and only if w(z) = pN(z)eb1z+b0 and |b1| < m(1− |a|).

In Section 4 we study the spectrum of the composition operator and the power bound-
edness, (uniform) mean ergodicity and hypercyclicity of Cw,ϕ on the spaces Hvm(C) and
H0
vm(C) when ϕ(z) = az + b. We compile the main results of Proposition 15 and Theo-

rems 16, 18, 19 and 20 in the next Theorem. The case a = 1 refers to multiples of the
translation operator. It should be noted that it provides an example of a uniformly mean
ergodic operator whose iterates converge to 0 in the strong operator topology but not in
the operator norm. It is also worth mentioning that in the case of |a| < 1 we provide an
example of a power bounded operator on H0

v (C) which is not mean ergodic.

Theorem B
Given ϕ(z) = az + b, a, b ∈ C, the operator Cw,ϕ on Hvm(C) and H0

vm(C) is never weakly
supercyclic if a 6= 1. Moreover it satisfies:

(i) When |a| < 1 and w(z) = pN(z)eb1z+b0 , b0, b1 ∈ C, pN a polynomial of degree N :

a) If |b1| < m(1 − |a|), then Cw,ϕ is uniformly mean ergodic whenever it is power
bounded. This is satisfied, for instance, if w is a polynomial.

- If w(z) = λeb1z+b0 , λ ∈ C, power boundedness, mean ergodicity and uni-

formly mean ergodicity are equivalent to |λ| ≤ |e
b1b
a−1
−b0|.Moreover, ‖Ck

w,ϕ‖ →
0 if |λ| < |e

b1b
a−1
−b0|.

- If w(z) = λ(z − b
1−a)Neb1z+b0 , N 6= 0, ‖Ck

w,ϕ‖ → 0, so it is always power
bounded and uniformly mean ergodic.

b) If w(z) = λeb1z+b0 , λ ∈ C, and |b1| = m(1 − |a|), b1 6= 0, then Cw,ϕ is power

bounded if and only if |λ| ≤ |e
b1b
a−1
−b0|.

- If |λ| <
∣∣∣e b1ba−1

−b0
∣∣∣ , then ‖Ck

w,ϕ‖ → 0, so Cw,ϕ is power bounded and uniformly

mean ergodic.

- If |λ| >
∣∣∣e b1ba−1

−b0
∣∣∣ , then Cw,ϕ is neither mean ergodic nor power bounded.

- If λ = e
b1b
a−1
−b0 and a ∈ R, a > 0, then Cw,ϕ is power bounded but not mean

ergodic on H0
vm(C).

(ii) When |a| = 1, a 6= 1, Cw,ϕ, which is necessarily of the form λCϕ, λ ∈ C, satisfies:

a) If |λ| < 1, ‖Ck
w,ϕ‖ → 0, thus it is power bounded and uniformly mean ergodic.

b) If |λ| > 1, it is neither power bounded nor mean ergodic.
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c) If |λ| = 1, it is power bounded and mean ergodic on H0
vm(C). It is uniformly

mean ergodic if and only if an0 = 1 for some n0 ∈ N. If an 6= 1 for every n ∈ N,
it is not mean ergodic on Hvm(C).

(iii) When a = 1, b 6= 0, Cw,ϕ, which is necessarily of the form λCϕ, λ ∈ C, satisfies:

a) If |λ| < e−m|b|, ‖Ck
w,ϕ‖ → 0, then it is power bounded, uniformly mean ergodic

and not hypercyclic on H0
vm(C).

b) If |λ| > e−m|b|, it is neither power bounded nor mean ergodic. In this case, it is
hypercyclic if |λ| < em|b| and not hypercyclic if |λ| > em|b|.

c) If |λ| = e−m|b|, it is power bounded, hence not hypercyclic, and Ck
w,ϕ → 0 in

H0
vm(C) in the strong operator topology but not in the operator norm. It is

uniformly mean ergodic if and only if λ 6= e−m|b|.

In the last section of the paper we compile the results for the relevant case w ≡ 1, that
is, for composition operators.

2 Notation and preliminaries

Our notation is standard. We denote by H(C) the space of entire functions endowed with
the compact open topology τco of uniform convergence on the compact subsets of C, and
by D the open unit disc centered at zero. Given two entire functions w and ϕ, the weighted
composition operator Cw,ϕ on H(C) is defined by

Cw,ϕ(f) = w(f ◦ ϕ), f ∈ H(C).

The function ϕ is called symbol and w is called multiplier. Cw,ϕ combines the composition
operator Cϕ : f 7→ f ◦ ϕ with the pointwise multiplication operator Mw : f 7→ w · f .

We say that v : C→]0,∞[ is a weight if it is continuous, decreasing and radial, that is,
v(z) = v(|z|) for every z ∈ C. It is rapidly decreasing if lim

r→∞
rkv(r) = 0 for all k ∈ N.

For an arbitrary weight v on C we consider the weighted Banach spaces of entire func-
tions with O- and o-growth conditions

Hv(C) = {f ∈ H(C) : ‖f‖v := sup
z∈C

v(z)|f(z)| <∞},

H0
v (C) = {f ∈ H(C) : lim

|z|→∞
v(z)|f(z)| = 0}.

(Hv(C), ‖ ‖v) and (H0
v (C), ‖ ‖v) are Banach spaces, and (H0

v (C), ‖ ‖v) ↪→ (Hv(C), ‖ ‖v) ↪→
(H(C), τco) with continuous inclusions. If we assume v is rapidly decreasing, then H0

v (C)
and Hv(C) contain the polynomials. We denote by Bv and B0

v the closed unit balls of
Hv(C) and H0

v (C), respectively. Bv is compact with respect to τco.
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Given a weight v, its associated weight ṽ is defined as

ṽ(z) :=
1

sup{|f(z)| : f ∈ Hv(C), ‖f‖v ≤ 1}
=

1

‖δz‖Hv(C)′
,

where δz : Hv(C)→ C, f 7→ f(z) is the continuous evaluation at z.
It is known (see [9, Proposition 1.2]) that v ≤ ṽ, Hv(C) = Hṽ(C) isometrically and

H0
ṽ (C) is a closed subspace of H0

v (C). Although the last two spaces do not coincide in
general, it follows from results in [8] and [12] that for rapidly decreasing weights, H0

v (C) =
H0
ṽ (C). A weight v is said to be essential if there exists a constant C > 0 such that

v(z) ≤ ṽ(z) ≤ Cv(z) for all z ∈ C. As mentioned in [9], many results on weighted spaces
of analytic functions and on weighted composition operators defined on them have to
be formulated in terms of the associated weights and not directly on the given weights,
since they satisfy nice additional properties. The spaces under consideration Hvm(C) and
H0
vm(C), are associated to the essential weights vm(z) = e−m|z|,m > 0.

Let X be a Banach space and T : X → X a continuous and linear operator on X. We
say that x0 ∈ X is a fixed point if T (x0) = x0, and that it is periodic if there exists n ∈ N
such that T n(x0) = x0, where T n := T ◦

n)
· · · ◦T. The operator T is said to be power bounded

if supn ‖T n‖ <∞ and it is called mean ergodic if the Cesàro means (T[n])n,

T[n] :=
1

n

n∑
j=1

T j, n ∈ N,

converge to some P in the strong operator topology, i.e., if for every x ∈ X the limit
limn→∞ T[n](x) exists in X. If (T[n])n converges in L(X) then T is called uniformly mean
ergodic.

A power bounded operator T is mean ergodic precisely when X = Ker(I − T ) ⊕
Im(I − T ). Moreover, ImP = Ker(I − T ) and KerP = Im(I − T ). Clearly, if T is mean
ergodic, then limn→∞ ||T nx||/n = 0 for each x ∈ X, and if it is uniformly mean ergodic,
limn→∞ ||T n||/n = 0. If this condition is satisfied, Lin proved in [24] that the operator T is
uniformly mean ergodic if and only if Im(I − T ) is closed. For a Grothendieck Dunford-
Pettis space X, Lotz proved that and operator T ∈ L(X) satisfying ‖T n/n‖ → 0 is mean
ergodic if and only if it is uniformly mean ergodic [25]. Hvm(C) is a Grothendieck Dunford-
Pettis space (see [26]).

An abstract result of Yosida and Kakutani ([34, Theorem 4 and Corollary on pages 204-
205] implies that every compact power bounded operator on a Banach space is uniformly
mean ergodic. Yosida (see [30, Theorem 1.3]) also proved that in power bounded operators
on Banach spaces, the convergence of the Cesàro means in the strong operator topology
is equivalent to the convergence in the weak operator topology. Troughout the paper, we
will use the following well-known fact: if T is power bounded and the sequence (T[n])n
converges to a continuous operator T on some dense set D ⊆ X, then T is mean ergodic.

An operator T : X → X is called topologically transitive if, for any pair U, V of non-
empty open subsets of X, there exists some n ∈ N such that T n(U) ∩ V 6= ∅, and T
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is called topologically mixing if there exists some N ∈ N such that T n(U) ∩ V 6= ∅ for
all n ∈ N, n ≥ N. T is said to be hypercyclic if it has a dense orbit, that is, if there is
some x ∈ X such Orb(T, x) = {T nx : n = 0, 1, . . . } is dense in X. Any such vector is
called a hypercyclic vector. By the Birkhoff’s transitivity criterion, T is hypercyclic if and
only if it is topologically transitive. If Orb(T, span{x}) = {λT nx : λ ∈ C, n = 0, 1, . . . }
is dense in X, we say that T is supercyclic and x is a supercyclic vector for T , and if
span{Orb(T, x)} = span{T nx : n = 0, 1, . . . } is dense, it is said to be cyclic and x is called
a cyclic vector. In the case we consider the density in the weak topology, the operator
is said to be weakly hypercyclic, weakly supercyclic or weakly cyclic, respectively. An
operator T : X → X is called chaotic if it is hypercyclic and it has a dense set of periodic
points.

For a good exposition of ergodic theory we refer the reader to the monograph by [30],
and for the subject of linear dynamics, to the monographs by Bayart and Matheron [1]
and by Grosse-Erdmann and Peris [20].

3 Boundedness and compactness of weighted compo-

sition operators

We begin this section characterizing the continuity and compactness of weighted com-
position operators on general weighted Banach spaces of entire functions. The first two
lemmata follow by an adaptation of the proofs of [17, Proposition 3.1 and Proposition 3.2],
stated for weighted Banach spaces of holomorphic functions on the unit disc (see also [12]
and [13, Proposition 5]).

Lemma 1 Given two weights u1 and u2 on C, the following are equivalent:

(i) Cw,ϕ : Hu1(C)→ Hu2(C) is continuous.

(ii) Cw,ϕ(Hu1(C)) ⊆ Hu2(C).

(iii) ‖Cw,ϕ‖ := supz∈C
|w(z)|u2(z)
ũ1(ϕ(z))

<∞.

If u1 is essential, Cw,ϕ is continuous if and only if supz∈C
|w(z)|u2(z)
u1(ϕ(z))

<∞.

Lemma 2 Given two rapidly decreasing weights u1 and u2 on C, the following are equiv-
alent:

(i) Cw,ϕ : H0
u1

(C)→ H0
u2

(C) is continuous.

(ii) Cw,ϕ(H0
u1

(C)) ⊆ H0
u2

(C).

(iii) w ∈ H0
u2

(C) and ‖Cw,ϕ‖ := supz∈C
|w(z)|u2(z)
ũ1(ϕ(z))

<∞.

If u1 is essential, Cw,ϕ is continuous if and only if w ∈ H0
u2

(C) and supz∈C
|w(z)|u2(z)
u1(ϕ(z))

<∞.
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The next lemma follows proceeding as in the proof of [13, Theorem 8], where the result
is stated for unweighted composition operators.

Lemma 3 Given two weights u1 and u2, consider the following assertions:

(i) Cw,ϕ : Hu1(C)→ H0
u2

(C) is compact.

(ii) Cw,ϕ : Hu1(C)→ Hu2(C) is compact and Cw,ϕ(Hu1(C)) ⊆ H0
u2

(C).

(iii) Cw,ϕ : H0
u1

(C)→ H0
u2

(C) is compact.

(iv) lim|z|→∞
|w(z)|u2(z)
ũ1(ϕ(z))

= 0.

Then (i) ⇒ (ii), (ii) ⇒ (iii) and (iv) ⇒ (i). If we assume B0
v

τco
= Bv then (iii) ⇒ (iv)

and all the conditions are equivalent.

Now we look at the symbol of the operator. If |ϕ(z)| = O(|z|), it is trivial that ϕ must
be affine. In the next results we give some conditions under which only affine symbols can
induce continuous weighted composition operators.

Remark 4 For an essential weight u satisfying u(ϕ(z)) = O(u(z)), if the operator Cw,ϕ
is continuous on Hu(C), by Lemma 1 there exists C > 0 such that supz∈C |w(z)| ≤
C supz∈C

u(ϕ(z))
u(z)

< ∞, and so, w ≡ λ for some λ ∈ C. Then, if Cw,ϕ = λCϕ, the sym-

bol must be affine by [2, Corollary 30] (see also [14, Proposition 3.1]). In particular:

• If Cw,ϕ : Hu(C)→ Hu(C) is continuous and there exists R > 0 such that |z| ≤ |ϕ(z)|
for every |z| ≥ R, then ϕ must be affine. Thus, if ϕ(z) = pN(z), N ≥ 2, that is,
a polynomial of degree greater than or equal to 2, the operator Cw,ϕ can never be
continuous.

• If Cw,ϕ : Hvm(C) → Hvm(C) is continuous and there exists R > 0,M ≥ 0 such that
|z| ≤M + |ϕ(z)| for all |z| ≥ R, then ϕ must be affine.

The proof of the next result is analogous to the one in [14, Proposition 3.1], stated for
unweighted composition operators.

Proposition 5 Consider two weights u1 and u2 such that, for some α > 1,

lim
|z|→∞

|w(z)|u2(z)

ũ1(αz)
=∞.

If the operator Cw,ϕ : Hu1(C)→ Hu2(C) is continuous, then ϕ is affine, that is, there exist
a, b ∈ C such that ϕ(z) = az + b.
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Proof. It is enough to see that supz∈C,|z|≥1
|ϕ(z)|
|z| < ∞. If we assume the contrary, then

there exists (zk)k such that |zk| → ∞ and |ϕ(zk)| ≥ k|zk| for every k ∈ N. This fact and
the continuity condition in Lemma 1 imply

sup
k∈N

|w(zk)|u2(zk)
ũ1(αzk)

≤ sup
k∈N

|w(zk)|u2(zk)
ũ1(kzk)

≤ sup
k∈N

|w(zk)|u2(zk)
ũ1(ϕ(zk))

<∞,

a contradiction. 2

In the rest of the section we study the continuity and compactness of Cw,ϕ on the spaces
Hvm(C) and H0

vm(C), vm(z) = e−m|z|, m > 0. As the weight vm is essential, Lemma 1 and
Proposition 5 yield a condition under which continuity implies the symbol must be affine:

Proposition 6 Assume w is a multiplier such that there exists α > 1 with

lim
|z|→∞

|w(z)|e|z|m(α−1) =∞. (3.1)

If Cw,ϕ : Hvm(C) → Hvm(C) is continuous, that is, if supz∈C |w(z)|em(|ϕ(z)|−|z|) < ∞, then
ϕ must be affine. As a consequence, if Cϕ is continuous, then ϕ must be affine.

Example 7 The following multipliers satisfy (3.1), and so, only can induce continuous
weighted composition operators on Hvm(C) with affine symbols:

• w ∈ H0
vm(C) such that |w(z)| ≥ δ for every |z| ≥ R, for some R, δ > 0. For instance,

if w is a polynomial.

• w(z) = pN(z)eqM (z), with pN and qM polynomials of degrees N ≥ 0 and M ≤ 1,
respectively.

However, for w(z) = pN(z)eqM (z), M > 1, (3.1) is not satisfied.

In the rest of the paper, we focus on affine symbols ϕ(z) = az + b, a, b ∈ C. As the
weights vm, m > 0, are rapidly decreasing, we get the following:

Theorem 8 Cw,ϕ is continuous on Hvm(C) and on H0
vm(C) if and only if

‖Cw,ϕ‖ = sup
z∈C
|w(z)|em(|az+b|−|z|) <∞, (3.2)

and Cw,ϕ is compact on both spaces if and only if

lim
|z|→∞

|w(z)|em(|az+b|−|z|) = 0. (3.3)

Observe that (3.2) implies that the multiplier w must belong to H0
vm(C) and the compactness

on Hvm(C) yields Cw,ϕ(Hvm(C)) ⊆ H0
vm(C). As a consequence we get:

(i) If |a| > 1, Cw,ϕ can never be continuous on Hvm(C), neither on H0
vm(C).
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(ii) if |a| = 1, Cw,ϕ is continuous on Hvm(C) and on H0
vm(C) if and only if w ≡ λ for

some λ ∈ C. In this case, ‖Cw,ϕ‖ = |λ|‖Cϕ‖ = |λ|em|b| and Cw,ϕ is never compact.

(iii) If |a| < 1, the continuity and compactness depends on the multiplier. For instance:

a) Cw,ϕ is continuous and compact if w is a polynomial. In particular, λCϕ is
compact for every λ ∈ C.

b) If w(z) = pN(z)eqM (z), with pN and qM polynomials of degrees N ≥ 0 and M > 0,
respectively, we get:

- Cw,ϕ is continuous if and only if w(z) = pN(z)eb1z+b0 and |b1| < m(1− |a|),
or w(z) = λeb1z+b0 and |b1| = m(1− |a|).

- Cw,ϕ is compact if and only if w(z) = pN(z)eb1z+b0 and |b1| < m(1− |a|).

Proof. Lemmata 1 and 2 yield the characterization of continuity, since (3.2) implies w ∈
H0
vm(C). B0

vm

τco
= Bvm because the weights are rapidly decreasing, so Lemma 3 yields the

characterization of compactness of Cw,ϕ : H0
vm(C)→ H0

vm(C). As Cw,ϕ : Hvm(C)→ Hvm(C)
is its bitranspose (see [10, Corollary 1.2 and Example 2.2]), we also get the characterization
holds on Hvm(C). Moreover, compactness yields Cw,ϕ(Hvm(C)) ⊆ H0

vm(C).
Let us see first the continuity in (i) and (ii). Assume the operator is continuous and |a| ≥ 1.
We have

‖Cw,ϕ‖ = sup
z∈C
|w(z)|em|az+b|−m|z| ≥ sup

z∈C
|w(z)|em|az|−m|b|−m|z| ≥ e−m|b| sup

z∈C
|w(z)|,

so w must be constant, that is, there exists λ ∈ C such that Cw,ϕ = λCϕ. Now, (3.2) yields
the conclusions. The compactness of (ii) follows by (3.3), since for |a| = 1, |λ|em(|az+b|−|z|) ≥
|λ|e−m|b| for every z ∈ C.
(iii) a) If w(z) = pN(z), that is, a polynomial of degree N, it is easy to see that

lim
|z|→∞

|pN(z)|em(|az+b|−|z|) ≤ em|b| lim
|z|→∞

|pN(z)|em|z|(|a|−1) = 0.

b) Given pN(z) =
∑N

j=0 ajz
j, aj ∈ C, and qM(z) =

∑M
j=0 bjz

j, bj ∈ C, consider p̃N(z) =∑N
j=0 |aj|zj, aj ∈ C, and q̃M(z) =

∑M
j=0 |bj|zj, bj ∈ C. Then for every z ∈ C we have

|pN(z)eqM (z)|em(|az+b|−|z|) ≤ p̃N(|z|)eq̃M (|z|)−m|z|(1−|a|)em|b|,

which yields the conditions for the continuity. Moreover, as the last inequality implies
lim|z|→∞ |pN(z)eqM (z)|em(|az+b|−|z|) = 0 if M = 1 and |b1| < m(1− |a|), we get compactness
in this case. On the other hand,

sup
z∈C
|pN(z)eqM (z)|em(|az+b|−|z|) ≥ e−m|b| sup

z∈C
|pN(z)||eqM (z)−m|z|(1−|a|)|.

So, for M ≥ 2 the operator can not be continuous. If M = 1, then qM(z) = b1z + b0 and
we get that there exists c ∈ C, |c| = 1, such that

sup
z∈C
|pN(z)eqM (z)|em(|az+b|−|z|) ≥ e−m|b||eb0| sup

r≥0
|pN(cr)|e|b1|r−mr(1−|a|),

9



which yields the assertion about the lack of continuity. When |b1| = m(1−|a|) and N = 0,
the last inequality yields

lim
|z|→∞

|w(z)|em(|az+b|−|z|) ≥ e−m|b||λeb0| 6= 0, (3.4)

and so the operator can not be compact. 2

4 Dynamics of weighted composition operators

In this section we study the dynamics of Cw,ϕ on Hvm(C) and H0
vm(C). The iterates have

the expression

Ck
w,ϕ =

(
k−1∏
j=0

w(ϕj(z))

)
f(ϕk(z)), k ∈ N, f ∈ Hvm(C).

In what follows, denote w[k](z) :=
∏k−1

j=0 w(ϕj(z)), z ∈ C. Observe that the symbol ϕ(z) =

az + b, a, b ∈ C, has a fixed point z0 = b
1−a if and only if a 6= 1, and for k ∈ N, we get

ϕk(z) =

{
akz + b1−a

k

1−a = ak(z − b
1−a) + b

1−a if a 6= 1

z + bk if a = 1.
(4.1)

Let us study first some general preliminary results.

Proposition 9 Consider a weight u on C such that Cw,ϕ : Hu(C)→ Hu(C) is continuous.
Then:

(i) If |w(z0)| > 1 for z0 ∈ C a fixed point of ϕ, then Cw,ϕ is neither power bounded nor
mean ergodic.

(ii) If Cw,ϕ is power bounded, then there exists C > 0 such that ‖w[k]‖u ≤ C for every
k ∈ N.

(iii) If Cw,ϕ is mean ergodic, then limk
‖w[k]‖u

k
= 0.

Proof. (i) follows easily from the fact that, for z0 ∈ C a fixed point of ϕ, then

‖Ck
w,ϕ(1)‖u
k

≥
|Ck

w,ϕ(1)(z0)|
k

u(z0) =
|w(z0)|k

k
u(z0).

For (ii) and (iii), observe that there exists C > 0 such that ‖Ck
w,ϕ(1)‖u = ‖w[k]‖u ≤ C for

every k ∈ N if Cw,ϕ is power bounded, and limk
‖Ckw,ϕ(1)‖u

k
= limk

‖w[k]‖u
k

= 0 if the operator
is mean ergodic. 2

Since Ck
w,ϕ, k ∈ N, is a weighted composition operator associated to the symbol ϕk and

the multiplier w[k](z) =
∏k−1

j=0 w(ϕj(z)), Lemmata 1 and 2 provide a characterization for
the power boundedness of Cw,ϕ:

10



Proposition 10 Given a weight u, the operator Cw,ϕ : Hu(C)→ Hu(C) is power bounded
if and only if there exists C > 0 such that, for every k ∈ N,

‖Ck
w,ϕ‖ = sup

z∈C

(
k−1∏
j=0

|w(ϕj(z))|

)
u(z)

ũ(ϕk(z))
< C. (4.2)

If u is essential, we replace ũ by u in (4.2). In the case of Cw,ϕ : H0
u(C)→ H0

u(C), we also
need w ∈ H0

u(C) and u rapidly decreasing.

Corollary 11 The operator Cw,ϕ is power bounded on Hvm(C) and on H0
vm(C) if and only

if there exists C > 0 such that, for all k ∈ N,

‖Ck
w,ϕ‖ = sup

z∈C

(
k−1∏
j=0

|w(ϕj(z))|

)
em(|ϕk(z)|−|z|) < C. (4.3)

The next theorem relates the spectrum of the operator to uniform mean ergodicity. The
necessary condition is due to Dunford [19, Proposition 3.1] and the sufficiency is proved
by Lin [24].

Theorem 12 (Dunford-Lin) An operator T on a Banach space X is uniformly mean

ergodic if and only if (‖T
n‖
n

)n converges to 0 and, either 1 ∈ C\σ(T ) or 1 is a pole of order
1 of the resolvent RT : C \ σ(T ) → L(X), RT (λ) := (T − λI)−1. Consequently, if 1 is an
accumulation point of σ(T ), then T is not uniformly mean ergodic.

In the following result we calculate the spectrum of the composition operator. It will
be useful in order to study the dynamics.

Proposition 13 Given ϕ(z) = az + b, a, b ∈ C, and Cϕ : Hvm(C) → Hvm(C) or Cϕ :
H0
vm(C)→ H0

vm(C), we get:

(i) If |a| ≤ 1, a 6= 1, σ(Cϕ) = {an, n = 0, 1, . . . }.

(ii) If a = 1, σ(Cϕ) = {eδ, |δ| ≤ m|b|}.

Proof. As the bitranspose of Cϕ : H0
vm(C)→ H0

vm(C) is Cϕ : Hvm(C)→ Hvm(C) (see [10,
Corollary 1.2 and Example 2.2]), we get that the spectrum is the same in both spaces.
(i) If a 6= 1, then Cϕ

(
z − b

1−a

)n
= an

(
z − b

1−a

)n
, n ∈ N0, so {an, n = 0, 1, . . . } ⊆ σ(Cϕ).

Moreover, by (4.3), r(Cϕ) = limk ‖Ck
ϕ‖1/k ≤ limk exp( 2m|b|

k|1−a|) = 1, thus, σ(Cϕ) ⊆ D. Pro-

ceeding as in the proof of [21, Proposition 3.3(i)], we get that a nonzero eigenvalue in
C must be of the form an for some positive integer n ∈ N0. If |a| < 1, Cϕ is compact
by Theorem 8, then its spectrum contains only zero and eigenvalues, then the conclu-
sion holds. Now, consider the case |a| = 1. If there exists n ∈ N such that an = 1,
then Cn

ϕ = I, therefore (σ(Cϕ))n = σ(Cn
ϕ) = {1} by the spectral mapping theorem and

so, σ(Cϕ) ⊆ {an, n = 0, 1, . . . }. Otherwise, if |a| = 1 and an 6= 1 for every n ∈ N,

11



we get T ⊆ σ(Cϕ). Cϕ has Cϕ−1 as a continuous inverse, where ϕ−1(z) = 1
a
z − b and

r(Cϕ−1) = limk ‖Ck
ϕ−1‖1/k ≤ limk exp( 2m|b|

k|1−1/a|) = 1. From this, together with r(Cϕ) ≤ 1, we

get σ(Cϕ) ⊆ T, as we wanted to see.
(ii) If a = 1, then Cϕ is the translation operator Tb : Hvm(C)→ Hvm(C), f(z) 7→ f(z + b).
Observe that it is indeed the differential operator φ(D) associated to the exponential func-
tion φ(z) = ebz. So, again by the spectral mapping theorem and [3, Proposition 5.10], we
get σ(Cϕ) = φ(σ(D)) = φ(mD) = {ebw, |w| ≤ m}. 2

In what follows we study the power boundedness, (uniform) mean ergodicity and hy-
percyclicity of Cw,ϕ, associated to the symbol ϕ(z) = az+b, by distinguishing the following
three possible cases for the parameter a: (1) if |a| < 1, that is, if z0 = b

1−a is an attractive

fixed point of ϕ; (2) if |a| = 1, a 6= 1, that is, if ϕ is a rotation around z0 = b
1−a ; or

(3) if a = 1, that is, if ϕ is a translation. Hypercyclicity is considered only in the case
a = 1, since otherwise ϕ has a fixed point and [7, Proposition 2.1] yields Cw,ϕ can not be
weakly supercyclic. In the case a 6= 1, by the next remark we can consider without loss of
generality that b = 0.

Remark 14 If a 6= 1, and X = Hv(C) or X = H0
v (C), it is easy to see that the dynamical

systems Cϕ : X → X, f 7→ f(az+ b) and Caz : X → X, f 7→ f(az) are conjugated through
the homeomorphism T : X → X, f(z) 7→ f(z − b

1−a), since T−1 ◦ Caz ◦ T = Cϕ.

4.1 Case |a| < 1

Proposition 15 Given ϕ(z) = az + b, a, b ∈ C, |a| < 1, the operator Cw,ϕ : Hvm(C) →
Hvm(C) and Cw,ϕ : H0

vm(C)→ H0
vm(C) satisfies:

(i) If w(z) = pN(z)eb1z+b0 , where pN is a polynomial of degree N ≥ 0 and b0, b1 ∈ C are

such that Cw,ϕ is continuous, it is not power bounded if |pN( b
1−a)||e

b1b
1−a+b0| > 1. In

particular, this is satisfied if w(z) = λzNeb1z+b0 and |λ|
∣∣ b
1−a

∣∣N > |e
b1b
a−1
−b0|.

(ii) If w(z) = λeb1z+b0 , |b1| ≤ m(1−|a|), it is power bounded if and only if |λ| ≤ |e
b1b
a−1
−b0|.

If |λ| < |e
b1b
a−1
−b0|, then ‖Ck

w,ϕ‖ → 0 as k →∞.

(iii) If w(z) = λ(z − b
1−a)Neb1z+b0 , |b1| < m(1 − |a|), N 6= 0, it is always power bounded.

Even more, ‖Ck
w,ϕ‖ → 0 as k →∞.

Proof. (i) follows directly by Proposition 9(i).

12



For the cases (ii) and (iii) we need some estimates. If w(z) = λ(z − b
1−a)Neb1z+b0 , N ≥ 0,

‖Ck
w,ϕ‖ = |λ|k

(
k−1∏
j=0

|a|Nj|eb1(ajz+b
1−aj
1−a )+b0|

)
sup
z∈C

∣∣∣∣z − b

1− a

∣∣∣∣Nk em(|akz+b 1−a
k

1−a |−|z|)

≤ e2m
|b|
|1−a|

∣∣∣∣e−bb1 1−ak
(1−a)2

∣∣∣∣ |a|N(k−1)k/2
(
|λ||eb1

b
1−a+b0|

)k
sup
z∈C

∣∣∣∣z − b

1− a

∣∣∣∣Nk e|z|(1−|a|k)( |b1|1−|a|−m)

≤ e2
|b|
|1−a| (m+

|b1|
|1−a| )|a|N(k−1)k/2

(
|λ||eb1

b
1−a+b0|

)k
sup
z∈C

∣∣∣∣z − b

1− a

∣∣∣∣Nk e|z|( |b1|1−|a|−m). (4.4)

(ii) follows by Proposition 9 and because if we put N = 0 in (4.4), we get

‖Ck
w,ϕ‖ ≤ e2

|b|
|1−a| (m+

|b1|
|1−a| )

(
|λ||eb1

b
1−a+b0|

)k
.

(iii) For |b1| < m(1− |a|) and k big enough, we get

sup
z∈C

∣∣∣∣z − b

1− a

∣∣∣∣Nk e|z|( |b1|1−|a|−m) ≤ max

 sup
|z|≤ |b|

|1−a|

∣∣∣∣z − b

1− a

∣∣∣∣Nk , 2Nk sup
|z|≥ |b|

|1−a|

|z|Nke−|z|(m−
|b1|

1−|a| )


≤ max

(∣∣∣∣ 2b

1− a

∣∣∣∣ , 2Nk

e(m− |b1|
1−|a|)

)Nk

. (4.5)

Therefore, by (4.4) and (4.5), for k big enough we obtain

‖Ck
w,ϕ‖ ≤ e2

|b|
|1−a| (m+

|b1|
|1−a| )|a|N(k−1)k/2

|λ||eb1 b
1−a+b0|

(
2Nk

e(m− |b1|
1−|a|)

)N
k

k→∞−→ 0,

which yields the conclusion. 2

In the last assertion of the next theorem we provide an example of a power bounded but
not mean ergodic operator on H0

vm(C). This differs from the corresponding result obtained
when considering the space H(C). In this case, the operator is power bounded, and thus,
uniformly mean ergodic (see [6, Theorem 3.10]).

Theorem 16 Consider ϕ(z) = az + b, z ∈ C, a, b ∈ C, |a| < 1, and w(z) = pN(z)eb1z+b0 ,
b0, b1 ∈ C, where pN is a polynomial of degree N ≥ 0. The operator Cw,ϕ : Hvm(C) →
Hvm(C) and Cw,ϕ : H0

vm(C)→ H0
vm(C) satisfies:

a) If |b1| < m(1−|a|), then Cw,ϕ is uniformly mean ergodic whenever it is power bounded.
This is satisfied, for instance, if w is a polynomial.

- If w(z) = λeb1z+b0 , λ ∈ C, power boundedness, mean ergodicity and uniformly

mean ergodicity are equivalent to |λ| ≤ |e
b1b
a−1
−b0|. If |λ| < |e

b1b
a−1
−b0| we even get

‖Ck
w,ϕ‖ → 0 as k →∞.
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- If w(z) = λ(z − b
1−a)Neb1z+b0 , N 6= 0, Cw,ϕ is always uniformly mean ergodic.

Even more, ‖Ck
w,ϕ‖ → 0 as k →∞.

b) If |b1| = m(1− |a|) and w(z) = λeb1z+b0 , λ ∈ C, we have:

- If |λ| <
∣∣∣e b1ba−1

−b0
∣∣∣ , then Cw,ϕ is uniformly mean ergodic and ‖Ck

w,ϕ‖ → 0 as

k →∞.
- If |λ| >

∣∣∣e b1ba−1
−b0
∣∣∣ , then Cw,ϕ is not mean ergodic.

- If λ = e
b1b
a−1
−b0 and a ∈ R, a > 0, then Cw,ϕ is power bounded but not mean

ergodic on H0
vm(C).

Proof. a) follows by Theorem 8, since Cw,ϕ is compact, and thus, uniformly mean ergodic
whenever it is power bounded. The examples follow by Propositions 9(i) and 15.

b) The case |λ| <
∣∣∣e b1ba−1

−b0
∣∣∣ follows by Proposition 15 and the case |λ| >

∣∣∣e b1ba−1
−b0
∣∣∣ by

Proposition 9(i). Consider λ = e
b1b
a−1
−b0 and a ∈ R, a > 0. By Remark 14 we can assume

without loss of generality that b = 0, and thus, that w(z) = eb1z and ϕ(z) = az. Observe

that for f ≡ 1 and a fix z ∈ C, we obtain Ck
w,ϕ(f)(z) = eb1z

1−ak
1−a → e

b1z
1−a as k tends to ∞.

So, if we assume the operator is mean ergodic on H0
vm(C), then the Cesàro means of f must

converge to e
b1z
1−a ∈ H0

vm(C). But this is a contradiction, since lim|z|→∞

∣∣∣e b1z1−a

∣∣∣ e−m|z| 6= 0.

Indeed, as |b1| = m(1− |a|), we can find c ∈ C, |c| = 1 such that∣∣∣e b1cr1−a

∣∣∣ e−mr = e
|b1|r
|1−a| e−mr = 1.

2

By Proposition 15 and Theorem 16, in the case of multiples of composition operators,
we get:

Corollary 17 Consider ϕ(z) = az + b, z ∈ C, |a| < 1, and the operator λCϕ, λ ∈ C, on
Hvm(C) and on H0

vm(C). The following are equivalent:

(i) λCϕ is power bounded.

(ii) λCϕ is mean ergodic on Hvm(C) and on H0
vm(C).

(iii) λCϕ is uniformly mean ergodic.

(iv) |λ| ≤ 1.

In the case |λ| < 1, we get ‖(λCϕ)k‖ → 0 as k →∞.
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4.2 Case |a| = 1, a 6= 1

In Theorem 8 we have seen that continuous weighted composition operators when |a| =
1, a 6= 1, are just those of the form λCϕ, λ ∈ C. In the next theorem we characterize power
boundedness and mean ergodicity.

Theorem 18 Let ϕ(z) = az + b, |a| = 1, a 6= 1, and consider the operator λCϕ, λ ∈ C.
The following is satisfied:

(i) If |λ| < 1, the sequence (λCϕ)k converges to 0 on Hvm(C) and on H0
vm(C). Thus, the

operator is power bounded and uniformly mean ergodic.

(ii) If |λ| > 1, the operator is neither power bounded nor mean ergodic on Hvm(C) neither
on H0

vm(C).

(iii) If |λ| = 1, the operator is power bounded and mean ergodic on H0
vm(C). Moreover, it

satisfies:

a) If an0 = 1 for some n0 ∈ N (consider the smallest n0) the operator is uniformly
mean ergodic on H0

vm(C) and on Hvm(C).

- limk
1
k

∑k
j=1(λCϕ)j = 0 if λs 6= 1 for every s ∈ N or if λs0 = 1 for some

s0 ∈ N and aj 6= 1
λ

for every j ∈ N.
- Otherwise, if λs0 = 1 for some s0 ∈ N and there exists j0 ∈ N0 (consider

the smallest s0 and j0) such that aj0 = 1
λ
, then limk

1
k

∑k
j=1(λCϕ)jf(z) =∑∞

l=0 aln0+j0(z − z0)ln0+j0 for every f(z) =
∑∞

l=0 al(z − z0)l ∈ Hvm(C).

When λs0 = 1 for some s0 ∈ N, the operator is periodic with period m.c.m(n0, s0).

b) If an 6= 1 for every n ∈ N, the operator is not uniformly mean ergodic, neither
mean ergodic on Hvm(C).

- If there exists j0 ∈ N0 such that aj0 = 1
λ
, then limk

1
k

∑k
j=1(λCϕ)jf(z) =

aj0(z − z0)j0 for every f(z) =
∑∞

l=0 al(z − z0)l ∈ H0
vm(C).

- Otherwise, limk
1
k

∑k
j=1(λCϕ)jf = 0 for every f ∈ H0

vm(C).

Proof. (i) and the power boundedness of (iii) follow by (4.3), since ‖(λCϕ)k‖ ≤ |λ|ke2m
|b|
|1−a|

for every k ∈ N. For (ii) apply Proposition 9 (ii) and (iii).
(iii) Let us study first the uniform mean ergodicity. By Proposition 13(i), we have that
σ(λCϕ) = {λan, n = 0, 1, . . . }. So, if an 6= 1 for every n ∈ N, 1 is an accumulation point of
σ(λCϕ) and then, by Theorem 12, the operator can not be uniformly mean ergodic, neither
mean ergodic on Hvm(C). If an0 = 1 for some n0 ∈ N, the spectrum is finite and we have
the following situation. In the case λs 6= 1 for every s ∈ N, we have 1 /∈ σ(λCϕ), so the
operator is uniformly mean ergodic by Theorem 12. Otherwise, if λs0 = 1 for some s0 ∈ N,
the operator is periodic with period m.c.m(n0, s0), thus, uniformly mean ergodic.
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Let us calculate now the Cesàro means of the monomials. Put z0 = b
1−a and observe that,

for j0 ∈ N0,

lim
k

1

k

k∑
j=1

(λCϕ)j(z − z0)j0 = lim
k

(z − z0)j0
k

k∑
j=1

(λaj0)j =
λaj0(z − z0)j0

1− λaj0
lim
k

1− (λaj0)k

k
(4.6)

So, we get

lim
k

1

k

k∑
j=1

(λCϕ)j(z − z0)j0 =

{
0 if aj0 6= 1

λ

(z − z0)j0 if aj0 = 1
λ

(4.7)

(a) Assume an0 = 1 for some n0 ∈ N (consider the smallest). If aj 6= 1
λ

for every j ∈ N0

(this is always satisfied if λs 6= 1 for every s ∈ N), we get limk
1
k

∑k
j=1(λCϕ)jf = 0 for every

f ∈ Hvm(C) by (4.7). If λs0 = 1 for some s0 ∈ N (consider the smallest) and there exists
j0 ∈ N0 (consider the smallest) such that aj0 = 1

λ
(this yields s0|n0) then (4.7) implies

limk
1
k

∑k
j=1(λCϕ)jf(z) =

∑∞
l=0 aln0+j0(z − z0)

ln0+j0 for every f(z) =
∑∞

l=0 al(z − z0)
l ∈

Hvm(C), since aj = 1
λ

if and only if j = ln0 + j0, l ∈ N.
(b) Assume now an 6= 1 for every n ∈ N. If there exists j0 ∈ N0 such that aj0 = 1

λ
, this j0

is unique since a is not a root of unity. Thus, (4.7) yields that ( 1
k

∑k
j=1(λCϕ)jf)k either

converges to f (j0)(z0)
j0!

(z−z0)j0 or to 0 in Hvm(C) for every polynomial f . As the polynomials

are dense in H0
vm(C) and λCϕ is power bounded, we obtain the mean ergodicity on H0

v (C).
2

4.3 Case a = 1

In Theorem 8 we have seen that continuous weighted composition operators when a = 1
are just those of the form λCϕ, λ ∈ C, where Cϕ is the translation operator Tb : Hvm(C)→
Hvm(C), f(z) 7→ f(z+ b). Observe that λCϕ is the differential operator φ(D) associated to
the exponential function φ(z) = λebz.

In the next theorem we study the power boundedness and (uniform) mean ergodicity of
the operator. In assertion (iii) we provide an example of a uniformly mean ergodic operator
whose iterates converge to 0 in the strong operator topology but not in the operator norm.

Theorem 19 Let ϕ(z) = z + b, b ∈ C, b 6= 0, and consider the operator λCϕ, λ ∈ C. We
get ‖(λCϕ)k‖ = (|λ|em|b|)k, k ∈ N and the following assertions:

(i) If |λ| < e−m|b|, the sequence (λCϕ)k is norm convergent to 0. Thus, the operator is
power bounded and uniformly mean ergodic on both spaces.

(ii) If |λ| > e−m|b|, the operator is neither power bounded nor mean ergodic on Hvm(C)
and on H0

vm(C).
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(iii) If |λ| = e−m|b|, then ‖(λCϕ)k‖ = 1 for every k, and so the operator is power bounded
and (λCϕ)k does not converge to 0. It is mean ergodic on H0

vm(C) with limk(λCϕ)kf =
0 for every f ∈ H0

vm(C). If λ 6= e−m|b|, it is uniformly mean ergodic. However, if
λ = e−m|b|, it is not uniformly mean ergodic and not mean ergodic on Hvm(C).

Proof. (i) and the power boundedness of (ii) and (iii) follow by (4.3), since it implies
‖(λCϕ)k‖ = (|λ|em|b|)k, k ∈ N.
(ii) Given λ ∈ C such that |λ| > e−m|b|, consider α ∈ C such that |α| < m, αb = |α||b| and

|λ| > e−|α||b| > e−m|b|. Then, eα(z) := eαz ∈ H0
vm(C) and 1

k
(λCϕ)k(eα(z)) = eα(z) (λe

αb)k

k
. As

|λeαb| > 1, we get the operator can not be mean ergodic on H0
vm(C), neither on Hvm(C).

(iii) By Proposition 13(ii), we get σ(λCϕ) = {λeδ, |δ| ≤ m|b|}. For |δ| ≤ m|b|, λeδ = 1
yields e<(δ) = |1/λ| = em|b|, and thus, λ = e−m|b|. Therefore, if λ 6= e−m|b|, 1 /∈ σ(λCϕ) and
so, Theorem 12 yields the operator is uniformly mean ergodic. If λ = e−m|b|, then 1 is an
accumulation point of σ(λCϕ). So, the operator is not uniformly mean ergodic by Theorem
12 and not mean ergodic on Hvm(C), as it is a Grothendieck Dunford-Pettis space. Let us
see the mean ergodicity in this case. Consider α ∈ C, |α| < m. Observe that eα ∈ H0

vm(C)

and (λCϕ)k(eα(z)) = eα(z)(λeαb)k. As by hypothesis |λeαb| < 1, we get (λCϕ)k(eα)
k→ 0.

As the set span({eα, |α| < m}) is dense in H0
vm(C) (see [3, Lemma 5.4]) and λCϕ is power

bounded, then it is mean ergodic on H0
vm(C) with limk(λCϕ)kf = 0 for every f ∈ H0

vm(C).
2

Theorem 20 Given ϕ(z) = z + b, b ∈ C, b 6= 0, the weighted composition operator λCϕ,
λ ∈ C, satisfies:

(i) It is not hypercyclic if |λ| ≤ e−m|b| or |λ| > em|b|.

(ii) It is hypercyclic if e−m|b| < |λ| < em|b|. In this case, it is topologically mixing and
chaotic.

Proof. (i) For |λ| ≤ e−m|b|, the operator is power bounded by Theorem 19, hence not
hypercyclic. Let us study the case |λ| > em|b|. By Proposition 13(ii), we get σ(λCϕ) =
{λeδ, |δ| ≤ m|b|}, then σ(λCϕ) does not intersect the unit circle T, as |λ||eδ| = |λ|eRe(δ) ≥
|λ|e−m|b| > 1 for every |δ| ≤ m|b|. Therefore, by Kitai’s criterion [20, Proposition 5.3], the
operator can not be hypercyclic.
(ii) Consider now the path {α(t) = λet|b|,−m ≤ t ≤ m} ⊆ σ(λCϕ). If e−m|b| < |λ| < em|b|,
as |α(−m)| < 1 and |α(m)| > 1, σ(λCϕ) ∩ T 6= ∅ and min{|z| : |λ||ebz| = 1} < m. Indeed,
there exists |δ| ≤ m|b| such that |λ||eδ| = 1 and e−m|b| < e<(δ) < em|b| by the hypothesis
on λ. Thus, min{|z| : |λ||ebz| = 1} = 1/|b|min{|α| : |λ|e<(α) = 1} = 1/|b|min{|t| : |λ|et =
1, t ∈ R} < m. As limr→∞ e

−mreβr = 0 for min{|z| : |λ||ebz| = 1} < β < m, the operator is
topologically mixing, chaotic and not mean ergodic by [4, Theorem 3.1]. 2
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5 Composition operators on Hvm(C) and on H0
vm
(C)

In this concluding section, we compile the results for the relevant case w ≡ 1, that is, for
composition operators Cϕ, ϕ(z) = az+ b, a, b ∈ C. The dynamics in this case is completely
characterized. Multiplication operators are not considered, since they are trivial on these
spaces (see Theorem 8(ii)).

Proposition 21 Let ϕ(z) = az + b, a, b ∈ C. The composition operator Cϕ satisfies:

(i) Cϕ is continuous on Hvm(C) and on H0
vm(C) if and only if |a| ≤ 1. If it is continuous,

then ‖Cϕ‖ = em|b|.

(ii) Cϕ : Hvm(C) → H0
vm(C) is compact if and only if Cϕ : H0

vm(C) → H0
vm(C) is so, if

and only if |a| < 1. If Cϕ is compact, it can be approximated by finite-rank operators.

Proof. By Theorem 8, it only remains to prove that for |a| < 1, Cϕ can be approximated
by finite-rank operators. As Hvm(C) and H0

vm(C) are isomorphic to `∞ and c0, respectively
[26], the spaces have the (bounded) approximation property, so as the operator is compact
on them in this case, it can be approximated by finite-rank operators. Indeed, given
f(z) =

∑∞
j=0 cj(z−

b
1−a)j ∈ Hvm(C), we get Cϕf(z) =

∑∞
j=0 a

jcj(z− b
1−a)j. By the Cauchy

inequalities, |cj|‖(z − b
1−a)j‖m ≤ ‖f‖m for every j ∈ N. So,

‖Cϕf −
k∑
j=0

ajcj(z −
b

1− a
)j‖m ≤

∞∑
j=k+1

|a|j‖f‖m = ‖f‖m
|a|k+1

1− |a|
k→ 0

and we obtain that Cϕf belongs to the closure of the polynomials, that is, to H0
vm(C). The

argument above also shows that the finite-rank operators (Cϕ)N(
∑∞

j=0 cj(z −
b

1−a)j) :=∑N
j=0 a

jcj(z − b
1−a)j are bounded on Hvm(C) and that ‖Cϕ − (Cϕ)N‖ ≤ |a|N+1

1−|a| → 0 as N
tends to ∞. 2

Theorem 22 Let ϕ(z) = az + b, a, b ∈ C, |a| ≤ 1, a 6= 1. The composition operator Cϕ is
always power bounded on Hvm(C) and on H0

vm(C), hence not hypercyclic, with

‖Ck
ϕ‖ = e

m|b|
∣∣∣∣ 1−ak1−a

∣∣∣∣ ≤ e2m
|b|
|1−a| for every k ∈ N. (5.1)

Moreover, we get:

(i) If |a| < 1, Cϕ is uniformly mean ergodic with limk ‖ 1k
∑k

j=0C
j
ϕ − C b

1−a
‖ = 0, where

C b
1−a

is the evaluation at the fixed point b
1−a .

(ii) If |a| = 1, an = 1 for some n ∈ N, Cϕ is periodic and then uniformly mean ergodic.
In this case, for every f(z) =

∑∞
j=0 aj(z − z0)j in the space,

lim
k

1

k

k∑
j=1

Cj
ϕf(z) =

1

k

k∑
j=1

f(ajz + b
1− aj

1− a
) =

∞∑
l=0

aln(z − z0)ln. (5.2)
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(iii) If |a| = 1, an 6= 1 for every n ∈ N, Cϕ is not uniformly mean ergodic, it is mean

ergodic on H0
vm(C) with limk

1
k

∑k
j=1C

j
ϕf = C b

1−a
f but not mean ergodic on Hvm(C).

Proof. Proceeding as in the proofs of [31, Theorems 4 and 5] we get limk ‖ 1k
∑k

j=0C
j
ϕ −

C b
1−a
‖ = 0 if |a| < 1. The other assertions are a consequence of (4.3) and Theorem 18.

Statements (ii) and (iii) can also be obtained by [22, Proposition 2.3] and Remark 14. 2

In the case a = 1, Cϕ is the translation operator Tb : Hvm(C)→ Hvm(C), f(z) 7→ f(z+
b). It is the differential operator φ(D) associated to the exponential function φ(z) = ebz.
Theorems 19 and 20 yield the following:

Theorem 23 Given ϕ(z) = z + b, b ∈ C, the translation operator Cϕ on Hvm(C) and on
H0
vm(C) satisfies ‖Ck

ϕ‖ = em|b|k, k ∈ N, and:

(i) It is topologically mixing and chaotic on H0
vm(C).

(ii) It is neither power bounded nor mean ergodic on H0
vm(C) and on Hvm(C).

Acknowledgments

The research of the author was supported by the project MTM2016-76647-P.

References

[1] F. Bayart, E. Matheron, Dynamics of linear operators. Cambridge Tracts in Mathe-
matics, vol. 179, Cambridge University Press, Cambridge, 2009.

[2] M.J. Beltrán, Spectra of weighted (LB)-algebras of entire functions on Banach spaces,
J. Math. Anal. Appl. 387 (2012) 604–617.

[3] M.J. Beltrán, Dynamics of differentiation and integration operators on weighted spaces
of entire functions, Studia Math. 221 (1) (2014) 35–60.

[4] M.J. Beltrán, J. Bonet, C. Fernández, Classical Operators on the Hörmander Algebras,
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