The distribution of index futures realised volatility under
seasonality and microstructure noise

Abstract

Previous research documents that the distribution of realised volatility appears
approximately log-normal. However, formal tests reject normality fairly convincingly,
which may indicate intrinsic features in the intraday data series, namely, the presence of
seasonal intraday patterns and microstructure noise. Because many models are based
on a normality assumption, this must be verified in order to validate the results. We
find departures from normality due to the seasonal and noise components of intraday
data, such that, after controlling for both features, the volatility estimates follow a
log-normal distribution. Our results reveal that failing to account for these market
imperfections can have important implications for analyses of volatility transmission
and for investment and hedging decisions.

1 Introduction

The distributional characteristics of asset returns are pivotal in financial economics for
asset pricing, portfolio selection, performance evaluation, and managerial decision-making,
among others. Because the second moment structure is probably the most critical feature of
the conditional return distribution, it has triggered a growing body of research (see Boller-
slev and Ole Mikkelsen, 1999; Bekaert and Wu, 2000; Campbell et al., 2001; and Andersen
et al., 2003, among others). The pioneering study of Clark (1973) states that the log-normal
distribution is appropriate for daily volatility. Indeed, adjusting the volatility distribution
towards a log-normal distribution becomes crucial, because normality is assumed in many
models, such as option pricing models (e.g. Scott, 1987; Hull and White, 1987; Heston,
1993). Furthermore, when a statistical model includes a normality assumption, this must
be verified in order to validate the results. Thus, we investigate the effects of departures
from normality in the volatility distribution.

Traditionally, (G)ARCH models have been popular parametric approaches for modelling
financial asset return volatilities, correlations and distributions. However, the increasing



availability of high-frequency data (HFD) has produced an explosive growth in the financial
econometrics of volatility dynamics, allowing for the construction of more accurate daily
volatility measures: realised volatility (RV)E Additionally, as volatility becomes observable,
it can be modelled directly, rather than being treated as a latent variable. Therefore, we can
model and forecast it using standard time-series techniques (Andersen et al. 2001, 2003).
In general, under the assumption that RV follows a log-normal distribution, standard linear
Gaussian approaches are used. However, if the hypothesis of normality is not supported,
inferences derived from these models may be biased.

Previous research documents the RV distribution. Andersen et al. (2001c) study the RV
of exchange rates, Andersen et al. (2001b) examine the RV of individual stocks in the Dow
Jones, and Areal and Taylor (2002) analyse the RV of index futures contracts. Although
these studies find that the RV distribution appears approximately Gaussian, formal tests
reject normality fairly convincingly, which may indicate intrinsic features in the data series.
Our main objective is to analyse the extent to which the presence of such biases may affect
normality. These biases are widely studied in the literature. For example, they include
the presence of seasonal intraday patterns (behavioural characteristics of financial markets)
and the presence of a noisy component generated by intrinsic operations (trading charac-
teristics arising from issues such as price discreteness, bid—ask spreads, or non-synchronous
trades/ quotes).ﬂ Additionally, we examine whether the results are influenced by the fre-
quency of the data, and analyse the economic effects of such corrections in areas that rely
on volatility estimates, such as investment /hedging decisions and spillover analyses.

We depart from previous studies and make several novel contributions. First, we extend
the data. As such, the empirical analysis is performed using CAC and DAX index futures
contracts over a long time horizon of more than 12 years. The frequency of observations is
critical, because it may affect the accuracy of estimates. Thus, we use different frequencies
(1, 5, 10, 20, and 30 minutes). As noted below, the early literature focuses on one frequency
only.

Second, we remove those features that introduce bias into the variance estimates, namely,
intraday seasonality and market microstructure noise. Andersen and Bollerslev (1997a) pro-
vide a stylised intraday return model based on the Fourier flexible methodology to uncover
intraday seasonalityﬂ This enables us to obtain deseasonalised intraday returns and, there-

'RV, constructed as a sum of squared intraday returns, has theoretical advantages in the construction
of interdaily volatility forecast evaluation criteria (Andersen and Bollerslev, 1998a; Andersen et al., 2001b).

2The theory of quadratic variation suggests that under certain conditions (basically, frequencies that
tend to infinity and markets free of frictions (Merton, 1980; Andersen and Bollerslev, 1998a; Andersen et
al., 2001c), RV is an unbiased and efficient estimation of return volatility; however, these circumstances are
rarely met in practice.

3Intraday volatility patterns induce serial correlations and result in difficult statistical inferences (e.g.
standard variance-ratio statistics or comparable tests). Andersen and Bollerslev (1997a) propose the Fourier



fore, the deseasonalised RV. Later, Barndorff-Nielsen and Shephard (2002) derived a model
to measure the RV without the microstructure noise caused by the intrinsic operating and
trading limitationsﬁ In practice, RV is often modelled by ignoring the effects of these fea-
tures on the results. In this study, we combine these two models to produce a more accurate
estimate of actual volatility. First, to account for the presence of intraday patterns in the
volatility of financial market returns (see, among others, Wood et al. (1985), Harris (1986),
and Tse (1999)), we estimate the deseasonalised’| RV (RV;®) using the model of Andersen
and Bollerslev (1997a). Prior studies that address intraday seasonal patterns using different
methods include those of Andersen et al. (2001b) and Areal and Taylor (2002). The former
remove the serial correlation in high-frequency returns using a de-meaned MA(1) filtered
return series; the latter follow Taylor and Xu (1997) to determine the optimal weights of
intraday returns, from which they calculate the RV. Then, to address the non-negligible
component associated with microstructure frictions, we apply the realised kernel estimator
(Barndorff-Nielsen and Shephard (2002); Barndorff-Nielsen et al., 2009) and estimate the
RV free of market microstructure noise (RV/F). In contrast, previous studies have relied
on certain frequencies to overcome noise frictions. For example, Andersen et al. (2001b)
and Areal and Taylor (2002) employ five-minute returns to mitigate market microstructure
noise problems, whereas Andersen et al. (2003) use observations sampled at a frequency
of 30 minutes. Finally, we consider both effects, calculating the deseasonalised RV free of
microstructure noise (RV;**) as the closest approximation to the actual Volatilityﬁ

Third, we study the implications of removing the noise and seasonality for the unconditional
distribution of the RV. Given the importance of obtaining log-normal distributions (Clark,
1973; Areal and Taylor, 2002; Andersen et al., 2001b), and because many models are based
on normality assumptions, we analyse how volatility estimates evolve to meet a log-normal
distribution when considering both features jointly and explicitly. Our results reveal that
remarkable reductions in skewness and kurtosis occur in both indices and all frequencies
after removing both components. As such, the adjustment to a normal distribution becomes
almost perfect, to the extent that the hypothesis of normality cannot be rejected in certain
cases.

Fourth, we analyse the effect on the conditional distribution, that is, the autocorrelation

flexible form (FFF) regression (Gallant, 1981, 1982) to accommodate this seasonal intraday component,
allowing for robust inferences and reliable hypothesis testing procedures in empirically realistic settings
(Andersen et al. 2001a).

“The model of Barndorff-Nielsen and Shephard (2002) neglects intraday periodicities. Their paper
states that the model has a repeating intraday component (i.e. diurnal), and that this diurnal effect may
not be completely ignorable when the relation between the deterministic periodic component and the noise
component is not additive. However, they neglect this deficiency.

SDeseasonalised volatility refers to the RV in which the intraday seasonal pattern of volatility has been
removed.

SNote that s, k, and sk denote data that are deseasonalised, free of market microstructure noise, and
free of both effects, respectively.



function and the asymmetric effect. Series that account for intraday seasonality and noise
frictions show lower autocorrelation coefficients that remain high for up to about 100 days.
Then, they decay slowly to zero at a hyperbolic rate, suggesting the removal of a determin-
istic structure and the presence of a common degree of fractionally integrated long-memory
process across intraday sampling frequencies. With regards to the asymmetric responses
of volatility, we find that positive returns have a smaller effect on future volatility than
do negative returns, but this response is more visible if the seasonal and noise components
are neglected. In other words, the ‘true volatility process’ (no seasonality and noise) has a
minor asymmetric response.

Fifth, we extend the analysis to the multivariate case, focusing on the effects of seasonal-
ity and microstructure noise on the covariances and correlations. We encounter significant
differences in the unconditional distributions of covariances based on raw data, and in data
in which the intraday seasonality and market microstructure noise have been removed.
Additionally, we explore two features of the conditional distribution: cross-correlation pat-
terns, and the asymmetric behaviour of the correlations. Our results reveal a significant
reduction in cross-correlations after accounting for intraday seasonality. In addition, the
greater co-movement of international future indices is mainly observed during negative re-
turn scenarios; this response is more obvious if the seasonal and noise components are
neglected. Furthermore, when we take these features into account, we observe a decrease
in the correlations during positive return scenarios, which are not observed when using raw
data.

Finally, we analyse the potential economic effects of the observed differences caused by the
seasonality and microstructure noise when estimating RV. The results show a significant
effect of ignoring these features in investment and hedging decisions, where we find con-
siderable deviations in the optimal weights. These differences are present at every point in
time in which an investor makes investment/hedging decisions. The magnitudes of these
differences show high values, involving the full wealth of the investor at certain points in
time. In addition, the effect on the spillover analysis is substantial, with differences in
magnitude and even in the direction of the net transmission of volatility.

The remainder of this paper is organised as follows. Section 2 describes our data and ex-
plains the methodology we employed to compute the RV measures. Section 3 presents the
empirical results for the univariate volatility distribution. Section 4 extends the results
to the multivariate case, and Section 5 analyses the potential economic effects on invest-
ment /hedging decisions and spillover analyses. Finally, Section 6 summarises the results
and concludes the paper.



2 Database and RV measurement

2.1 Data

Our empirical data set, obtained from TickData™ comprises high-frequency observations
at different frequencies of transaction prices from two index futures contracts (CAC and
DAX) for the period 2 January 2003 to 30 September 2015ﬂ This yields 3,263 and 3,243
trading days for the CAC and DAX index futures, respectively; see Table 1.

Table 1: Data set description

Table 1 presents the number of observations, trading days, number of intervals per day, and range intervals

for each frequency and for both indices used in the analysis.

Panel A. CAC
FREQUENCY 1 5 10 20 30
NUMBER OBSERVATIONS 1,598,870 332,826 166,413 81,575 55,471
TRADING DAYS 3,263
INTERVALS PER DAY 490 101 50 24 16
RANGE INTERVALS 09:05-17:15  09:05-17:30  09:10-17:30  09:20-17:20  09:30-17:30
Panel B. DAX
FREQUENCY 1 5 10 20 30
NUMBER OBSERVATIONS 1,592,313 330,786 165,393 81,075 55,131
TRADING DAYS 3,243
INTERVALS PER DAY 490 101 50 24 16
RANGE INTERVALS 09:05-17:15  09:05-17:30 09:10-17:30  09:20-17:20 09:30-17:30

We rely on the study of Andersen and Bollerslev (1997a) to filter the data and construct
the series of intraday returns. At the opening of each trading day, observations incorporate
adjustments to the information accumulated overnight and, as a result, display much higher
variability. Therefore, we remove the first observation of each trading day to avoid biased
results. We also handle missing prices using linear interpolation, which softens the effect of
a sharp price change following a trading interruption.

Then, the continuously compounded intraday returns are computed at each interval by
taking the logarithms and subtracting the previous value. Thus, the raw intraday returns
Ry, at the nth interval at day ¢, for n = 1,2..., N and t = 1,2,...,T, are computed as
follows:

"Our data set spans almost 13 years; a similar length is used by Areal and Taylor (2002), who use 13
years of five-minute returns from FTSE100 index futures contracts (from January 1986 to December 1998)
to estimate daily volatility.
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Ri,, = 100 X log <Pt> (1)

t,n—1

where P, represents the future price level on interval n at day t.

2.2 Construction of realised measures of volatility under seasonality and
microstructure noise

Once the raw intraday returns R;, have been calculated, the realised variance at day
t (RV;), defined as the sum of all available intraday high-frequency squared returns, is
estimated as follows$l

N
RV, =) R}, (2)
n=0

Here, RV (RV}) is an accurate approximation of the integrated latent volatility (V%) (see
Andersen et al., 2001c; Barndorff-Nielsen and Shephard, 2002). However, microstructure
effects (noise) and intraday periodicities can introduce a severe bias on the daily volatility
estimation. Therefore, it follows that

RV; = IV, + v, (3)

where v;=f(c,ut), ¢ is the deterministic periodic component (intraday seasonality), and wu
is the noise component. As noted by Barndorff-Nielsen and Shephard (2002), when the
relationship between ¢ and u; has an additive nature, the seasonal (or diurnal) effect is
nonsignificant. However, when this relation is not additive, the diurnal effect may not be
completely ignorable. Because this relation is unknown, we empirically analyse whether
these components have an effect on the RV distribution. To this end, we also estimate the
RV distributions after removing these biases.

To construct the deseasonalised realised variance at day ¢ (RV;®), we first check that the
intraday pattern is confirmed for both indices and all frequencies. Figure 1 exhibits the
mean absolute return for each interval during a trading day and corroborates the presence

8A detailed explanation about the RV methodology can be found in Andersen et al. (2003).



of intraday seasonalityﬂ This pronounced pattern is also evident in the autocorrelogram
for the absolute intraday returns depicted out of a lag of 10 days in Figure 2.

Consider, for instance, the intraday volatility pattern for a five-minute frequency repre-
sented by Figure 1 (CAC 5 MINUTES). A distorted double U-shaped pattern is evident
during the trading day. All markets show a decaying pattern in intraday volatility until
14:30 (corresponding to interval 66). At 14:35 (interval 67), the return volatility increases
considerably, before decreasing until 15:30 (interval 77). Then, a remarkable increment
occurs again, and remains relatively high until 17:30, reaching its maximum peak at 16:05
(interval 84). Note that the last three five-minute returns for the trading day (intervals 99,
100, and 101) also constitute quite unusual intervals. Similar patterns are found by Harju
and Hussain (2011) in the major European equity markets (the CAC, FTSE100, SMI, and
DAX 30 indices) for the period 1 September 2000 to 31 March 2006. These authors find
evidence that US macroeconomic announcements! at 14:30 and 16:05 and the NYSE cash
market opening time at 15:30 have cross-border effects on European equity volatilities.

In view of this outcome, we apply the FFF, originally proposed by Gallant (1981, 1982),
to account for this intraday seasonality exhibited by the data. To capture irregularities in
the seasonal pattern, we include time-of-day volatility dummies in the Fourier regression.lE
Thus, after implementing the FFF, we obtain the deseasonalised returns Rj,,. These returns
are then used to calculate the deseasonalised realised variance at day t (RV,®):

N

RVP =) (R;,)% (4)

n=0

To overcome the microstructure noise problem, we adopt the realised kernel estimatoﬂ of
Barndorff-Nielsen et al. (2009). Under this specification, the realised variance at day ¢,
free of market microstructure noise, is defined as the following weighted sum (by a kernel
function) of the intraday returns:

9A well-known stylised feature of the intraday statistical characteristics of many financial markets is
that volatility is higher at the opening and closing of the trading day, and lower in the middle (e.g. see
Wood et al. (1985), Harris (1986), and Tse (1999)).

0For example, the producer price index, retail sales, consumer price index, consumer confidence, and so
on.

HUDummy variables in which these observations have been removed are incorporated to capture irregu-
larities in the seasonal pattern, except for the last 15 minutes of the trading day, when the frequency used
is one minute. Andersen and Bollerslev, 1997a also remove the last 15 minutes returns. Further details
on the dummy variables are available upon request. A more detailed explanation of the FFF procedure is
given in Appendix A.1.

12See the estimation details of the realised kernel estimator in Appendix A.2.



Figure 1: Mean absolute returns at different frequencies
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Figure 1 reports the average absolute returns for each interval of the trading day for the CAC
(left-hand) and DAX (right-hand) stock index futures using all available observations at different

intraday frequencies. The horizontal axis represents the number of intervals in a trading day for

each frequency considered. The vertical axis represents the mean absolute returns.



Figure 2: Autocorrelogram for absolute returns at different frequencies for the
CAC and DAX indices
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Figure 2 reports the autocorrelogram for the absolute returns for the CAC (left-hand) and DAX
(right-hand) stock index futures at different intraday frequencies up to a lag of 10 days.
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h N
R‘/;k = E k(T—I—l) E Rt,nRt,n—|h|a (5)
h=—H n=|h|+1

where k(HLH) is the kernel function, H is the optimal bandwidth, and R;, is the raw
intraday return.

Finally, to jointly account for intraday seasonality and microstructure noise, we estimate
the deseasonalised realised variance free of market microstructure noise (RV,**). To do so,
we use the deseasonalised returns (I ,,) calculated previously, and then apply the following
Barndorff-Nielsen et al. (2009) kernel estimator:

H

5 N
RVH = Z k(m) Z Ry W Ry - (6)
h=—H n=|h|+1

Thus, for each index and for each frequency, four series of RV (i.e. RV, RV}, RVtk, and
RV*) are available for analysis

3 Empirical results for univariate volatility distributions

This section examines the effects on the distributional properties, autocorrelation function,
and asymmetric responses of the return volatility after controlling for intraday seasonality
and noise. For this purpose, we use as input data the four RV series obtained in the previous
section.

3.1 Unconditional distribution of volatility

We extend the findings in the extant literature based on HFD to study the distribu-
tional characteristics of volatility by jointly considering intraday seasonality and market
microstructure noise. To evaluate the extent to which these two factors may affect the dis-
tributional characteristics of the RV series, we start by investigating the similarities between
the series of realised variances. To this end, we analyse whether the distributions, medians,
and variances between the series RV; versus RV, RV, versus RV,*, and RV, versus RV,**

13Consequently, for each index, we have 20 estimations of volatility (five frequencies x four RV series).
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are equal, where our primary focus is RV; versus RV;**. The results are displayed in Table

2.

Table 2: Equality tests

Table 2 shows equality tests for the variances, medians, and distributions of the following series for
both indices and all frequencies: a) RV; versus RV/"; b) RV, versus RV,*; and c) RV; versus RV;*". The

associated p-values are shown below each metric, and *** ** and * indicate that the null hypothesis

of equality is rejected at the 1%, 5%, and 10% significance levels, respectively.

PANEL A: VARIANCE (BROWN)

CAC DAX
1 5 10 20 30 1 5 10 20 30
RV, RVF 048 0.52 0.01 0.01 0.055 0.34 0.73 0011  0.038 0.71
(0.48)  (0.46)  (0.90)  (0.92)  (0.455)  (0.55)  (0.39)  (0.91)  (0.84)  (0.39)
RV, RVF 13.92"* 191 1.17 3.71* 204 12.49%% 10747 1252 12717 8.00%**
(0.00)  (0.16)  (0.27)  (0.05)  (0.15)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)
RV;, RVEF 21.29"*  5.033™  1.98  4.59°  7.84"* 1897 18.72°* 1348 12.61"* 17.52**
0.00)  (0.02)  (0.15)  (0.03)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)
PANEL B: MEDIAN (KRUSKAL)
CAC DAX
1 5 10 20 30 1 5 10 20 30
RV, RVE 2035 17.10%* 24.74*** 53.46™* 0420 2504 1977 23.83"* HFL17T** 9107
(0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)
RV, RVF 1001  0.24 118 0.99 1.52 1.76 0.23 0.25 0.45 0.29
0.00)  (0.61)  (0.27)  (0.31)  (0.21)  (0.18)  (0.60)  (0.61)  (0.50)  (0.59)
RV, RV 834" 2523 41.50%* 8511 17031 21.49"* 31.21** 39.65*** 88.16™* 15151
(0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)
PANEL C: DISTRIBUTION (KOLGOMOROV)
CAC DAX
1 5 10 20 30 1 5 10 20 30
RV, RVE 006  0.06** 0.06** 0.09"  0.13" 007"  0.06** 0.08** 009"  0.12"*
(0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)
RV;,RVF  0.06™*  0.015 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02
(0.00)  (0.83)  (0.49)  (0.40)  (0.53)  (0.15)  (0.28)  (0.24)  (0.17)  (0.39)
RV, RVEE 0.04**  0.05"*  0.08"*  0.11"* 016"  0.06"  0.06™  0.08™ 011"  0.14**
(0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)

As shown, the equality of the variances (Panel A in Table 2), medians (Panel B in Table
2), and distributions (Panel C in Table 2) between the raw series (RV;) and those series in
which seasonality and market microstructure noise are removed (RV;**) is rejected for both

indiceSE

We find that removing seasonality mainly affects the second moment of the series (see Panel
A of Table 2), whereas addressing noise affects the median and the distribution (see Panel B
and C of Table 2). Considering these results, it seems that the choice of the series matters.
Thus, we believe different distributions of the daily realised logarithmic standard deviations

MWith the exception of the equality of the variances for the CAC index and a 10-minute frequency
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will be encountered after controlling for both componentsﬁ

Table 3 summarises the moments for the distribution of the daily realised logarithmic
standard deviations (Irvy, lrvf, lroF, and IrvfF) obtained at frequencies of 1, 5, 10, 20,
and 30 minutes for both index futures, where lrv; = log(\,/RVy), Irvi = log(,/RV}),

lrvf:log(\/RVf), and lrvszlog\/Rka.

Based on our samples of high-frequency returns for the two stock index futures, we find that
when we use raw returns, the unconditional distributions of the logarithmic realised stan-
dard deviations are close to a normal distribution. These results are consistent with those
reported in the literature, which documents that the distribution of logarithmic monthly
standard deviations constructed using daily returns is approximately Gaussian (French, et
al., 1987; Andersen et al., 2001b; Areal and Taylor, 2002). However, note that the hypothe-
sis of normality is rejected for all frequencies and indices (see the results for the Jarque—Bera
test in Table 3). For instance, for a frequency of 30 minutes, the Jarque—Bera statistic is
equal to 52.08 and 27.90 for the CAC and DAX stock index futures, respectively.

Notwithstanding, after considering either seasonality or market microstructure noise, the
results change considerably. Note the reduction in skewness and kurtosis after removing
the intraday periodic component of volatility (Irv] series), market microstructure noise
(Irvf series), and both features (Irvs* series), leading to a significant improvement in the
closeness of fit to the standard normal distribution for both indices and all frequencies. For
instance, Table 3 shows that for the CAC index and a frequency of 1 minute, the skewness
decreases from 0.394 to 0.160 (Irvi* series), and the kurtosis decreases from 3.180 to 3.059
(Irvgk series); similar results hold for the rest of the data. Furthermore, note that for 10-
minute frequencies onwards, the adjustment to a normal distribution is superior. Thus,
the hypothesis of normality cannot be rejected for the CAC index when the frequency
of observations is 20 or 30 minutes, whereas for the DAX index, it cannot be rejected for
frequencies of 10, 20, or 30 minutes (see the values of the Jarque—Bera test in the last column
of Table 3: 2.79, 2.38, 0.95, 2.51, and 8.74, respectively). These findings are consistent with
the literature that suggests that using data at the highest available frequency to measure
volatility is not always the best approach, because the measure might include additional
microstructure effects (Meddahi, 2002; Andersen et al., 2003). These results corroborate
the improvement towards the normal distribution for all frequencies studied, suggesting
the importance of considering both adjustments up to frequencies of 30 minutes. Failing to
account for these effects might lead to bias in a model that relies on a normality assumption.

5The literature shows that the distribution of daily realised logarithmic standard deviations is more sim-
ilar to a normal distribution. Thus, we focus on this instead of the distribution of the RV. The distributions
of the realised variances are highly right-skewed and leptokurtic, and the assumption of normality is clearly
rejected in all cases. For the sake of brevity, these results are not reported here, but are available upon
request.
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Table 4: Effect of microstructure noise and intraday seasonality on RV estimates

This table compares the mean absolute error (MAE), mean squared error (MSE), and root mean
squared error (RMSE) between the estimates of the raw RV and the estimates of the denoised RV
(RV*), deseasonalised RV (RV*), and denoised and deseasonalised RV (RV**). These statistics are
shown for the CAC index futures (Panel A) and DAX index futures (Panel B) at frequencies of 1, 5,
10, 20, and 30 minutes (displayed in rows).

PANEL A: CAC
RVF RV? RVsF
MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
1 minute 0.2872 0.8456 0.9196 0.2275 0.2404 0.4903 0.3799 1.1111 1.0541
5 minutes  0.1646 0.2067 0.4546 0.2574 0.3287 0.5733 0.3196 0.6140 0.7836
10 minutes 0.1541 0.1644 0.4054 0.3062 0.4101 0.6404 0.3531 0.6613 0.8132
20 minutes 0.1706 0.2688 0.5184 0.3441 0.6555 0.8096 0.4007 1.0412 1.0204
30 minutes 0.1733 0.2283 0.4778 0.4177 1.1626 1.0783 0.4668 1.4647 1.2102
PANEL B: DAX
RVF RV? RVSF
MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
1 minute 0.2920 1.0208 1.0103 0.2522 0.2950 0.5432 0.4161 1.3655 1.1685
5 minutes  0.2627 0.9416 0.9704 0.3124 0.5894 0.7677 0.4459 1.9358 1.3913
10 minutes 0.2603 0.9670 0.9834 0.3501 0.7771 0.8815 0.4586 2.0646 1.4369
20 minutes 0.2408 0.5524 0.7432 0.3744 0.6856 0.8280 0.4651 1.2094 1.0997
30 minutes 0.2500 0.5442 0.7377 0.4346 1.1518 1.0732 0.5392 1.7991 1.3413

Finally, in Table 4, we display the mean absolute error (MAE), mean squared error (MSE),
and root mean squared error (RMSE), taking as reference the raw RV (RV), for each
adjustment made in the estimate: noise (RV*), seasonality, (RV*®), and both effects (RV*¥).
We analyse how these differences evolve as the data frequency changes for both the CAC
index futures (Panel A) and the DAX index futures (Panel B). The results show that
microstructure noise is mostly present at the l-minute frequency, but the effect on the
estimate of RV becomes less important as the frequency decreases. However, we still obtain
adjustments due to market microstructure noise for the 30-minute frequency (e.g. MSE of
0.2283 in the DAX index, and MSE of 0.5442 in the CAC index). Thus, although the effect
of noise at this frequency is lower, it is still advisable to adjust for this bias. The effect
of seasonality shows the opposite relationship, where we observe a higher effect at lower
frequencies (e.g. MSE of 1.1622 and 1.1518 for the CAC, and DAX index at the 30-minute
frequency), and the effect at the 1-minute frequency is much lower (e.g. MSE of 0.2402 and
0.2950 for the CAC and DAX index, respectively). Finding an optimal frequency is not
trivial, owing to the trade-off between the opposite effects (Bandi and Russell, 2006, 2008).
These results reinforce the importance of considering market microstructure and seasonality
when using HFD (at any frequency), and show the potential deviations in estimates of the
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RV if we ignore them.

3.2 Conditional distribution of volatility

Volatility clustering is one of the most common stylised facts in financial time series. A
quantitative way to view this clustering property is to use an autocorrelogram. To this end,
we plot the 300-day autocorrelation function for the series lrv; and lrvs* for a 30-minute
frequencym (see Figure 3).

Note that the intraday periodicities in the return volatility in the lrv, series with autocorre-
lations are repeatedly above the corresponding values for the autocorrelation function of the
lrvfk series. This is clearly appreciated in Figure 3, where the autocorrelation coefficient of
the daily realised logarithmic standard deviations (lrv;) for one lag is approximately 0.7,
but is nearly 0.5 for the lrvf* series. In addition, there are significant differences among the
autocorrelation coefficients of the series Irv; and lrvf* until approximately lag 250. Fur-
thermore, note that after removing the noise and intraday seasonality, the autocorrelation
function remains high up to about 100 days, before decaying slowly to zero. This suggests
that a deterministic structure and long-memory volatility dependencies have been removed
from the returnsm Neglecting this deterministic structure could lead to spurious inferences
about the dynamics of the return volatility (Andersen and Bollerslev, 1997a).

To test the suggested long-memory effect, we implement fractional integrated (I(d)) test-
ing proceduresE Table 5 shows the estimates of d for the raw against the denoised and
deseasonalised absolute returns series. As expected, the estimated coefficients are statis-
tically significant, remarkably stable across the high-frequency returns, and similar to the
estimates reported in the extant literature with longer periods of daily data (Table 5 shows
that the degree of fractional integration d ranges from 0.2148 to 0.3546). Other studies,
such as those of Andersen and Bollerslev (1997b,1998b,1998¢) and Andersen et al. (2000),
reach the same conclusion. Thus, the commonality across intraday sampling frequencies
reveals that the long-memory component of volatility is an intrinsic feature of the return-
generating process, with a similar degree of fractional integration across different measures
of volatilities (RV;, RV;**) and frequencies (Andersen et al., 2000).

Moreover, previous studies suggest that good and bad news have different predictive abili-
ties for future volatility. In general, negative returns have a greater effect on volatility than

16The pattern is similar for other frequencies.

17All frequencies follow the same pattern. The results are not reported here, but are available upon
request.

8The results thus far reveal the importance of removing intraday seasonality and noise. Thus, the
following discussion focuses on the measure RV,**.
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Figure 3: Autocorrelations of the daily logarithmic standard deviations
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Figure 3 shows the 300-day autocorrelation function for the series of daily logarithmic stan-
dard deviations lrv; and lrvi* for the CAC (top figure) and DAX (bottom figure) index
futures for a 30-minute frequency. The horizontal axis represents the lag length, expressed
in days, and the vertical axis denotes the magnitude of the autocorrelation coefficient.
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Table 5: Persistence measures for absolute intraday returns

Table 5 displays estimates for the log-periodogram estimator of Geweke and Porter-Hudak (1983) (d“%)
and Robinson (1995) (d*”) for the fractional difference parameter d (standard errors in parentheses)
using absolute intraday returns. Rows represent estimates at different data frequencies, and columns
are divided into two panels (the CAC and DAX indices, respectively). Each panel displays information
for raw and denoised deseasonalised absolute returns; *** ** and * indicate that the null hypothesis

of d = 0 (no fractional integration) is rejected at the 1%, 5%, and 10% significance level, respectively.

Panel A.- CAC Panel B.- DAX
Frequency Raw Denoised deseasonalised Raw Denoised deseasonalised
dek dap dek dap dex dap dok dap

I minute  0.2812%%% 0.3546%** 0.3053%**  0.3400%FF  0.2568%%F 0.33617*F  0.2887%F  0.3234%*
(0.0185)  (0.0158)  (0.0192)  (0.0187)  (0.0277)  (0.0141)  (0.0180)  (0.0158)
5minutes  0.2754%FF  0.3320%FF  0.2762FFF  0.3015%FF  0.2550%FF  0.3205%FF  0.2787FFF  (.2045%%*
(0.0277)  (0.0209)  (0.0259)  (0.0210)  (0.0293)  (0.0209)  (0.0287)  (0.0210)
10 minutes  0.2481%%%  0.3078%%%  0.2707FF%  0.2034%%%  0.2370%FF  0.2079%FF  0.2555%F%  (.2760%*
(0.0325)  (0.0249)  (0.0342)  (0.0252)  (0.0351)  (0.0249)  (0.0252)  (0.0249)
20 minutes  0.2415%%%  0.2807FFF  0.2702%FF  0.2834%FF  0.2374%FF  0.2760%FF  0.2603%F*  0.2672%F*
(0.0390)  (0.0299)  (0.0394)  (0.0306)  (0.0395)  (0.0299)  (0.0345)  (0.0306)
30 minutes  0.2410%FF  0.2537FFF  0.2383%FF  (0.2499%FF  0.2453%FF%  0.2506%FF  0.2148%F%  (.2331%%*
(0.0431)  (0.0331)  (0.0456)  (0.0842)  (0.0449)  (0.0331)  (0.0465)  (0.0343)

positive returns of the same magnitude do. This phenomenon, widely known as the lever-
age effect (Black, 1976; Christie, 1982; Campbell and Hentschel,1992; Long et al., 2014),
has important implications for portfolio selection and asset pricing, and should be consid-
ered to better estimate volatilities. To this end, we also analyse these asymmetries under
microstructure noise and intraday seasonality, and re-examine the underlying empirical
evidence relative to the realised measure RV; versus RV;¥.

Following Andersen et al. (2001b), we use the ordinary least squares method to fit the
following regression model:

In(St) = we + wore—1 + wari—11 ™ + uy, (7)

where In(S;) denotes the daily realised logarithmic standard deviations Irv; and Irvg¥, the
indicator I~ takes the value zero when r,_; > 0, and one otherwise, r;_; is the daily return
on day t — 1 (calculated using raw returns when the dependent variable is lrvy, and using
denoised deseasonalised returns when the dependent variable is Irvg¥), and u; is an error
term (denoted as g, and £f¥ for the regressions with dependent variables lrv; and lrvgk,
respectively).

Panel A in Table 6 shows the results of the previous regression for these realised measures
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Table 6: Estimates of the asymmetric behaviour of volatility

Panel A in Table 6 shows estimates (p-values in parentheses) of equation (7) for the CAC and DAX
index futures for a 30-minute frequency, where In(S¢) denotes the daily realised logarithmic standard
deviations lrv; and lrvfk, the indicator I~ takes the value zero when r,_; > 0, and one otherwise, ¢—1
is the daily return on day ¢ — 1 (calculated using raw returns when the dependent variable is lrv;, and
using denoised deseasonalised returns when the dependent variable is lrvfk), and u is an error term
(denoted as e; and &5* for the regressions with dependent variables lrv; and lrvgF, respectively). In
Panel A, *** indicates statistical significance at the 1% level. The descriptive statistics for the residuals
are displayed in Panel B. Finally, Panel C displays the median, variance, and distribution equality tests
for the series lrvs versus e¢ and lrvf® versus e3*; *** indicates that the null hypothesis of equality is

rejected at the 1% significance level.

Panel A. Estimates for the regression:
In(Sy) = w1 +ware—1 +wari— I~ + &4

CAC DAX
w1 wa w3 w1 wWa w3
lrog —0.495"*  0.216™*  —0.510"** —0.490"* 0.210*** —0.521***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
lrvf’c —0.641**  2.321"*  —5.097"** —0.674"* 2.890*** —6.400***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel B. Descriptive statistics for the residuals of the regression:
In(Sy) = wy +wary—1 +wsrg 11~ + &

CAC DAX
Mean Standard  Skewness  Kurtosis Mean Standard Skewness Kurtosis
Deviation Deviation
£ -0.0000 0.4462 0.3477 3.3710 0.0000 0.4718 0.2420 3.4008
g5k 0.0000 0.5830 0.2098 3.0473 -0.0000 0.5927 0.1466 3.0285
Panel C. Equality tests
CAC DAX
Variance Median Distribution Variance = Median Distribution
(Brown)  (Kruskal) (Kolgomorov) (Brown) (Kruskal) (Kolgomorov)
lrog vs. & 74.81%**  409.53*** 0.23*** 64.32***  341.19*** 0.20***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
lrvgh vs. gff 12,23 759.18** 0.29%* 23.39***  697.22"* 0.27*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

calculated using a 30-minute frequency@ Note that all parameters are significant. Specifi-
cally, the parameters ws are negative, indicating that negative returns have a greater effect
on volatility. Nevertheless, the findings reveal that this asymmetric effect decreases after
removing the market microstructure noise and the seasonal component. For instance, the

9The results for other frequencies follow a similar pattern, and are available upon request.
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coefficient w3 for the CAC index changes from -0.510 to -5.097 '] Panel B in Table 6 shows
the main statistics indicators relative to the residuals of equation (7). As expected, in view
of the results thus far, the skewness and kurtosis in the regression in which the noise and
seasonality are considered decrease considerably. Turning to the CAC index, we find that
the skewness decreases from 0.3477 to 0.2098, and the kurtosis decreases from 3.3710 to
3.0473. The DAX index follows a similar pattern. Finally, Panel C in Table 6 presents
equality tests between the variables Irvy; and the residuals ¢;, and between the variables
Irvik and e§*. Note that the equality of distributions does not hold in either case, which
means that considering the leverage effect makes a difference. Again, neglecting the noise
and seasonal components reveals noticeable differences in the asymmetric effect.

4 Empirical results for multivariate volatility distributions

In this section we analyse the differences in the multivariate volatility distribution due to
microstructure noise and intraday seasonality. Studies neglecting these characteristics may
suffer from model misspecification and provide misleading results. Therefore, understanding
the effects of ignoring these two issues when estimating realised measures of volatility in a
multivariate setting is important to corroborate previous findings.

4.1 Unconditional distribution of volatility for the multivariate case

Although previous studies have analysed the distribution of individual RV (Andersen et al.,
2001b; Areal and Taylor, 2002), few works examine the distribution of realised covariances
and correlations. Advantages of realised measures of covariances and correlations include
that co-movements do not rely on a parametric model and their computation is straight-
forward. The realised covariance is defined as the cross-product of all available intraday
returns in both markets:

N
RCoviji =Y (RitnRjsn), (8)

n=0

where RCov; ;; represents the realised covariance between markets ¢ and j, and R; ; n, Rj¢n
are the intraday raw returns at the n-interval of period ¢ for markets ¢ and j, respectively.

The other covariance specifications considering seasonality and microstructure noise follow

2ONote that exp(-0.510)=0.600,exp(-5.097)=0.006.
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similar expressions to that in the univariate case. For the deseasonalised realised covari-

ance, we use the deseasonalised returns (R;,) calculated earlier, and then compute the
I

deseasonalised realised covariance as follows:

N
RCOU%'S,j,t = Z( f,t,nR;,t,n)v 9)
n=0
where R}, and R, denote the deseasonalised intraday returns for every interval n of

day t for markets i and 7, respectively.

To compute the realised covariance free of microstructure noise, we use a variation of the
realised kernel in equation (5):

RC’ovt = Z k<H+ ) Z RitnRjtn—|n|s (10)

n=|h|+1

where k:( T +1) is the kernel function, H is the optimal bandwidth, and R;; ,, R, are the
intraday raw returns.

Finally, the estimate of the realised covariance considering both effects (seasonality and mi-
crostructure noise) is obtained using equation (11) and the deseasonalised returns (R, ,, R}, )
instead of the raw returns (Rj ¢ n, Rjtn):

H A N
RCoui* = 3" k(ﬁ) > RS R (11)
h=—H n=|h|+1

Table 7 (Panels A-D) summarises the fourth first moments of the distributions of the
daily logarithmic covariances (IRCov;, IRCovf, IRCovi, and IRCovi*) between the CAC
and DAX index futures@ Additionally, Table 7 (panel E) shows the equality test for the
variances, medians, and distribution between the series RCov; versus RCovf¥. Similarly to
the individual volatilities, we observe significant deviations in the observed levels of skewness
and kurtosis among the series (in the mildest case, for denoised deseasonalised realised
covariances, the skewness and kurtosis reach values of 0.0532 and 3.0211, respectively;
for the raw realised covariances, the skewness and kurtosis reach values of 0.1940 and
3.1225, respectively). The equality tests also reveal significant differences. Indeed, the

21 RCovy=log(RCou:), IRCovf=log(RCovy), IRCovi =log(RCov;), and IRCov;*=log(RCovs*).
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null hypothesis of equality is rejected when comparing RCov; versus RCovi¥, that is,
when removing seasonality and noise (with the exception of a frequency of 5 minutes).lﬂ
Although the results for the distribution of the realised covariance are not conclusive, they
extend our previous findings to the multivariate level. Furthermore, they show the perils of
ignoring seasonality and microstructure noise when analysing volatility interactions, because
different specifications of realised covariances will lead to different conclusions and decisions.

Table 7: Moments and equality test of the distribution of unconditional daily
covariances

Panels A-D in Table 7 show the fourth first moments of the distributions of the daily logarithmic
covariances ({RCouvt, IRCovF, IRCov§, and lRCovfk) between the CAC and DAX index futures. Panel
E shows the equality tests for the variances, medians, and distributions between RCov; versus RCovg¥.
The associated p-values are shown below each metric; *** ** and * denote that the null hypothesis

of equality is rejected at the 1%, 5%, and 10% significance levels, respectively.

Panel A. Raw realised covariance(lRCov;) Panel B. Denoised realised covariance (IRCovf)

Mean  Std. dev. Skewness Kurtosis Mean Std. dev. Skewness Kurtosis
1 minute -0.4029 0.9795 0.3463 3.1898 -0.4093 0.9811 0.3416 3.1975
5 minutes  -0.4349 0.9954 0.3637 3.2425 -0.4629 0.9989 0.3551 3.2594
10 minutes -0.4742 1.0116 0.3340 3.1831 -0.5232 1.0167 0.3160 3.1868
20 minutes -0.5790 1.0515 0.2461 3.1225 -0.6771 1.0732 0.2078 3.1100
30 minutes -0.6170 1.0973 0.1940 3.1572 -0.7711 1.1424 0.1067 3.1220

Panel C. Descasonalised Panel D. Denoised deseasonalised
realised covariance(lRCov;) realised covariance(IRCouv¥)

Mean  Std. dev. Skewness Kurtosis Mean Std. dev. Skewness Kurtosis
1 minute -0.2848 0.8592 0.0788 3.3479 -0.2872 0.8704 0.0532 3.2439
5 minutes  -0.4381 0.9863 0.2637 3.1329 -0.4685 0.9882 0.2396 3.0840
10 minutes -0.4930 1.0196 0.2782 3.1007 -0.5426 0.9752 0.1823 3.0435
20 minutes -0.6075 1.0133 0.1683 3.0468 -0.7143 1.0658 0.1851 3.0211
30 minutes -0.6446 1.0634 0.1338 3.0643 -0.8064 1.1276 0.0995 3.0389

Panel E. Equality tests RCov; vs. RCouv*
1 minute 5 minutes 10 minutes 20 minutes 30 minutes

Variance (Brown) 7.62%** 2.18 0.03* 5.37%* 8.97H**
(0.00) (0.14) (0.07) (0.02) (0.00)

Median (Kruskal) 40.00%** 0.80 4.37** 23.59%* 40.87F**
(0.00) (0.37) (0.03) (0.02) (0.00)

Distribution (Kolmogorov) 0.09%** 0.01 0.03** 0.05%** 0.06%**
(0.00) (0.83) (0.07) (0.02) (0.00)

4.2 Conditional distribution of volatility for the multivariate case

Similarly to the analysis conducted for the univariate case, we analyse two important fea-
tures of the conditional distribution for the multivariate case: the serial cross-correlation,

2Following the same structure as in Table 2, we apply equality tests over the RCov series (the results
hold for the log (RCov) series).
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and the asymmetric response to positive and negative shocks.

Figure 4: Cross-correlations of the daily logarithmic standard deviations for
the CAC and DAX indices
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Figure 4 shows the 50-day serial cross-correlation function for the series of daily logarithmic
standard deviations using raw data (Irv;) and the series of daily logarithmic standard devi-
ations obtained using denoised and deseasonalised data lrvi¥) for the CAC and DAX index
futures for a 30-minute frequency. The horizontal axis represents the lag length, expressed in
days, and the vertical axis shows the magnitude of the cross-correlation coefficient. The top
plot displays the cross-correlation of past lags of the DAX index on the contemporaneous
volatility of the CAC index. The bottom plot displays the cross-correlation of past lags of
the CAC index on the contemporaneous volatility of the DAX index.
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Figure 4 shows the 50-day cross-correlation function for the series of daily realised loga-
rithmic standard deviations (Irv; and Irv¥) of the CAC and DAX indices for a 30-minute
frequency. This plot shows how the past volatility in one index affects the volatility in
the other index. Note that the contemporaneous cross-correlation is very high for both
measures of volatility, with values ranging between 0.8 and 0.95. The persistence of the
cross-effects is severely reduced, with the decline being more obvious in the series in which
we consider the noise and the periodic components (Irv; versus lrvi¥ series). Note that the
estimates when using raw data (Irvy) show much higher persistence up to a lag of 35 days
(approximately). From this lag onwards, the differences in persistence between the two
series are less visible, but still have significant effects on the contemporaneous volatility of
the other index. We argue that this higher persistence observed in the cross-correlation for
series when neglecting seasonality is due to the repetition of a deterministic structure in
the intraday periodic component. This structure may lead to biased results on the trans-
mission of information between markets (Alemany et al., 2019). We could conclude that
this transmission exists, when in fact there is a mere repetition of an intraday scheme.
Hence, a proper volatility estimator is essential because different choices lead to significant
differences.

Previous research suggests that correlations behave differently during good and bad eco-
nomic scenarios, increasing during crisis periods. However, there is still a debate in the lit-
erature about the reasons for this empirical pattern, and even what to call it (some authors
refer to it as financial contagion, while others state this is just interdependence; see Forbes
and Rigobbon (2002), Corsetti et al. (2005) for further discussion). This phenomenon has
important implications for portfolio selection and diversification because, during a finan-
cial crisis, the possibilities for risk diversification decrease when they are needed the most.
Next, we analyse how different estimates of the RV affect this observed phenomenon.

To do so, we start by computing the realised correlations in our framework, as follows:

RCovfs5F
RCorrtssk — NI (12)

bt k,s,sk k,s,5k
VRV RV,

where RCorrfjfk is the correlation between indices ¢ and j at day ¢, for t = 1,2,...,T. For

different specifications that consider noise (k), intraday seasonalities (s), and both effects
(sk), we have that RVZ-IZ’S’Sk and RVj]ft’S’Sk are the RVs (obtained from equations 2, 4, 5, and

6), and RCov! ’jfsfk is defined as the realised covariance (obtained from equations 8 to 11).

Then, we regress the following two models using data from the CAC and DAX indices at a
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30-minute frequency@

RCOTTgZék—DAX,t =wo +wiltT +wel T+ ¢y, (13)

where the variable RCorré’Zék_ pax stands for the different correlations at day ¢ between

the CAC and DAX indices, with k, s, sk representing the adjustment made for noise, sea-
sonality, and both effects, respectively. Furthermore, I(**) is a dummy variable that takes
the value one when the return of the CAC and the return of the DAX are both positive, and
zero otherwise, and I~ 7) is a dummy variable that takes the value one when the return of
the CAC and the return of the DAX are both negative, and zero otherwise. Thus, in this
regression, we can see the increase in correlation during bull and bear markets compared
with the average correlation.

In addition, to link the estimates of the correlations with the magnitudes of the past returns,
we regress the following model:

k,s,sk __
RCorerngAX’t =wo +wire [T Fwori 1 I + &y, (14)

where r;_1 is the daily return on day ¢ — 1, calculated using the intraday returns corre-
sponding to each correlation ]

The results for these regressions are displayed in Table 8. Panel A shows that the aver-
age estimate of the correlation increases when the indices move downwards together (the
coefficients ws are positive and significant). This result is robust for all RV estimations,
corroborating that financial markets tend to co-move during a crisis. However, the dif-
ferences in this asymmetric effect of the correlation are more obvious in panel B of Table
8, where we include the magnitude of past returns. Here, we observe differences in the
estimates, regardless of whether we consider the intraday seasonality. When we ignore the
seasonality, the correlation is positively affected by both positive and negative past returns,
where negative past returns lead to a bigger increase in the correlation. For instance, the
wy coefficient is equal to 0.9951, whereas the ws coefficient is equal to -2.0710 when we con-
sider RCorrcac—pax,: as the dependent variable and rcac—1 as the independent variable
in the regression (14). However, the results after considering intraday seasonality draw a
different picture. With these volatility estimates, positive past returns decrease the corre-
lation among the indices (the w coefficients are negative: -0.0407 and -0.0749 for rcact—1;

23The rest of frequencies lead to similar results. The results are available upon request.

Z4For instance, when the dependent variable is RCorrfac—_pa x,t» we employ denoised returns in equation
(22).
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Table 8: Estimates of the asymmetric behaviour of correlation

This table shows estimates (standard errors in parentheses) of equations (15) (in panel A) and (11) (panel
B) for the CAC and DAX indices using data at a 30-minute frequency. The dummy I takes the value
one when the return of the CAC and the return of the DAX are both positive, and zero otherwise. The
dummy I~ takes the value one when the return of the CAC and the return of the DAX are both negative,

and zero otherwise. *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Panel A. Estimates for the regression

RCorrcac—pax, = wo + w1 I™ +wol ™ +&

wo w1 w2
RCorry 0.8673"** 0.0071 0.0220"**
(0.0044) (0.0050) (0.0051)
RCorry 0.8762*** -0.0035 0.0132"**
(0.0047) (0.0054) (0.0054)
RCorri 0.8676™** -0.0006 0.0172***
(0.0043) (0.0050) (0.0050)
RCorrs®  0.8649** 0.0018 0.0182***
(0.0047) (0.0053) (0.0054)

Panel B. Estimates for the regression

RCorrcac—pax, = wo +wire—1 It +wory 1177 + &4

TCACt—1
wo w1 w2
RCorr;  0.8686™**  0.9951*** —2.0710***
(0.0022) (0.2688) (0.2451)
RCorrf  0.8686™**  1.2146*** —2.2120***
(0.0047) (0.3064) (0.2824)
RCorr;  0.8739™*  —0.0407** —0.0480***
(0.0023) (0.0197) (0.0173)
RCorrs*  0.8739***  —0.0749** —0.0520***
(0.0047) (0.0306) (0.0263)
TDAX,t—1
wo w1 w2
RCorry  0.8698***  (.8211*** —1.8805***
(0.0022) (0.2631) (0.2417)
RCorrf  0.8693*  1.0569*** —2.0690***
(0.0047) (0.2978) (0.2757)
RCorr;  0.8761** —0.0629"** —0.0284*
(0.0022) (0.0189) (0.0166)
RCorri® 0.8739"**  —0.0726"** —0.0481*
(0.0024) (0.0328) (0.0272)

-0.0629 and -0.0726 for rpa X,t_l), while past negative returns increase the levels of correla-
tion (the wy coefficients are negative: -0.0480 and -0.0520 for rcac —1; -0.0284 and -0.0481
for rpax+—1). In addition, note that the coefficients of w; and wy in absolute terms are
lower after controlling for noise and seasonality, indicating a lower effect of past returns in
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the correlation. In these estimates, although we still see an increase in the co-movement
during crisis periods, the role of positive returns on the correlation is different. Obviously,
this has an important effect on all decisions that rely on estimates of correlations among
financial markets, such as international asset allocation.

5 Effects of seasonality and microstructure noise on economic
decisions

Conclusions in different fields of economics rely on the features of multivariate volatility dis-
tributions, individual standard deviations, and correlations. The decision-making process in
areas such as asset allocation, risk management, or volatility transmission is based directly
on estimates of volatility. Therefore, poor estimates might result in suboptimal decisions.
Thus, exploring the effects of the corrections caused by seasonality and microstructure noise
in such applications will provide a measure of their economic impact.

We analyse two of these applications. First, we examine the effects of seasonality and
microstructure noise on the weights of a ‘volatility timing’ strategy (Fleming et al., 2001;
Wang et al., 2020) between the CAC and DAX indices. Second, we construct a minimum
variance portfolio (suitable for an investor who wants to hedge her investment) using the
CAC and DAX indices.

The top plot in Figure 5 displays the differences (using RV against RV *¥) in the estimated
weights of a ‘volatility timing’ strategy between the CAC and DAX index, where we rebal-
ance the portfolio on a monthly basis. The allocation rule in this strategy is the inverse
of the estimated individual volatility; thus, a higher share of wealth will be placed on an
asset with lower volatility. This allocation strategy has been shown to provide advantages
over more sophisticated allocation strategies (Kirby and Ostdiek, 2012) because it does not
require optimization, does not require covariance matrix inversion, and generates positive
weights. Specifically, the weight invested in asset ¢ at time ¢ is computed as

(k)
~(h 1/RV,
wz(t) T N ' (h)’ (15)
> im1 1/ RV

where R‘/;-I(fh) represents the estimate of the RV for the raw (RV) or denoised and desea-
sonalised (RV*F) cases of asset i at period ¢, and N is the number of assets (two, in our
case).
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Figure 5: Differences in allocated weights due to seasonality and
microstructure noise
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Figure 5 shows the differences in the allocated weights of the CAC40 index futures for a ‘volatility
timing’ strategy (top plot) and a minimum-variance strategy (bottom plot). The horizontal axis
represents the date (from January 2003 to September 2015). The vertical axis represents the
differences in the allocated weights obtained using estimates from raw RVs (RV') against those
obtained using estimates from denoised deseasonalised RVs (RV*¥). These differences are expressed

as a percentage of total wealth.
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Figure 6: Net pairwise volatility spillover between the CAC40 index futures
and the DAX index futures.
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Figure 6 shows the net pairwise volatility spillover between the CAC40 index futures and CAC40
index futures when using raw RVs (top plot) and when using denoised RVs (bottom plot). The
horizontal axis represents the date (from October 2003 to September 2015), and the vertical axis
represents the net spillover (expressed as a percentage). When the net spillover has a positive value,
the CAC index futures market transmits spillovers to the DAX index futures market. In contrast,
when the net spillover has a negative value, the CAC index futures market receives spillovers from

the DAX index futures market.
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We observe differences in the allocated weights for the CAC inde)ﬁ across the sample pe-
riod, depending on the volatility estimate. The magnitude and direction of these deviations
do not follow a clear pattern, with periods of overestimates and underestimates in the al-
located weights of the CAC index futures. The sizes of these deviations are not marginal,
and lead to different allocations, up to approximately 10%, at certain points of time.

The bottom plot in Figure 5 shows the differences (using RV against RV **) in the estimated
weights of a hedging strategy using the CAC and DAX indices. In this strategy, the investor
is interested in obtaining an allocated portfolio with a minimum variance. The vector of

(h)

weights at every point of time ¢ (&, ) can be estimated using the following expression:

.« (h) =1

w; ' =minVar, =

—Lo (16)
wih s

where minUJ(h) Var, represents an optimization problem that minimises the variance of the
t

)

allocated portfolio, Egh is a 2 X 2 covariance matrix of the CAC and DAX indices in

period ¢ for the raw (3;) or denoised and deseasonalised (Zg‘gk)) cases, and 1 is a vector of
ones. The differences in the allocated weights under this strategy are more evident. The
average absolute deviation in weights between using the raw estimated RV and the estimate
considering noise and seasonality is around 22%. We also observe differences in the weights
at certain points higher than 100%, which represent not only a change in the amount
invested in the asset, but also a different position in the asset: a short (long) position
instead of a long (short) position. In this dynamic hedging strategy, the selection of the RV
estimator turns out to be crucial for its proper implementation, because differences lead to
very different decisions.

Certainly, asset allocation and risk management are two applications in which the effects
of seasonality and microstructure noise on the distribution of the RV are evident. However,
there are other fields in which these effects may have a significant effect. In Figure 6, we plot
the net pairwise volatility spillover (NPVS) measure of Diebold and Yilmaz (2012) between
the CAC and DAX indices. This measure identifies which markets act as net transmitters
and net receivers of volatility spillovers, allowing us to disentangle how international markets
are interconnected. The figure shows that the magnitude and the direction of the spillovers
between the CAC and DAX indices also depends on the choice of the RV estimatorm When
using the raw RV, we observe that the CAC index acts as a net transmitter of volatility in
periods around 2006 and 2008. However, after considering seasonality and microstructure
noise the DAX index shows a more dominant role during these periods. In addition, in this

25Note that the differences in the weights allocated in the DAX index are the negative values of the
weights in the plot

26positive values of the spillover index indicate that the CAC index is acting as a net transmitter of
volatility, and negative values indicate that the DAX index is acting as a net transmitter of volatility.
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second specification, we observe that the DAX index acts as a net transmitter for most of
the sample periods analysed, where the magnitude of the estimated spillover is also higher.
These results highlight again the potential economic effects of microstructure noise and
intraday seasonality, and the importance of considering these characteristics in economic
applications based on HFD.

6 Conclusion

This study examines the conditional and unconditional distributions of RV using HFD,
while controlling for features that introduce bias in variance estimates, that is, intraday
seasonality and market microstructure noise. We evaluate these estimates for the univari-
ate and multivariate case using two index futures contracts (CAC and DAX) and several
frequencies of observations (1, 5, 10, 20, and 30 minutes).

The results of the univariate analysis reveal that filtered series (RV,**) better fit the log-
normal distribution for all frequencies (to the extent that the hypothesis of normality cannot
be rejected), have lower autocorrelation coefficients, and have a lower asymmetric volatility
response. The results from the multivariate case are in line with those of the univariate
analysis. Here, we find significant differences in the bivariate distribution of volatility, lower
cross-correlation coefficients, and that the asymmetric response of volatility remains visible.
However, the effect decreases after accounting for intraday seasonality and noise.

Overall, our findings show that intraday seasonality and market microstructure noise are
key factors to meet normality. Because normality is the basis of many models, considering
both features becomes crucial. Divergences of the empirical distribution from the normal
distribution have important implications for both the conditional and the unconditional
distributions of volatility, the degree of autocorrelation, cross-correlations, and asymmetric
effects. Failing to account for these features leads to RV estimates that are far from the
ideal integrated volatility, resulting in inconsistent conclusions in fields such as information
transmission, asset allocation, or risk management.

30



References

[1] Alemany, N., Arago, V., Salvador, E. (2019). The influence of intraday seasonality on
volatility transmission pattern. Quantitative Finance, 19(7), 1179-1197.

[2] Andersen, T. G. and Bollerslev, T. (1997a). Intraday periodicity and volatility persis-
tence in financial markets. Journal of Empirical Finance, 4(2-3), 115-158.

[3] Andersen, T. G., Bollerslev, T. (1997b). Heterogeneous information arrivals and return
volatility dynamics: Uncovering the long?run in high frequency returns. The Journal of
Finance, 52(3), 975-1005.

[4] Andersen, T. G. and Bollerslev, T. (1998a). Answering the Skeptics: Yes, Standard
Volatility Models do Provide Accurate Forecasts. International Economic Review, 39(4),
885-905.

[5] Andersen, T. G., Bollerslev, T. (1998b). Towards a unified framework for high and low
frequency return volatility modeling.Statistica Neerlandica, 52(3), 273-302.

[6] Andersen, T. G., Bollerslev, T. (1998c). Deutsche Mark-Dollar Volatility: Intraday Ac-
tivity Patterns, Macroeconomic Announcements, and Longer Run Dependencies. Journal
of Finance, 53(1), 219-265.

[7] Andersen, T. G. Bollerslev, T.,and . Cai (2000). Intraday and interday volatility in the
Japanese stock market. Journal of International Financial Markets, Institutions Money
10, 107-130.

[8] Andersen, T. G. Bollerslev, T.,and A. Das (2001a). Variance-ratio Statistics and High-
frequency Data: Testing for Changes in Intraday Volatility Patterns. Journal of Finance
56( 1), 305-327.

[9] Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001b). The distribution
of realized stock return volatility. Journal of Financial Economics, 61(1), 43-76.

[10] Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2001c). The distribution
of realized exchange rate volatility. Journal of the American Statistical Association,
96(453), 42-55.

[11] Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and
forecasting realized volatility. Econometrica, 71(2), 579-625.

[12] Areal, N. M., and Taylor, S. J. (2002). The realized volatility of FTSE 100 futures
prices. The Journal of Futures Markets, 22(7), 627-648.

31



[13] Bandi, F. M., and Russell, J. R. (2006). Separating microstructure noise from volatility.
Journal of Financial Economics, 79(3), 655-692.

[14] Bandi, F. M., and Russell, J. R. (2008). Microstructure noise, realized variance, and
optimal sampling. The Review of Economic Studies, 75(2), 339-369.

[15] Barndorff?Nielsen, O. E., and Shephard, N. (2002). Econometric analysis of realized
volatility and its use in estimating stochastic volatility models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64(2), 253-280.

[16] Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realised
kernels in practice: trades and quotes. The Econometrics Journal, 12(3), C1-C32.

[17] Black, B. (1976). Studies of Stock Price Volatility Changes. Proceedings of the 1976
Meetings of the American Statistical Association, Business and Economic Statistics,
177181

[18] Bekaert, G., and Wu, G. (2000). Asymmetric Volatility and Risk in Equity Markets.
Review of Financial Studies, 13(1), 142.

[19] Bollerslev, T., and Ole Mikkelsen, H. (1999). Long-term equity anticipation securities
and stock market volatility dynamics. Journal of Econometrics, 92(1), 7599.

[20] Campbell, J. Y., and Hentschel, L.. (1992). No News is Good News: An Asymmetric
Model of Changing Volatility in Stock Returns. Journal of Financial Economics 31,
281331.

[21] Campbell, J. Y., Lettau, M., Malkiel, B. G., and Xu, Y. (2001). Have Individual Stocks
Become More Volatile? An Empirical Exploration of Idiosyncratic Risk. The Journal
of Finance, 56(1), 143.

[22] Clark, P. K. (1973). A Subordinated Stochastic Process Model with Finite Variance
for Speculative Prices. Source: Econometrica, 41(1), 135155.

[23] Corsetti, G., Pericoli, M. and Sbracia, M. (2005). Some contagion, some interdepen-
dence: More pitfalls in tests of financial contagion. Journal of International Money and
Finance 24(8), 1177 99.

[24] Christie, A. C. (1982). The Stochastic Behavior of Common Stock VariancesValue,
Leverage and Interest Rate Effects. Journal of Financial Economics 3, 145166.

[25] Diebold, F. X., and Yilmaz, K. (2012). Better to give than to receive: Predictive direc-
tional measurement of volatility spillovers.International Journal of Forecasting, 28(1),
57-66.

32



[26] Engle, R. (2001). GARCH 101: The use of ARCH/GARCH models in applied econo-
metrics. Journal of Economic Perspectives, 15(4), 157-168.

[27] Fleming, J., Kirby, C., and Ostdiek, B., (2001). The economic value of volatility timing,.
Journal of Finance. 56, 329352

[28] Forbes, K. J. and Rigobon, R. (2002). No Contagion, Only Interdependence: Measuring
Stock Market Comovements. The Journal of Finance 57(5), 2223 2261.

[29] French, K. R., Schwert, G. W., and Stambaugh, R. F. (1987). Expected stock returns
and volatility. Journal of Financial Economics, 19(1), 329.

[30] Gallant, A. R. (1981). On the bias in flexible functional forms and an essentially
unbiased form: the Fourier flexible form. Journal of Econometrics, 15(2), 211-245.

[31] Gallant, A. R. (1982). Unbiased determination of production technologies. Journal of
Econometrics, 20(2), 285-323.

[32] Geweke, J., and Porter?’Hudak, S. (1983). The estimation and application of long
memory time series models. Journal of time series analysis, 4(4), 221-238.

[33] Harju, K., and Hussain, S. M. (2011). Intraday Seasonalities and Macroeconomic News
Announcements. Furopean Financial Management, 17(2), 367390.

[34] Harris, L. (1986). A transaction data study of weekly and intradaily patterns in stock
returns. Journal of Financial Economics, 16(1), 99117.

[35] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options. The Review of Financial Studies, 6(2), 327-
343.

[36] Hull, J., White, A. (1987). The pricing of options on assets with stochastic volatilities.
The Journal of Finance, 42(2), 281-300.

[37] Kirby, C. Ostdiek, B. (2012). It’s all in the timing: simple active portfolio strategies
that outperform naive diversification. Journal of Financial and Quantitative Analysis,
47(2), 437-467.

[38] Long, L., Tsui, A. K., and Zhang. Z. (2014). Conditional Heteroscedasticity with lever-
age effect in stock returns: Evidence from the Chinese stock market. Economic Modelling
37, 89-102

[39] Meddahi, N. (2002). A theoretical comparison between integrated and realized volatil-
ity. Journal of Applied Econometrics, 17(5), 479508.

33



[40] Merton, R. C. (1980). On estimating the expected return on the market: An ex-
ploratory investigation. Journal of Financial Economics, 8(4), 323-361.

[41] Robinson, P. M. (1995). Log-periodogram regression of time series with long range
dependence.The annals of Statistics, 1048-1072.

[42] Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory,
estimation, and an application. Journal of Financial and Quantitative Analysis, 22(4),
419-438.

[43] Taylor, S. J., and Xu, X. (1997). The incremental volatility information in one million
foreign exchange quotations. Journal of Empirical Finance, 4(4), 317-340.

[44] Tse, Y. (1999). Price discovery and volatility spillovers in the DJIA index and futures
markets. Journal of Futures Markets, 19(8), 911930.

[45] Wang, Y., Liang, F., Tianyi, W. and Huang, Z. (2020). Does measurement error matter
in volatility forecasting? Empirical evidence from the Chinese stock market. Economic
Modelling, 87, 148-157

[46] Wood, R. A., Mclnish, T. H., and Ord, J. K. (1985). An Investigation of Transactions
Data for NYSE Stocks. The Journal of Finance, 40(3), 723739.

34



A Seasonal and market microstructure noise adjustment

A.1 Modelling intraday seasonality

The HFD literature documents an intraday periodic pattern in volatility that suggests ei-
ther a U-shaped or a W-shaped form (see, among others, Wood et al., 1985; Harris, 1986;
Andersen and Bollerslev, 1997a; and Tse, 1999). Owing to this intraday periodicity, volatil-
ity models might lead to spurious inferences about the dynamic of the returns, suggesting
the importance of addressing seasonality exhibited by the data. The approach of Gallant
(1981,1982), based on the FFF, has proven particularly adept at overcoming this drawback,
making it possible to obtain deseasonalised data (Andersen and Bollerslev, 1997a).

We employ the FFF methodology to approximate the intraday periodic component of
volatility. This method uses linear polynomial regressions and Fourier methods, which
consider sines and cosines. The decomposition for the intraday returns can be expressed as
follows:

UtSt,nZt,n

Rin = E(Rin) + =15

(17)

where E(R; ;) indicates the unconditional mean, N indicates the number of return intervals
per day, St is the periodic component for the nth intraday interval, o, is the conditional
volatility factor for day ¢, and Z;, is an independent and identically distributed (i.i.d.)
error term with mean zero and unit variance that is assumed to be independent of the daily
volatility process. By taking the square of both sides and applying logarithmic transforma-
tions, we have

262 72
B 2\ Oy Rtntn
tog (e = E1Re,)?) = tog (725751 ). (18)
From equation (17), define:
Xt = 2loglabs(Ren — E(Rip)] — logat2 +logN = logSZn + logZZn. (19)

The linear FFF regression modelling approach is based on the non-linear regression of
Xitn = f(0;04n) + €t pn, where the error term e, = loth%n — E(loth%n) is 1.1.d. with mean
zero. The non-linear regression X;,, is proxied by the following parameterised form:
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are normalizing constants defined as N1 = ((N +1))/2, and No = ((N 4+ 1)(N 4+ 2))/6 and

I(;—q;) are dummy variables that capture irregularities in the seasonal pattern. Additionally,

if J > 0, the whole regression is multiplied by the daily volatility factor ag We follow
Andersen and Bollerslev (1997) and set J = 1.

To apply the Fourier approach, a two-step procedure is followed. In the first stage, Xt,n
is computed from equation (18). Then, Xtm is considered as a dependent variable in the
Fourier regression (19), which is estimated using a non-linear regression Once f(0; 04 n)
is calculated, the intraday periodic component S’t,n for interval n on day ¢, which provides
a close approximation to the overall volatility patterns in each market, is retrieved as@

A Te(frn/2
St,n = T e(];[ft’ / )A . (21)
>im1 2n—1 €(ft;n/2)
Finally, the deseasonalised intraday returns series are defined as follows:
. Rin
R, =1t (22)
’ Stm,

A.2 Microstructure noise consistent estimators

Previous studies have shown that measures of RV can be sensitive to microstructure noise
at short intervals. The observed price process at these high frequencies is the result of two
components: the true price-generating process and noise. However, we can only observe

2"We employ the widely used parametric GARCH(1,1) model to capture daily volatility. In most empirical
applications, the GARCH(1,1) is enough to reproduce the volatility dynamics of financial series; thus, it is
popular with both academics and practitioners (Engle, 2001).

ZFollowing Andersen and Bollerslev (1997), the choice of (J,P) is determined by choosing the model that
best matches the basic shape of the periodic pattern with the fewest number of parameters. Our selected
model for both indices sets J = 1 and P = 2. Expanding the Fourier beyond this produces nonsignificant
estimates for any additional poj, p15, p25, vp;s, and dp; coefficients.

29For more detail, see Andersen and Bollerslev, 1997a.
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both components together. To minimise the effect of microstructure noise in the estimates
of the realised variance, studies have proposed techniques that design efficient estimators
robust to certain types of frictions.

In our application, we follow Barndorff-Nielsen et al. (2009) to compute the realised kernel
estimatoﬂ as the sum of the intraday returns weighted by a kernel function:

H

h N
RVtk: Z k(T—l—l) Z Rt,nRt,nf|h|7 (23)
h=—H n=|h|+1

where k(z) is a kernel weight function. We implement the Parzen kernel applied to the
non-flat-top case, which is given by:

1-62%2+62° 0<2<1/2
k(z)=<¢ 2(1—2)3 1/2<z<1
0 z>1

One of the critical steps when implementing this kernel is the selection of the bandwidth
H. Previous studies have shown that an optimal choice for this bandwidth is:

HY = 0*54/5713/5, (24)

where ¢ = 3.5134 for the Parzen 2kernel, n is the number of intraday intervals, and the
2 __ w

variable €2 is defined as € —
T [y otdu

We estimate € simply by:

~2
w
2 = — ) (25)
v
where &2 is an estimate of w?, and IV is an estimate of IV = fOT o2du. We use this last

approximation because IV? ~ T fOT oldu, and it is simpler to obtain an estimate of IV

than it is for /T fOT otdu. In our case, we use the raw RV at the corresponding frequency

30See Barndorff-Nielsen et al. (2009) for a detailed explanation of the procedure.
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as the estimate of IV. The estimate of w? is obtained as follows. By varying the starting
point, we obtain k distinct auxiliar realised variances, defined as RVa(Ilu)c, RV(I(%...RV(I(Q,.
2 _ RViir

For each of the auxiliar realised variances, we compute d)(z.) = =

the average of these k estimates of w(2) as our final estimate of w?:

. Finally, we compute

%

@ =

| =

k
> af. (26)
=1

Both techniques (FFF and realised kernel estimator) are combined to obtain the deseason-
alised RV free of market microstructure noise. In a first step, the deseasonalised returns
(Rf,) are obtained using equations (17) to (22). Then, a similar procedure to that de-
scribed for equations (23) to (26) is implemented, except we use the deseasonalised returns
(Rf,,) instead of the raw returns (Rt ).
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