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Abstract—The increasing availability of remote sensing data
raises important challenges in terms of operational data provision
and spatial coverage for conducting global studies and analyses. In
this regard, existing multitemporal mosaicing techniques are gener-
ally limited to producing spectral image composites without consid-
ering the particular features of higher-level biophysical and other
derived products, such as those provided by the Sentinel-3 (S3) and
Fluorescence Explorer (FLEX) tandem missions. To relieve these
limitations, this article proposes a novel multitemporal mosaicing
algorithm specially designed for operational S3-derived products
and also studies its applicability within the FLEX mission context.
Specifically, we design a new operational methodology to auto-
matically produce multitemporal mosaics from derived S3/FLEX
products with the objective of facilitating the automatic processing
of high-level data products, where weekly, monthly, seasonal, or
annual biophysical mosaics can be generated by means of four
processes proposed in this work: 1) operational data acquisition;
2) spatial mosaicing and rearrangement; 3) temporal compositing;
and 4) confidence measures. The experimental part of the work
tests the consistency of the proposed framework over different S3
product collections while showing its advantages with respect to
other standard mosaicing alternatives. The source codes of this
work will be made available for reproducible research.

Index Terms—Fluorescence explorer (FLEX), mosaicing, open-
access data, product composites, Sentinel-3 (S3), time series.

NOMENCLATURE

AVHRR Advanced Very High Resolution Radiometer.
EO Earth Observation.
ESA European Space Agency.
ETM+ Enhanced Thematic Mapper Plus.
EU European Union.
FAPAR Fraction of Absorbed Photosynthetically Active Ra-

diation.
FLEX Fluorescence Explorer.
FLORIS Fluorescence Imaging Spectrometer.
GeoJSON Geo-JavaScript Notation.
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L1 Level-1.
L2 Level-2.
LC-CCI Land Cover Climate Change Initiative.
LEDAPS Landsat Eco-system Disturbance Adaptive Process-

ing System.
LQSF Land Quality and Science Flag.
LULC Land use/land cover.
MODIS Moderate Resolution Imaging Spectroradiometer.
NDVI Normalized Difference Vegetation Index.
NIR Near-infrared.
OGVI OLCI Global Vegetation Index.
OLCI Oceanand Land Color Instrument.
OTCI OLCI Terrestrial Chlorophyll Index.
PDGS Payload Data Ground Segment.
ROI Region of interest.
RS Remote sensing.
S2 Sentinel-2.
S2GM S2 Global Mosaics.
S3 Sentinel-3.
SLSTR Sea and Land Surface Temperature Radiometer.
SNAP Sentinel Application Platform.
STC-S2 Short-Term Composite for S2.
STC-S3 Short-Term Composite for S3.
TM Thematic mapper.
TOA Top of atmosphere.
UTM Universal Transverse Mercator.
WELD Web-Enabled Landsat Data.
WGS84 World Geodetic System 1984.

I. INTRODUCTION

NOWADAYS, the unprecedented availability of the Coper-
nicus open access data provides widespread opportunities

to deal with current and future challenges as well as many
important societal needs [1]. For instance, fine-grained land
cover mapping [2]–[6], natural hazards discovery [7], [8], as
well as environmental management and analysis [9]–[11] are
some practical RS applications, where the open availability of
the Copernicus data plays a fundamental role. The Copernicus
program [12] is one of the most important EO programs, which
aims at providing global monitoring information from space use-
ful for environmental and security applications. Specifically, dif-
ferent ESA and EU missions plus several national contributing
missions have been planned in order to guarantee the operational
provision of such RS data [13].
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Among all the program resources, the S3 [14] mission be-
comes especially adequate for the continuous monitoring of the
Earth’s surface, since it is focused on the global measurement
of the sea and land topography, temperature, and color with a
particularly high temporal resolution. The S3 mission comprises
a pair of identical satellites: S3A and S3B. They carry four main
instruments, including the OLCI as one of the optical sensors, to-
gether with the SLSTR. In particular, OLCI captures the Earth’s
surface using a spatial resolution of 300 m and a total of 21 bands
(Oa01–Oa21) in the spectral range between 390 and 1040 nm.
With both twin satellites working in conjunction, the PDGS is
able to operationally generate and distribute the corresponding
OLCI products with a two-day frequency, including processed
L1 and derived L2 user products.

Closely related to S3, ESA is currently developing the
FLEX [15] mission, which has been designed as an Earth
Explorer mission for measuring the terrestrial vegetation fluores-
cence from space. More specifically, FLEX is a single-satellite
mission, which is planned to be launched in 2024, and it will
be flying in tandem with S3 for providing (in combination with
S3) valuable information about the carbon stored in plants and
their role in the global carbon and water cycles. To achieve
this goal, FLEX carries the FLORIS that acquires data in the
500–780 nm spectral range, with a sampling step of 0.1 nm and
a spatial resolution of 300 m. Thus, FLEX will be exploiting
the complementary measurements of S3 to enrich FLORIS L2
products about photosynthesis rates and vegetation stress condi-
tions, which logically provides additional value and interest to
S3 operational data [16].

Although OLCI L1 data products contain TOA radiometric
measurements, which are radiometrically corrected and cali-
brated, the L2 processing level provides higher level operational
products that are specifically designed for marine and land user
applications. In other words, L2 products consist of biophysical
and geophysical quantities that represent parameters, which are
highly relevant for final users depending on their application
field. Precisely, different studies in the literature highlight the ad-
vantages of using OLCI L2 products to analyze and monitor sev-
eral important environmental features. For instance, Kravitz et
al. [17] show the limitations of using OLCI L1 TOA reflectance
products for retrieving small chlorophyll-a concentrations in
productive inland waters. Kyryliuk and Kratzer [18] present a
study that validates multiple derived OLCI L2 in-water prod-
ucts against dedicated in situ measurements of the Baltic Sea,
obtaining positive results even over near-coastal areas. In [19],
Brown et al. exploit and validate OLCI L2 terrestrial chlorophyll
products of large agricultural areas using synergetic intersensor
data. Kokhanovsky et al. [20] derive important optical and
microphysical properties of snow using the OLCI instrument.
Zhang et al. [21] study the potential of different OLCI land
products for estimating the gross primary productivity across
several biomes. The authors also provide interesting insights
for their combination with FLEX. Analogously, Lyu et al. [22]
develop a phytoplankton carbon concentration estimator based
on OLCI L2 data in order to investigate the carbon cycle and the
global warming effect.

These and other related works mainly point to two key ideas:
the great potential of derived OLCI L2 data and the special
relevance of generating extensive products to conduct complete
and worldwide analyses. The high utility of OLCI L2 products
has been widely proven in many research works, including the
aforementioned ones and the own S3 mission description [14],
that advocate the use of such data in many important applica-
tions. However, the part of generating global derived products
from OLCI L2 still remains unclear in the RS literature. On
the one hand, the spatial coverage of individual S3 products
is limited by the PDGS processing chain, which constrains the
maximum size of the interest areas in order to ease the online data
dissemination [23]. On the other hand, the operational availabil-
ity of S3 data is often affected by cloud and atmospheric effects,
which may logically cause important information gaps when
studying those affected areas. In this regard, such limitations on
the spatial extension and data availability could be relieved by
means of mosaicing and compositing techniques [24].

In general, RS image mosaicing and compositing refer to
those algorithmic tools aimed at constructing a full RS scene by
aligning partially overlapped multitemporal images. Although
the term mosaicing has a classical connotation of spatially scene
enlarging, the name compositing accentuates the temporal com-
ponent, where multiple overlapped images are used to remove
data anomalies. In practice, both concepts often work together
as multitemporal mosaicing, since the spatial extension and the
data availability of the resulting composites are normally equally
important in RS [25]. Since the first RS composite method was
introduced [26] and evaluated [27] for the AVHRR, different
sensor-dependant approaches have been successfully developed
in the literature. For instance, Huete et al. [28] present a compos-
ite technique, based on the NDVI, for the MODIS. In [29], Roy
et al. present the WELD, which is a multitemporal mosaicing
algorithm for Landsat images that selects those reflectance val-
ues with minimum clouds, snow, or other type of perturbations.
Potapov et al. [30] also develop a method especially designed
for Landsat, which takes advantage of an initial land cover
classification to select the output reflectance according to the
NIR band. Additionally, the work presented in [31] studies the
feasibility of combing Landsat 5 TM and Landsat 7 ETM+ data
to improve the global acquisition coverage. Within the context
of Sentinel missions, it is also possible to find a few relevant
works. For instance, the Sen2Three algorithm [32] is able to
generate corrected spatiotemporal S2 products by selecting the
corresponding output composite values using different criteria,
e.g., acquisition dates, average aerosol, and solar zenith angle,
among others. Similarly, the S2GM [33] approach is also able to
produce S2 multitemporal mosaics of reflectance products but
in this case using a variation of the WELD algorithm.

Although the utility of mosaicing and compositing techniques
for long-term and large-area Earth monitoring has been widely
proved using certain types of RS optical data, e.g., Landsat [29]
and S2 [33], these technologies have not yet been developed
in the context of producing global mosaics of multitemporal
OLCI L2 products and the tandem S3/FLEX mission. As was
previously mentioned, the use of derived products from OLCI



IBAÑEZ et al.: MULTITEMPORAL MOSAICING FOR SENTINEL-3/FLEX DERIVED LEVEL-2 PRODUCT COMPOSITES 5441

L2 can provide competitive advantages with respect to low-level
reflectance data [14], and it can be highly beneficial in other
complementary missions. Note that the higher the processing
level, the more adapted the data to the final application domain
and hence the simpler their semantic understanding for users.
As a result, generating global multitemporal maps of derived
products from OLCI L2 instead of reflectance images can be
very advantageous, since the nature of these high-level data can
be taken into account within the mosaicing process. However, the
existing methods are focused on other sensors, and they only deal
with the problem from a reflectance-based perspective, which
eventually constrains the use of such methods to a higher data
processing level.

With all these considerations in mind, this article proposes
a novel multitemporal mosaicing algorithm to derive extensive
geophysical and biophysical composited mosaics from opera-
tional OLCI L2 products. Unlike other methods available in the
literature, the proposed approach has been specially designed
for the OLCI sensor and its product specifications in order to
deal with the higher-level nature of the L2 products provided
by the PDGS unit. In more detail, this work has a twofold
objective. On the one hand, we intend to highlight the advantages
of generating multitemporal OLCI L2 mosaics and how these
novel data can help the operational provision of enhanced data
products in the context of Sentinel and other Earth Explorer
missions like FLEX. On the other hand, we design and release
a new operational methodology to automatically produce such
multitemporal mosaics from the existing S3 data production
chain. That is, the proposed approach takes as input an ROI and
a particular temporal period from the Copernicus data dissemi-
nation service and it generates as output the corresponding mul-
titemporal L2 mosaic in an unsupervised fashion. The defined
methodology pursues to facilitate the automatic data processing
regardless of the sensing and ingestion dates of the products
in order to provide near-real-time data processing, where the
composited mosaics are updated, without human intervention,
shortly after the OLCI data are available. In this way, weekly,
monthly, seasonal, or annual mosaics of different regions of
interest can be easily generated to capture relevant geophysical
and biophysical variations on the Earth surface over time. In
brief, the main contributions of this work can be summarized as
follows.

1) We release a new framework to produce, without human
intervention, multitemporal OLCI L2 mosaics in order to
study worldwide geophysical and biophysical variations
on the Earth surface over time.

2) We develop a new multitemporal composting algorithm
for derived OLCI L2 data, which considers the nature of
the corresponding products to produce more informative
results. Besides, we also analyze the proposed approach
applicability to the S3/FLEX tandem mission.

3) We build several large-scale multitemporal OLCI L2 com-
posite mosaics of Europe to validate the performance of
the proposed framework. The codes related to this work
will be available for reproducible research.1

1[Online]. Available: https://github.com/rufernan/S3L2Mosaicing

The rest of this article is organized as follows. Section II
reviews some of the most important methods on RS image
mosaicing and compositing. Section III presents the proposed
framework while also detailing its constituent parts and valida-
tion. In Section III-E, we study the adaptation possibilities of the
presented scheme to the FLEX mission environment. Section IV
contains the experimental part of the work where several OLCI
worldwide biophysical composites are obtained, validated, and
compared. Finally, Section V concludes this work and provides
some interesting future research lines.

II. RELATED WORK

This work is particularly focused on generating multitemporal
mosaics from derived OLCI L2 data products. Several multi-
temporal mosaicing algorithms have been developed for other
satellites or data, and this section reviews some of the most rele-
vant approaches. For Landsat images, the WELD algorithm [29]
was designed to select land pixels with minimum cloud, snow,
or other type of atmospheric contamination in Landsat products.
WELD is based on the LEDAPS [34]. It uses monthly, seasonal,
and annual sets of images to generate consistent land mosaic
geophysical and biophysical products for detailed regional as-
sessments of land cover dynamics and to study Earth system
functioning. Specifically, the considered decision tree utilizes
the NDVI, brightness temperature, maximum apparent surface
temperature, minimum scan angle, maximum difference in red,
and NIR reflectance as well as combinations of these to compare
two pixels and obtain the best representative. The following
equation shows the expression corresponding to the NDVI:

NDVI =
(ρnir − ρred)

(ρnir + ρred)
(1)

where ρnir represents the reflectance of the NIR band and ρred
represents the reflectance of the red band. The main drawback of
the WELD algorithm is that it is not very robust if the spectrum
does not satisfy the quality control of the classification segment.

There are more statistical methods, such as the median NIR
composite method, which has been used for different regional
studies using Landsat data in Russia [30] and in Democratic
Republic of the Congo [35]. In detail, this method is an evolution
of the approach presented in [36], which uses filtered data with a
classification of water, cloud, shadow, and other similar classes,
giving a set of image dates forming a data pool from which the
best observation date per composite is selected. From the same
classification scheme, the median NIR value is chosen as the best
pixel value. The median NIR method has shown advantages for
temporal time-series coarse spatial resolution data compositing
compared to the heritage maximum NDVI approach. Besides,
it was proved to produce the least noisy outputs over forested
areas.

A different approach was proposed by Flood [37] using the
medoid function. The medoid is the representative object of
a dataset, whose average dissimilarity to all the objects in
the dataset is at a minimum [38]. The medoid applied to re-
flectance [37] is estimated by calculating the distance between all
the different reflectance pixel values in each band and minimizes

https://github.com/rufernan/S3L2Mosaicing
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Fig. 1. Proposed multitemporal mosaicing framework for derived OLCI L2 products.

its sum. It appears to be better than the median at producing
imagery that are representative of a time period. This method was
also applied to Landsat TM/ETM+ imagery to create seasonal
reflectance images, and an analysis of the seasonal reflectance
values suggests this composite as a better representative than the
maximum NDVI seasonal composite. The medoid function can
be expressed as follows:

Medoid(x) = argmin
xi∈x

∑
xj∈x
‖xj − xi‖ (2)

where it is defined as the point xi in the set x that minimizes the
sum of the distances between this point and all the other points
xj in the set.

Regarding Sentinel missions, in the case of S2, the Sen2Three
algorithm [32] generates synthetic atmospherically corrected S2
L2 spatiotemporal products as they are generated by Sen2Cor
atmospheric correction software [39]. This method changes the
pixels that have been considered contaminated from others of a
time series following three criteria: the newer acquisition date
is ranked higher, a ranking according to the sum of good pixels,
and a ranking according to the average aerosol optical thickness
or the average of the solar zenith angle. Another compositing
approach was done by the S2GM [33]. It was designed to
generate mosaics of the surface reflectance L2 products from
S2. This algorithm takes as input a time series and, pixel by
pixel, it uses two different strategies depending on the number
of valid samples: 1) the medoid algorithm and 2) a variation
of the WELD algorithm adapted for S2 products with a land
cover classification named the STC-S2. In more detail, S2GM
performs a spatial resampling using the nearest neighbor method
for different resolution observations and makes the spatial mo-
saicing using the SNAP toolbox mosaicing approach [40].

III. PROPOSED FRAMEWORK

This section presents the methodological part of the work,
which has been designed to generate multitemporal OLCI mo-
saics according to four sequential modules (see Fig. 1): 1) the
operational data acquisition, where the original data are obtained
and downloaded from the Sentinel-Hub (see Section III-A);
2) the spatial mosaicing and rearrangement of the downloaded
products, performing a reprojection to WGS84 coordinates and
a spatial registration process (see Section III-B); 3) the temporal
compositing after filtering the data (see Section III-C); and 4) a

final validation of the multitemporal product mosaics showing
the valid number of pixels and their corresponding confidence
levels (see Section III-D). Additionally, Section III-E provides
some remarks to adapt the proposed framework to other relevant
missions, such as FLEX.

A. Operational Data Acquisition

The first step of the proposed framework aims at collecting
the corresponding OLCI L2 products of interest for generating
the output multitemporal mosaic. It is important to highlight
that the task of generating global composites usually demands
dealing with vast amounts of operational RS data [41], which
logically raises some technical challenges (in terms of data
acquisition, storage, and automatization) that this initial step
tries to cope with. More specifically, we make use of the available
Copernicus data provision services in the following way. First,
we define an ROI R based on a closed polygonal shape of
geocoordinates using the GeoJSON format. Besides, we also
consider a temporal interval T of the multitemporal mosaic as
input for the data acquisition process. Then, given an ROI R
and a temporal interval T , we build the corresponding query
for obtaining the list of suited OLCI L2 products from the
Copernicus open access hub [42]. Once the list of relevant
product identifiers has been retrieved, we iterate (in a batch
processing mode) to automatically download the corresponding
operational products (together with their metadata information)
in a compressed format.

B. Spatial Mosaicing for OLCI L2 Products

The second step consists in mosaicing all the downloaded
products in a global spatiotemporal grid taking into account
the possible geolocation deviations among operational data
products. Let Xt

r be a derived L2 product covering the region
r of the Earth surface at the time instant t, where Xt

r pixels
are geospatially located in terms of UTM coordinates. In order
to simplify and make a more accurate geospatial registration
of multiple overlapped product images Xt

r for a region r and
different times t, pixels are projected to WGS84 coordinates
using the SNAP toolbox [40]. Thus, transformed pixels are the
same size in this coordinate systems, making them easier to fit
and overlap into the mosaic structure. Since this process might
introduce small location errors, a resampling process will still
be necessary.
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Fig. 2. Product interpolation to generate the global spatiotemporal 3-D grid
Gr(lt, lg, t).

Accordingly, a spatiotemporal 3-D grid is built from a number
of operational L2 product images Gr(lt, lg, t) representing the
region r and time instants close enough to produce a useful
mosaic. Grid axes are defined into a range of latitude lt (height),
longitude lg (width), and time t (depth) interval that allow all
the images Xt

r to be spatially registered into this grid, while the
spatial resolution is set to 300 m as in the S3 OLCI sensor. Since
grid coordinates do not generally agree with those calculated
for each initial product Xt

r when they are transformed into the
gridG spatial coordinates, an interpolation process is performed
using a kernel to estimate the product values expected in the
grid coordinates as shown in Fig. 2. The spatially transformed
product data of initial Xt

r are then stacked in the 3-D grid
temporal layer t, that is, Gr(lt, lg, t) = L(Xt

r), where L is the
latitude–longitude transformation from UTM coordinates.

C. Temporal Compositing for OLCI L2 Products

Once all the products of interest are represented as an uniform
spatiotemporal cube, the third step of the proposed framework
pursues to conduct the temporal compositing. Specifically, the
compositing of the temporal data is done by choosing the best
pixel value from the set of valid temporal samples depending
on several factors: number of valid temporal samples, LULC
classification of pixels, nominal value of the product, and other
important aspects such as solar zenith angle during acquisition
or product value statistical median.

As seen in Section II, previous works mainly perform the
mosaicing of L2 reflectance bands of S2 products or Landsat
products. However, none of these methods can be directly used
to create mosaics of other operational derived L2 products. These
previous works showed that the medoid and median algorithms
are the most adequate when integrating time-series values, but
a minimum number of valid pixels is needed to get satisfactory
results. Because the aim of this work is mosaicing biophysical
and other derived L2 products, different from spectral reflectance
band product images, the lack of temporal observations may be
particularly critical in this situation. Note that the considered
input data correspond to univariate quantities that represent
high-level biophysical and geophysical parameters; then, the
robustness of the medoid algorithm against the presence of
outliers is aligned with the univariate median [37].

TABLE I
CONDITIONS IN THE FILTERING

Thus, in this work, we propose the median of the observations
when there is a minimum number of valid time samples for a
pixel Gr(lt, lg, t). In case there are not enough valid samples
for a pixel, following S2GM [33] and WELD [29] methods,
a decision tree is used. The decision tree designed considers
S3 OLCI L2 classification information as well as the index of
the target product, and it consists in a variation of the STC-S2
algorithm used for S2 L2 products.

Once the spatiotemporal grid Gr(lt, lg, t) is built by means
of the described geospatial registration process, the proposed
mosaicing algorithm for S3 OLCI products can be divided into
two main modules: a previous filtering of the Gr(lt, lg, t) data
(see Section III-C1) and the temporal resampling and composit-
ing based on the median and the newly defined STC-S3 (see
Section III-C2).

1) Filtering: Given the temporal 3-D grid Gr(lt, lg, t), a
preliminary filtering is needed to consider only valid temporal
pixel values. Within the available S3 OLCI L2 products, there
is an LQSF product. This product provides a classification of
every pixel in different classes, including water, land, clouds, and
snow. This classification is done by taking into account indices,
band ratios, TOA spectral reflectance, OGVI, and OTCI spectral
tests [43]. There are 25 classes in total, having also flags for
pixel quality, possible fails in readings, and saturation. There is
another L2 product concerning ocean quality and science flags,
but since the experimentation was focused on land products, this
classification was not used.

It is worth noting that the LQSF product does not provide
classes for vegetation or soil. They are all included in the land
class because the OLCI sensor was initially oriented to water
characterization and monitoring. Nevertheless, different flags
in the LQSF product can provide additional information about
vegetation indices. This is the case of the OGVI flag, which
stands for the OGVI provided by S3. This index is calculated
from the FAPAR estimation using the algorithm provided by the
LQSF product.

In order to illustrate how the mosaicing and temporal com-
positing algorithm works, the S3 OTCI index has been chosen as
biophysical L2 product for mosaicing. OTCI estimates chloro-
phyll in S3, and it is defined as follows:

OTCI =
(Oa12−Oa10)

(Oa11−Oa10)
(3)

where Oa12, Oa11, and Oa10 are the reflectance in bands
centered at 753, 709, and 681 nm, respectively, of the OLCI
sensor. A pixel value is considered valid when the three different
conditions expressed in Table I are satisfied. High solar zenith
(values higher than 70.0◦) are not taken into account as these
data can be physically unrealistic. This was concluded in [44]
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for the MODIS accuracy, and it can be applied to S3 as well.
In addition, all the product values that are not valid or finite
are filtered. Those pixels not classified as LAND, WATER, or
SNOW-ICE have also been filtered out, as well as those classified
as INVALID or any CLOUD pixel class. After the filtering step,
the spatial coordinate (lt, lg) gathers together a number of valid
temporal values {Gr(lt, lg, t); t ∈ Vt(lt, lg)}, where Vt(lt, lg)
is the time stamps set linked to (lt, lg). The resulting data are
ready to be used in the compositing phase.

2) Compositing and Temporal Resampling: The composi-
tion and temporal resampling module integrates the previously
filtered pixel values to obtain a representative Cr(lt, lg) for
each pixel (lt, lg) from the corresponding temporal set of valid
product values {Gr(lt, lg, t); t ∈ Vt(lt, lg)}. After filtering,
different amounts of valid samples per pixel are expected. Let
Nt(lt, lg) = |Vt(lt, lg)| be the number of valid temporal sam-
ples in the temporal grid. Depending on this number of valid
observations, a specific strategy is used.

When sufficient valid observations are available, the repre-
sentative value Cr(lt, lg) is obtained as the median of the set
{Gr(lt, lg, t); t ∈ Vt(lt, lg)}. The median is a robust estimator
when dealing with a small proportion of outliers in enough data
samples. However, the median might provide a biased estimate
when outliers affect a small amount of data. This is why median
is only used when the available temporal samples is larger than
a certain threshold thm. If the number of temporal samples is
larger than such threshold, the median is used; otherwise, an
adaptation of the STC for S3 algorithm STC_S3(lt, lg) here
proposed is used. In this work, the threshold value has been set to
4 in order to have the median working properly with a minimum
number of samples (as in [33]), thus reducing the probability
that outliers affect the final estimate. With regard to the STC
method, even with a few samples, it is able to obtain useful
information through the pixel identification auxiliary criteria.
These methods are considered simple and appropriate enough to
perform automated large mosaic composition of S3 operational
L2 products. In summary, the compositing algorithm can be
formulated as

Cr(lt, lg) =

{
if Nt(lt, lg) > thm, then Mr(lt, lg)
otherwise STC_S3(lt, lg)

. (4)

The proposed adaptation of the STC for S3 is based on
the STC-S2 from the S2GM algorithm [33], the WELD algo-
rithm [29], and the LC-CCI WELD for S2 [45]. These algorithms
have been proposed to reduce aerosol contamination and residual
clouds in time series. In the algorithm adapted for S3 L2 land
products, the best pixel from a small set of valid time samples
is selected based on a decision tree using the derived product
values, pixel classification, and other flags.

The proposed STC_S3(lt, lg) algorithm takes for a given
pixel (lt, lg) two out of the valid temporal samples,Gr(lt, lg, t1)
andGr(lt, lg, t2), with t1, t2 ∈ Vt(lt, lg), to compare each other.
The comparison possibilities of the proposed STC_S3 can be
summarized in Algorithm III-C2, where T (·) is the decision tree
function shown in Fig 3. Table II also summarizes the decision
tree algorithm logic. As in the WELD and the STC-S2 algorithm,
each row in the table is a comparison between two valid temporal

Algorithm 1: STC_S3(lt, lg) Algorithm to Select a
Temporal Value for Pixel (lt, lg).

Result: STC_S3(lt, lg)
G∗r ← Gr(lt, lg, t1); i← 2;
while i ≤ |Vt(lt, lg)| do

G∗r ← T (G∗r, Gr(lt, lg, ti); i← i+ 1;
end
Return STC_S3(lt, lg)← G∗r;

samples in the 3-D grid Gr(lt, lg, t1) and Gr(lt, lg, t2), and if
this comparison is not met, the next row compositing condition
is checked. The process repeats until a condition is met or the
last default rule is reached.

According to the LQSF product, S3 pixels can be classified as
LAND, WATER, and SNOW_ICE. The other available classes,
INVALID and pixels with CLOUD flag, are discarded. Note
that vegetation is included in LAND class and further checks
using OGVI and OTCI values, which allow us to identify the
temporal pixel values related to vegetation. The fundamentals
of the decision tree rules are based on the following criteria,
depending on the properties of the two temporal pixel samples
under comparison.

1) Pixels classified as LAND have the highest priority to
be selected as they may be vegetation unlike the other
possible classifications.

2) If pixels are not classified as LAND, then SNOW_ICE
and WATER classes have the second and third priority
levels, respectively. Note that SNOW_ICE is the second
class of pixels likely to be misclassified in LAND areas
and WATER is the last option.

3) A further check is done by the OGVI in order to increase
the probability of a correct characterization of the pixel as
vegetation, since vegetation pixels may also be classified
as SNOW_ICE, CLOUD, or WATER. This additional
check could be avoided in case the objective is to focus on
high confidence values for vegetation. In the experiments,
it has been applied for the sake of completeness.

4) When two temporal values of a pixel belong to the same
class, the pixel sample with the maximum OTCI value is
selected, that is, the highest value of chlorophyll becomes
the estimate for that pixel in the considered time period.

5) OTCI values may vary among all temporal valid samples
for the same pixel location in a short period of time. Part of
the reasons for this behavior may be due to differences in
phenology as a result of images in adjacent paths being
collected at different times. One way to minimize this
effect is trying to select valid temporal values of a pixel in
the composite from roughly the same phenological stage,
for example, when the leaves are photosynthestically ac-
tive. An approximate and simpler criterion is choosing
the maximum OTCI value, in order to keep the highest
recorded photosynthetic activity in the temporal period
considered for the composite.

The above described criteria were designed to classify and
select pixel values to obtain mosaics and temporal composites
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Fig. 3. Decision tree algorithm for function T (Gr(t1),Gr(t2)) when comparing two valid temporal samples, Gr(lt, lg, t1) and Gr(lt, lg, t2), of a pixel
(lt, lg).

TABLE II
COMPOSITING CRITERIA USED IN THE DECISION TREE FUNCTION T (Gr(t1),Gr(t2)) WHEN COMPARING TWO VALID TEMPORAL SAMPLES, Gr(lt, lg, t1) AND

Gr(lt, lg, t2), OF A PIXEL (lt, lg).

for S3 L2 OTCI products. In case of mosaicing other products,
different criteria for the STC algorithm should be defined, for
example, for water products such as the Algal Pigment Concen-
tration. Nevertheless, apart from the corresponding criteria of the
STC-S3 algorithm for a given product, the rest of the temporal
compositing and mosaicing algorithm remains the same.

D. Validation of OLCI Product Mosaics

In order to validate the generated multitemporal OLCI product
mosaics, as there is not any ground truth available, two different
confidence measures are proposed to assess the quality of the
generated mosaic. A simple and quick look to the mosaic con-
fidence values can be provided by a map showing the number
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of valid temporal samples in the pixels temporal grid, that is,
Nt(lt, lg).

Another straightforward statistics could be the standard devi-
ation of the valid temporal product values for each pixel. How-
ever, taking into account that the number of valid observations
Nt(lt, lg) is usually small and that they may include outliers, the
standard deviation does not appear to be a very reliable measure.

Instead of using the standard deviation S(Ḡr(lt, lg)) of the
mean Ḡr(lt, lg) as uncertainty measure, if there are at least
two values, the standard deviation of the valid observations for
each pixel is weighted by the critical value of the Student’s
t-distribution [46] corresponding to the number of valid observa-
tions and a significance levelα = 0.05. Eventually, the proposed
confidence index is expressed as

uA(lt, lg) = e−tNt−1;95%∗S(Ḡr(lt,lg)). (5)

The standard deviation S(Ḡr(lt, lg)) is then defined as

S(Ḡr(lt, lg)) =

√
1

Nt−1 ∗
∑Nt

t=1(Ḡr(lt, lg)−Gr(lt, lg, t))2√
Nt

(6)
And the mean Ḡr(lt, lg) is defined as

Ḡr(lt, lg) =

∑Nt

t=1Gr(lt, lg, t)

Nt
. (7)

In summary, the confidence index uA(lt, lg) of a pixel mosaic
value Cr(lt, lg) is defined as the inverse exponential of the
t-distribution tn−1;95% weighted standard deviation S(Ḡr) in
order to provide the confidence index in the [0,1] interval. The
weight tn−1;95% increases the confidence proportionally with
the number of valid observations (degrees of freedom), due to
the smaller associated critical values of the t-distribution. Thus,
the proposed uA(lt, lg) confidence index provides a normalized
confidence measure that accounts for both the standard deviation
and the number of valid observations.

E. FLEX Adaptation

The algorithm previously proposed has been designed for S3.
In order to use it in future works with FLEX L2 derived products,
some changes are needed. As S3 and FLEX will fly in tandem
following the same orbit with few seconds delay and FLEX
will deliver products with the same spatial resolution as S3,
300×300 m per pixel, a geospatial registration between an S3
and a FLEX products has to be done. This geospatial registration
could be done as described in Section III-A to build a common
3-D temporal grid from S3 and FLEX simultaneously.

If a FLEX L2 classification pixel product is provided, the
decision tree of the STC-S3 presented algorithm will have to
be adapted to the available set of classes in FLEX. In any case,
the same S3 L2 LQSF product can be used, after geospatial
registering the corresponding FLEX and S3 images. Therefore,
we can assign the S3 pixel classification to the corresponding
FLEX pixel and use the STC-S3 decision tree proposed, as it
is already improved for land and vegetation products. The main
change in the algorithm would be substituting the OTCI product
by the selected FLEX product, such as fluorescence, which is

Fig. 4. Data products considered for the Autumn-peak dataset.

the main product that will be provided by FLORIS, the FLEX
sensor.

However, this modification would also have additional im-
plications due to the dynamic nature of the fluorescence phe-
nomenon with respect to the chlorophyll content. Although the
chlorophyll concentration tends to be stable in short periods of
time (hours or even days), the fluorescence is a dynamic bio-
physical parameter that would require a supplementary model
for characterizing the existing intra-day variations. Note that the
local solar time along the FLEX/S3 orbit logically affects the flu-
orescence captured by FLORIS, and hence, it can generate some
artificial deviations between different fluorescence products.
To address this problem, we highlight the need of developing
an empirical model (based on actual FLEX measurements) to
characterize how the fluorescence parameter is affected by the
orbit acquisition point and the local time. In this way, each
individual product could be corrected according to its particular
acquisition conditions before performing the spatial mosaicing
step (see Section III-B). A similar scheme could also be applied
for other available FLEX products.

IV. EXPERIMENTS

This section presents the experimental part of the work,
including details of the considered datasets in Section IV-A,
the experimental setup in Section IV-B, and the obtained results
together with their corresponding validation in Section IV-C.

A. Dataset

In this work, we use different sets of multitemporal OLCI
L2 products to produce their corresponding OTCI mosaics.
Specifically, we select the region between Paris (France) and
Trento (Italy) as ROI. That is, we only consider those opera-
tional products that include some part of the rectangular area
between the (48.864716, 2.349014) and (46.06787, 11.12108)
latitude–longitude coordinates. Given this ROI, we define the
following datasets for the experiments.
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Fig. 5. OTCI mosaics generated by the proposed framework in Experiment 1. Note that the blue to green color scale is used to represent different OTCI values
and the gray color expresses unavailable or nonvalid pixels. (a) Winter-peak. (b) Spring-peak. (c) Summer-peak. (d) Autumn-peak.

1) Winter-peak: From the 15th to the 31st of January 2019
(27 products).

2) Spring-peak: From the 15th to the 21st of April 2019 (15
products).

3) Summer-peak: From the 15th to the 21st of July 2019 (15
products).

4) Autumn-peak: From the 14th to the 20th of October 2019
(15 products).

5) April-1st: From the 1st to the 7th of April 2019 (16
products).

6) April-2nd: From the 8th to the 14th of April 2019 (15
products).

7) April-3rd: From the 15th to the 21st of April 2019 (15
products).

8) April-4th: From the 22th to the 30th of April 2019 (17
products).

As an illustrative example, Fig. 4 shows in blue the area of the
OLCI L2 products considered for the Autumn-peak dataset and
the considered ROI in orange. Note that all the datasets include
operational products from one week, except Winter-peak that
covers two weeks due to the high amount of clouds present
in Europe during the winter season. These datasets have been

selected to allow analyzing the seasonal evolution of the vegeta-
tion in central Europe throughout the generated OTCI mosaics.
Since the values of the considered vegetation index are highly
variable along time, we additionally consider weekly OTCI
mosaics in April. In this case, the third week of April (April-3rd)
corresponds to the peak of the spring season (Spring-peak).

B. Experimental Setup

For each one of the considered datasets, we apply the proposed
framework to download the operational products, generate the
corresponding OTCI mosaics, and validate the results according
to the confidence measure provided in Section III. Although
operational OLCI L2 products contain multiple data [23], it is
important to note that only OTCI and LQSF product information
is used for generating the corresponding multitemporal OTCI
mosaics. To better organize the results, we divide the experi-
ments into the following two setups.

1) Experiment 1: In this experiment, we consider the
Winter-peak, Spring-peak, Summer-peak, and Autumn-
peak datasets in order to conduct an interseason OTCI
analysis for the year 2019.
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Fig. 6. Valid pixel maps for the OTCI mosaics generated in Experiment 1. Note that the blue to yellow color scale is used to represent valid pixel counts and the
gray color expresses unavailable information. (a) Winter-peak. (b) Spring-peak. (c) Summer-peak. (d) Autumn-peak.

Fig. 7. Qualitative comparison among different OTCI composites for the Spring-peak dataset. (a) Proposed. (b) Mean. (c) Median.
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Fig. 8. Confidence maps for the OTCI mosaics generated in Experiment 1. Note that the blue to red color scale is used to represent pixel confidence values and the
gray color expresses unavailable information (light gray) or a single valid pixel (dark gray), where the proposed confidence metric is not defined. (a) Winter-peak.
(b) Spring-peak. (c) Summer-peak. (d) Autumn-peak.

2) Experiment 2: This experiment includes the datasets April-
1st, April-2nd, April-3rd, and April-4th to study the evo-
lution of the OTCI mosaics along April 2019.

Regarding the software and hardware environments, all the
experiments conducted have been built on the top of the Python
3.5.2 and MATLAB 2019a frameworks, and they have been
executed on a Ubuntu 16.04 x64 server with 24 Intel(R) Xeon(R)
E5-2640 processors with 189-GB RAM. The related codes are
available for reproducible research.

C. Results

1) Experiment 1: Fig. 5 presents the OTCI mosaics generated
by the proposed framework for the Winter-peak (a), Spring-peak
(b), Summer-peak (c), and Autumn-peak (d) datasets. As it is
possible to observe, low OTCI values are represented in blue
colors, whereas high OTCI values (indicating a high chlorophyll
content) are represented in green. Additionally, unavailable or
nonvalid pixel values are displayed in gray color. Note that
this color scale is the one officially provided to be used with
Sentinel-Hub services,2 where reddish colors represent very

2[Online]. Available: https://github.com/sentinel-hub/custom-scripts

low chlorophyll concentrations and greenish colors express high
chlorophyll values related to more dense and healthier vegeta-
tion. From the obtained mosaics, it is possible to make some
important observations. In general, the interseason analysis of
the generated European composites reveals that the maximum
amount of green vegetation is achieved in the summer season,
followed by the spring, autumn, and winter seasons as it is
expected according to the considered European region [47].
Nevertheless, some specific areas of interest exhibit a different
trend, as it is the case of the detail displayed in Fig. 5 that includes
the northern part of the Aragón autonomous community in north-
east Spain [48]. More specifically, this region contains different
natural parks, such as the Sierra y Cañones de Guara [49],
which are principally made of coniferous trees, such as the Pinus
nigra and Pinus sylvestris, that increase their photosynthetic
activity during the peak of the spring season by means of a
higher foliar pigment level [50]. Precisely, this increase can be
clearly observed in the multitemporal composite generated in
Fig. 5(b), which reveals the proposed framework consistency
when building mosaics from OLCI-derived products acquired
on different dates.

Regarding the data availability, the number of valid tempo-
ral observations considered in each mosaic is another relevant

https://github.com/sentinel-hub/custom-scripts
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Fig. 9. OTCI mosaics generated by the proposed framework in Experiment 2. Note that the blue to green color scale is used to represent different OTCI values
and the gray color expresses unavailable or nonvalid pixels. (a) April-1st. (b) April-2nd. (c) April-3. (d) April-4th.

aspect that deserves to be analyzed in more detail. In particular,
Fig. 6 shows the corresponding maps of available observations
for the four considered seasonal periods. In this case, the blue to
yellow color scale represents the number of valid OTCI values
for each dataset, and the gray color expresses unavailable infor-
mation. Note that each map has a slightly different value range
since the maximum number of valid pixels is logically different
for each period. Besides, multiple pixel values of Fig. 6(a)
are not available due to the high amount of clouds during the
winter season. Although we tried to relieve the effect of clouds
by considering OTCI products from two weeks, the number
of available observations in Winter-peak is substantially lower
than in the other datasets, being Spring-peak and Summer-peak
the collections with more available information. In general,
the number of valid observations within the region of interest
tends to be significantly lower than the total number of products
considered in each dataset. Precisely, this practical limitation
motivates the design of the proposed compositing algorithm and
threshold.

It is important to analyze the impact of the available product
measurements in operational conditions when generating
the corresponding multitemporal mosaics. Therefore, we
compare the proposed compositing algorithm (defined within
the presented mosaicing framework in Section III-C2) to

different multitemporal compositing alternatives. Specifically,
Fig. 7 displays the OTCI composites generated by the proposed
approach [see Fig. 7(a)], the mean [see Fig. 7(b)], and the median
[see Fig. 7(c)] algorithms using the Spring-peak dataset. In
addition, Fig. 7 also shows the visual details corresponding
to the Spanish natural park Sierra y Cañones de Guara. The
number of observations in this area is generally below the
considered threshold (thm = 4), which helps to better identify
potential differences among the compositing alternatives. Note
that the proposed approach is able to retrieve higher OTCI values
in that location when only few operational product observations
are available. Although the straightforward mean and median
algorithms tend to reduce the amount of detected chlorophyll in
the output composites, the proposed temporal compositing tree
algorithm is able to select OTCI values that represent higher
pigment levels during the considered temporal period. That is,
the defined OLCI-based decision rules are able to discern higher
peaks during the spring season when the photosynthetic activity
is expected to reach intra-annual maximums in this natural park.

These qualitative results reveal that the proposed approach
provides advantages with respect to the mean and median com-
positing methods, since the combination of the multitemporal
OTCI observations is less affected by some product deviations
along the periods of interest. In the case of the mean, this one
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Fig. 10. Valid pixel maps for the OTCI mosaics generated in Experiment 2. Note that the blue to yellow color scale is used to represent valid pixel counts and
the gray color expresses unavailable information. (a) April-1st. (b) April-2nd. (c) April-3rd. (d) April-4th.

is the most affected method because it substantially reduces
these activation peaks. In the case of the median algorithm, we
can see that it logically has a similar behavior to the proposed
compositing method when the number of observations is higher
than the considered threshold. However, the proposed approach
shows better capabilities to combine multitemporal OTCI values
while accounting for the natural chlorophyll with limited product
observations. Note that both atmospheric contamination effects
and temporal limitations are key factors in actual operational
environments, where the proposed approach may provide com-
petitive advantages with constrained data.

Finally, Fig. 8 shows the confidence maps for the correspond-
ing OTCI mosaics according to the proposed confidence index
(see Section III-D). In this figure, the blue to red color scale
represents pixel confidence values and the gray color expresses
unavailable information (light gray) or a single valid pixel (dark
gray), where the proposed confidence metric is not defined. As it
is possible to observe, lower confidence levels do not necessarily
correspond with the higher numbers of valid samples in Fig. 6,
as some measurements have shown to be rather variable along
specific time periods. We can observe different confidence vari-
ations depending on the geographic locations and the available
observations. For instance, in the case of Fig. 8(d), the north of

France has lower confidence levels than the center of Italy, where
more valid temporal OTCI values are available. In general, the
confidence values of the generated composites are high with the
exception of clouded zones, borders, and some other exceptions.
A special mention is deserved by those areas with very few
observations. Although the available OTCI measurements are
logically correct for this areas, the resulting confidence level is
reduced because the product values cannot be contrasted during
the temporal period of the mosaic. Note that confidence levels are
between 0 and 1, so the map has been scaled according to this
interval, with light gray representing unavailable information
and dark gray being pixels with less than two valid samples.

2) Experiment 2: Regarding the second experiment, Fig. 9
presents the OTCI mosaics generated by the proposed frame-
work for the April-1st (a), April-2nd (b), April-3rd (c), and
April-4th (d) datasets. Like in the previous experiment, low
OTCI values are represented in blue color and green color rep-
resents high OTCI measurements. According to the qualitative
results reported in Fig. 9, it is possible to see that the weekly
mosaics generated for April 2019 have important similarities.
However, one can find some noteworthy points according to
the expected vegetation grow in the considered area of inter-
est. When analyzing the results from a global perspective, the
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Fig. 11. Confidence maps for the OTCI mosaics generated in Experiment 2. Note that the blue to red color scale is used to represent pixel confidence values and
the gray color expresses unavailable information (light gray) or a single valid pixel (dark gray) where the proposed confidence metric is not defined. (a) April-1st.
(b) April-2nd. (c) April-3rd. (d) April-4th.

generated multitemporal mosaics reveal that the vegetation in
central Europe tends to increase along each week of April, being
consistent with the previous interseason analysis, where the
maximum amount of green vegetation is reached in the summer
season. In the case of the displayed details corresponding to
the Sierra y Cañones de Guara, we can observe some relevant
weekly changes that deserve to be mentioned. Specifically, the
highest OTCI activation is achieved in April-3rd followed by the
April-4th, April-2nd, and April-1st datasets. That is, the peak of
the spring season for this natural park can be clearly appreciated
in Fig. 9(c), which indicates that the proposed approach is able
to generate consistent multitemporal composites that retain the
peculiarities of the different regions.

Fig. 10 shows the maps of available observations in Experi-
ment 2. As it is possible to see, there are remarkable differences
among the weekly mosaics, since the cloud coverage is typically
a very important issue in central Europe during April [47]. The
number of valid samples per dataset is generally significantly
lower than the total number of available products, with the excep-
tion of April-3rd. Additionally, Fig. 11 displays the confidence
maps of the corresponding OTCI weekly mosaics. As it can be
observed, confidence values are higher in those areas with more

valid observations and with a more stable behavior with respect
to the amount of vegetation detected by the biophysical index.
Note that we follow the same color codes as in Experiment 1 in
both figures.

V. CONCLUSION

This work has presented a novel multitemporal mosaicing
algorithm specially designed for operational S3 biophysical
or other derived products within the context of the S3/FLEX
tandem missions. Specifically, the proposed framework has
been defined according to four sequential stages/processes (i.e.,
operational data acquisition, spatial mosaicing, temporal com-
positing, and confidence level estimation) in order to generate
consistent mosaics from derived S3 data products. The con-
ducted experiments, using different S3 datasets, have shown the
proposed approach suitability and performance with respect to
other standard mosaicing alternatives.

One of the first conclusions that arise from this work is the
importance of derived biophysical products within the S3/FLEX
context and how generating these multitemporal mosaics can
support the operational provision of the missions. On the one
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hand, the use of multitemporal data allows significantly reducing
the influence of cloud occlusions and contamination due to
the high temporal resolution of the instruments. On the other
hand, it also enables using substantially wider areas of interest
to ease the task of conducting global biophysical analyses.
Another important point is related to the operational availability
of valid observations and also their inconsistency. The process
of selecting a suitable representative pixel value for a given
time period is generally very sensitive to the number of valid
samples. Unlike standard compositing functions, the proposed
approach has been designed to relieve the least informative cases
by considering the nature of the derived biophysical product,
which may eventually produce more relevant results. Our future
work will be focused on the following directions: extending the
proposed framework to multimodal RS data, developing empir-
ical models for characterizing FLEX world-wide fluorescence
and studying the effect of using different products as well as
using in-painting methods for missing data.
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