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ABSTRACT 

We report a detailed study on APbX3 (A=Formamidinium (FA+), Cs+; X=I-, Br-) perovskite 
quantum dots (PQDs) with combined A- and X-site alloying that exhibits, both, a wide bandgap 
and high open circuit voltage (Voc) for the application of a potential top cell in tandem junction 
photovoltaic (PV) devices. The nanocrystal alloying affords control over the optical bandgap and 
is readily achieved by solution-phase cation and anion exchange between previously synthesized 
FAPbI3 and CsPbBr3 PQDs. Increasing only the Br- content of the PQDs widens the bandgap but 
results in shorter carrier lifetimes and associated Voc losses in devices. These deleterious effects 
can be mitigated by replacing Cs+ with FA+, resulting in wide bandgap PQD absorbers with 
improved charge-carrier mobility and PVs with higher Voc. Although further device optimization 
is required, these results demonstrate the potential of FA1-xCsxPb(I1-xBrx)3 PQDs for wide bandgap 
perovskite PVs with high Voc. 
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The search for high-efficiency, wide bandgap absorber materials that can be implemented 

as a top cell in a tandem architecture to boost the overall efficiency of existing commercial 

photovoltaic (PV) devices (e.g., Si, CIGS, CdTe) remains a challenge.1–10 The tunable nature of 

perovskite (ABX3) absorbers, coupled with their impressive optoelectronic performance and 

amenability to low-cost deposition techniques, identifies them as a promising candidate for such 

applications.11–19 

Although triple-cation bulk perovskite absorbers – Csx(FAyMA(1-y))(1-x)Pb(IzBr(1-z))3 – 

exhibit impressive solar light to electricity power conversion efficiencies (PCEs), with the current 

PCE record at 24.2%, their bandgap (1.55-1.60 eV) is too narrow for use as the top cell in 

multijunction PVs.20,21 Tuning halide composition on the X site enables wider optical bandgaps, 

but has not led to the expected subsequent increase in Voc, and mixed-halide bulk perovskites 

often suffer from photoinduced halide segregation and crystal phase instability that leads to device 

degradation.12,13,22–26 Perovskite quantum dots (PQDs) provide a route to circumvent these 

structural instabilities, with the added benefit that they afford additional tunability of the optical 

and electronic properties (by tuning the QD size and composition).12,13,15,22–24,27,28 For instance, 

mixed cation PQDs with the composition FA1-xCsxPbI3 exhibit broader compositional tunability 

(wider x range) than thin film FA1-xCsxPbI3. FA1-xCsxPbI3 PQD PVs achieve Voc’s that approach 

90% of the radiative limit (similar to single crystal III-V PVs, i.e. GaInP2), surpassing the Voc of 

bulk perovskite PVs with similar composition in the bandgap range of 1.55-1.77 eV as shown in 

Fig S1.29–31 Taken together, these observations suggest that PQDs may provide an ideal solution 

for inexpensive, high-performance, wide bandgap top cell absorber layers in multijunction PVs. 

Wider bandgap PQDs (beyond 1.77 eV), thus far, do not show the same low Voc losses, as 

those with bandgap between 1.55 eV to 1.77 eV. Compositionally increasing the bandgap of PQDs 

with Br- incorporation results in a decreasing voltage fraction in PVs from 0.9 to 0.63 (in this work 

we define voltage fraction as: device-Voc / maximum Voc based on device bandgap).22,31,32 Thus, 

finding solutions to this unexpected voltage loss would be beneficial for the wide bandgap top cell 

in multijunction PVs. 

Here, we show that combined A- and X-site alloying of wide bandgap FA1-xCsxPb(I1-xBrx)3 

PQDs can provide increased device Voc as compared to CsPb(I1-xBrx)3 and FAPb(I1-xBrx)3 PQDs 
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at bandgaps wider than 1.8 eV. The addition of Br in CsPb(I1-xBrx)3 PQDs—typically used to 

increase the bandgap—leads to a significantly decreased photoluminescence (PL) lifetime and 

correlates with lost Voc in PVs made from these PQDs.22,32,33 To counter this, FA+ was added in 

addition to Br- to develop long PL lifetime, wide bandgap materials. This co-alloying strategy was 

found to improve charge transport in PQD films and reduce the voltage loss in PVs with Eg>1.8 

eV. 

To synthesize the PQDs of such complicated composition, two simple compositions were 

first synthesized and alloyed using an ion exchange reaction. Fig. 1A illustrates the ion exchange 

between CsPbBr3 and FAPbI3 PQDs used to generate FA1-xCsxPb(I1-xBrx)3 PQDs. CsPbBr3 and 

FAPbI3 PQDs were prepared using previously reported recipes.12,29 By mixing dispersions of 

FAPbI3 and CsPbBr3 PQDs at 70 °C, rapid and efficient compositional alloying occurs. This 

enables PQDs with a wide tunability of the bandgap from 1.55 eV to 2.40 eV to be obtained from 

similar starting materials simply by controlling the relative amount of CsPbBr3 to FAPbI3 in the 

ion-exchange reaction. Figs. 1B and 1C show absorbance and PL spectra of PQDs generated from 

the same CsPbBr3 and FAPbI3 PQDs starting materials. The nanocrystals retain a relatively narrow 

size distribution comparable to the starting materials. 
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Figure 1. A) Crystal models showing the ion exchange process used to generate alloyed PQDs. FA1-

xCsxPb(I1-xBrx)3 PQDs are generated when dispersions of CsPbBr3 and FAPbI3 PQDs are mixed at 70oC. 
Room temperature (B) absorbance and (C) PL emission spectra of PQDs with varying FA1-xCsxPb(I1-

xBrx)3 composition dispersed in octane (excitation wavelength of 400 nm).  

We first highlight the deleterious effects of Br- incorporation in single A-site PQD 

PVs by using colloidal PQDs with bandgaps ranging between 1.8 eV and 1.94 eV 

containing only Cs+ on the A-site. Unlike PQDs of FA1-xCsxPb(I1-xBrx)3 composition, 

CsPb(I1-xBrx)3 and FAPb(I1-xBrx)3 PQDs were synthesized using previously reported methods of 

single-pot direct synthesis using controlled ratios of Pb-halide salts.12 Fig. 2A shows a scanning 

electron microscopy (SEM) image of a cross-sectioned CsPbI3 PQD PV. The PQD solar cells 

were fabricated using previously reported methods.34–37 For ideal removal of the oleate ligands, 

it is especially important to maintain an ambient environment that exhibits 15-25% relative 

humidity (RH) during the ligand exchange procedure performed after deposition of the 

nanocrystals.35 Fig. 2B shows the device responses of CsPbI3 PQDs and CsPb(I1-xBrx)3 PQD 

PVs with Br- alloying to widen the bandgap. The CsPbI3 PQD PV exhibits a PCE of ~14% 

(reverse scan). The CsPb(I1-xBrx)3 PQD PVs have lower device efficiency, which can be 

expected based on the widened bandgap and corresponding reduced light absorption; however, 

they also show a decrease in the Voc contrary to the expectations for the widened bandgap with 

increased Br- content. A noticeable drop in fill factor is also observed with increasing Br-

incorporation, which suggests increased series resistance in the device possibly originating from 

non-ideal contact layers in the device structure. Full device metrics for the devices shown in 

Figure 2B are provided in Table S1 as Supporting Information.    
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Figure 2. A) SEM image of a cross-sectioned CsPbI3 PQD PV device. B) J/V curves of CsPb(IxBr1-x)3 PQD 
PVs with varying Br- composition and bandgap. Note that the reported bandgaps correspond to the PL peak 
energies. The device absorption onset is redshifted by 0.05-0.1 eV due to electronic coupling.17,33 C) Room 
temperature normalized PL emission spectra of the colloidal PQDs used to fabricate devices tested in (B). 
Excitation wavelength was 400 nm. D) Time-resolved PL transients of the CsPb(IxBr1-x)3 PQDs used to 
make the devices from panel B. The excitation wavelength is 442 nm and the emission are collected at the 
PL peak position.  

Figs. 2C and 2D show solution-phase photoluminescence (PL) emission spectra and 

solution-phase time-resolved photoluminescence (TRPL) measurements on CsPbI3 PQDs 

compared to CsPb(I1-xBrx)3 PQDs with 8% and 13% Br- compositions. The composition of all 

PQD samples in this work are estimated using Vegard’s Law.38 As expected, the increase in the 

Br-/I- ratio results in a hypsochromic shift of the PL spectrum, but the mixed anion systems also 

exhibit broadening of the emission spectrum, which may be related to an increase in the 

polydispersity of the PQDs or a non-uniform anion composition within the ensemble. We find that 

CsPb(I1-xBrx)3 PQDs show significantly reduced PL lifetime compared to the CsPbI3 PQDs. Based 

on previous reports, we believe that increased Br- composition leads to higher PL quantum yield 

and decreased PL lifetime, which suggests that shorter radiative lifetimes are intrinsic to Br-rich 
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PQDs.11,13,15,17 See Supporting Information Figure S2 for a plot summarizing the radiative lifetimes 

versus bandgap and Br- content of PQDs samples. From the results in Fig. 2, we hypothesize that 

increased bromine content in PQDs leads to a decreased PL lifetime, and that the PL lifetime of 

colloidal PQDs is related to PQD device performance, especially the deteriorating Voc 

performance at wide bandgaps as discussed above. 

To test this hypothesis, TRPL measurements of several colloidal PQD compositions 

(CsPb(I1-xBrx)3, FAPb(I1-xBrx)3, and FA1-xCsxPb(I1-xBrx)3) were conducted using a streak-camera 

system that records spectral- and time-dependent emission data. Fig. 3A shows two-dimensional 

solution-phase TRPL data for CsPbI3 colloidal PQDs, and the red-dashed box in Fig. 3A shows 

the region of the response that is integrated to produce a TRPL transient decay curve. The inset in 

Fig. 3A shows the actual transient that is extracted from the streak camera response. While the 

TRPL measurements were performed in the solution phase, we believe that the reduced PL lifetime 

of colloidal CsPb(I1-xBrx)3 PQDs is at least partly related to the observed loss in device Voc. To 

overcome this, we aimed to lengthen the PL lifetime of these PQDs through compositional 

alloying. While that challenge at face value is not so straightforward, it has been reported that 

FAPbI3 QDs have substantially longer PL lifetime than CsPbI3, but unfortunately replacing Cs+ 

with FA+ also lowers the bandgap.39 We, therefore, hypothesized that by balancing the FA+ to Cs+, 

along with the Br- to I-, we could engineer the PQDs to have an appropriate bandgap (from Br+ 

incorporation) with lengthened PL lifetimes (from FA+ incorporation). To test this specific 

hypothesis, we show in Fig. 3B, CsPb(I1-xBrx)3, FAPb(I1-xBrx)3, and FA1-xCsxPb(I1-xBrx)3 colloidal 

PQDs each with composition tuned to achieve a bandgap of approximately 1.9 eV. The TRPL 

transients show that FA+ incorporation nearly doubles the lifetime from 29 ns to 55 ns for the 

FA+/Cs+ alloy-sample or 64 ns for the sample with pure FA+ on the A-site. Thus, in this case, the 

A-site mediated lengthening of the PL lifetime overrules X-site mediated PL lifetime shortening. 

Next, we aim to understand the general trends of how the lifetimes vary as a function of bandgap 

for each of these A-site conditions. 
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Figure 3. A) Two-dimensional spectrotemporal solution-phase TRPL data of CsPbI3 PQDs, measured 
using a streak-camera. The red rectangle represents the portion of the trace that was integrated to construct 
an intensity versus decay-time transient. B) Solution-phase TRPL transients of CsPb(I1-xBrx)3, FAPb(I1-

xBrx)3 and FA1-xCsxPb(I1-xBrx)3 solution-phase PQDs with bandgap energies of ca. 1.9 eV. (These PQD 
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compositions are estimated using Vegard’s Law based on the PL peak energy.38) C) Intensity-averaged 
PL lifetime versus bandgap of all solution-phase PQD samples including CsPb(I1-xBrx)3, FAPb(I1-xBrx)3, 
and FA1-xCsxPb(I1-xBrx)3 PQDs. See Fig. S2 for the estimated radiative lifetime-component versus 
bandgap of each sample. 

As shown in Figs. 2D and 3B, the solution-phase intensity-averaged TRPL decays cannot 

be described by a single-exponential function. While the origin of this deviation from simple first-

order decay kinetics is beyond the scope of this work, we analyze our data with a bi-exponential 

decay and compare the intensity-weighted average PL lifetimes (Fig. 3C) of the CsPb(I1-xBrx)3, 

FAPb(I1-xBrx)3, and FA1-xCsxPb(I1-xBrx)3 PQDs as a function of bandgap. The intensity-weighted 

average PL lifetime of the CsPb(I1-xBrx)3 PQDs decreases significantly from about 45 ns to 15 ns 

across the compositional range, with a sharp decrease observed even for small bromide contents 

(c.f. Fig. 2D). In contrast, the FAPb(I1-xBrx)3 and FA1-xCsxPb(I1-xBrx)3 PQDs appear to be less 

sensitive to the substitution of I- with Br-. Single-cation FAPb(I1-xBrx)3 PQDs exhibit similar 

lifetimes of >60 ns until the bandgap exceeds 1.8 eV (Br- content of 42%) where the lifetime drops 

precipitously to 15 ns, similar to the average lifetimes observed for the single-cation Cs-containing 

PQDs. The mixed-cation FA1-xCsxPb(I1-xBrx)3 PQDs, on the other hand, exhibit PL lifetimes that 

actually increase with bandgap energy, and reach 65 ns for a bandgap of 2.1 eV. To our 

knowledge, this increase in PL lifetime with increasing bandgap for the FA1-xCsxPb(I1-xBrx)3 

composition is unique among PQDs. The full set of TRPL decay transient data and fitting 

parameters are provided as Supporting Information in Fig. S3 and Table S2. 

To explore the impact of the observed colloidal-optoelectronic properties of the PQDs on 

their PV performance, solar cells were fabricated with CsPb(I1-xBrx)3, FAPb(I1-xBrx)3, and FA1-

xCsxPb(I1-xBrx)3 PQDs with bandgaps ranging from 1.55 eV to 2.15 eV. Fig. 4A plots the Voc of 

over 140 PQD PVs with 10 different compositions across a wide alloy-space and bandgap regime. 

By displaying results from a large sample set, we are able to determine which composition of 

PQDs provides the most promise for use as wide-bandgap top cells in tandem devices. Of the PQD 

devices, those with A-site alloying of FA+ and Cs+ exhibit the highest Voc at bandgaps wider than 

1.8 eV. This trend is especially noticeable at bandgap of ~1.85 eV where the Voc increases by 

over 100 mV as the PQD composition is changed from CsPb(I0.88Br0.12)3 to FAPb(I0.58Br0.42)3 to 
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FA0.45Cs0.55Pb(I0.55Br0.45)3. At a bandgap of ~2.1 eV, the maximum Voc of the FA1-xCsxPb(I1-xBrx)3 

PQD devices was about 100 mV higher than that of CsPb(I1-xBrx)3 PQD PVs. Fig. 4B shows a 

plot of the voltage fraction against the bandgap of the PQD PVs. Voltage fraction decreases with 

increasing Br- incorporation and widening bandgap. The PVs of FAPbI3 PQDs with a bandgap of 

1.55 eV exhibit the highest voltage fraction of ~0.9 and the PL lifetime of these PQDs is 62 ns. 

(Note: in Fig. S1 we plot the voltage fraction of our PQD PVs against perovskite-literature values 

to compare our results to the immense field of perovskite PV and show the future promise of PQD 

PVs). 

9 
ACS Paragon Plus Environment 



 

    
   

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ACS Energy Letters Page 10 of 19 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
The published version of the article is available from the relevant publisher.

Figure 4 A) Voc versus bandgap of the full set of PQD samples B) Voltage fraction versus bandgap of 
the full data set of PQD samples. C) Voltage fraction versus PL lifetime of the full data set of PQD 
samples. Full device metrics are provided as Supporting Information (Table S3). 

10 
ACS Paragon Plus Environment 



  

  

   

 

    

   

   

 

  

  

  

    

 

  

  

     

  

 

   

      

 

  

 

   

 

  

  

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Page 11 of 19 ACS Energy Letters 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
The published version of the article is available from the relevant publisher.

To test our hypothesis that PQD PV voltage performance is correlated to PL lifetime of 

colloidal PQDs, we plot voltage fraction of PQD PVs versus PL lifetime of solution-phase PQDs 

in Fig. 4C. We observe that CsPb(I1-xBrx)3 PQDs show a fairly direct relationship between 

solution-phase PL lifetime and device voltage fraction. However, the voltage fraction of FAPb(I1-

xBrx)3 PQDs demonstrates a more compositional dependence - the voltage fraction of FAPb(I1-

xBrx)3 PQDs increases as the Br composition decreases. The fully alloyed PQDs (FA1-xCsxPb(I1-

xBrx)3) generally exhibit voltage fraction between 0.70 and 0.85, which is comparable to current, 

state-of-the-art bulk-phase CsPbI3 devices (See Fig S1).40 Although the A- and X-site alloying of 

FA1-xCsxPb(I1-xBrx)3 PQDs succeeded in producing devices with higher Voc at wide bandgaps, the 

PCE was still low—only 6% for a bandgap of 1.9 eV. We attribute these observations of lower 

PCE and the slight drop in voltage fraction of FA1-xCsxPb(I1-xBrx)3 PQDs, as “x” increases from 

0.45-0.74, to poor charge transport in the PQD films and/or carrier extraction at the contact layers, 

which limits the Jsc and FF of the devices (see Supporting Information Table S3). We employed 

time-resolved microwave conductivity (TRMC) to determine how the A-site and X-site alloying 

influences the charge transport in the PQD films. The photoconductance, ΔG, extracted from the 

TRMC data can be related to a free-carrier yield-mobility product, ϕΣμ, which can be difficult to 

decompose into the individual contributions.41,42 However, the large dielectric constant of PQDs 

and large photoluminescence lifetimes (>20 ns) allows us to make the assumption that each photon 

generates an unbound electron-hole pair on the 4 ns timescale of the laser pulse in the TRMC 

measurement (i.e., ϕ = 1), which simplifies the figure of merit to sum of carrier mobilities.42 

Although we are able to make assumptions about the free-carrier yield, we cannot decouple the 

individual contributions of the electrons and holes to the photoconductance. Under such 

circumstances, the TRMC technique can be considered similar to other optical pump-probe 

techniques, except that the sum of the free-carrier mobilities, Σμ, now represents the absorption 

coefficient of the microwave probe. The transient photoconductance, ΔG(t), is therefore related 

to the number density, and associated kinetics, of the free electrons and holes in the PQD layer.  

Since we expect both carriers to contribute to the measured photoconductance, and the carrier 

lifetime to be related to the likelihood of the carriers to be extracted in a functioning device, we 

suggest that the yield-mobility-tau product represents a reasonable metric to describe the free-

carrier transport and dynamics (in fact, this quantity can be related to the carrier diffusion length).  
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Fig. 5 shows the yield-mobility-tau products determined by TRMC of the ligand-

exchanged PQD films on quartz substrates (the TRMC yield-mobilities and free carrier lifetimes 

are also provided as Supporting Information Fig.S4-S5). In all cases, the yield is assumed to be 1, 

meaning that we expect all charge carriers to diffuse, the mobility describes the sum of hole and 

electron mobility, and carrier lifetime takes into consideration all holes and electrons. CsPbI3 

PQDs show the largest yield-mobility-tau product at ~500 * 10-9 cm2/V. The yield-mobility-tau 

product decreases logarithmically with increasing bandgap for single A-site PQDs, indicating that 

charge transport becomes less efficient with increasing Br composition. For FA1-xCsxPb(I1-xBrx)3 

PQDs, the yield-mobility-tau product remains fairly stable across all three samples (~30-50 * 10-9 

cm2/V), and the 2.1 eV bandgap FA1-xCsxPb(I1-xBrx)3 PQDs leads to an enhanced yield-mobility-

tau product over the single A-site PQDs with similar bandgap. Thus, at wide bandgaps, 

simultaneous alloying at the A- and X-sites leads to increased charge transport, but there is still 

room for improvement because the yield-mobility-tau products of FA1-xCsxPb(I1-xBrx)3 PQDs are 

an order of magnitude less than that of CsPbI3. Improvements in PQD synthesis, purification, and 

device fabrication are potential methods to improve charge transport in these films and improve 

PCE. 

Figure 5. Yield-mobility-tau product determined by TRMC of CsPb(I1-xBrx)3, FAPb(I1-xBrx)3, and FA1-

xCsxPb(I1-xBrx)3 PQD films on quartz substrates.  

In conclusion, we show that the substitution of I- for Br- in metal halide PQDs results in 

faster electron-hole recombination, less efficient charge transport, and significant loss in device 
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Voc, that hinders their performance in PQD PV devices. Simultaneous alloying on the A-site with 

Cs+ and FA+ to generate FA1-xCsxPb(I1-xBrx)3 PQDs counteracts these adverse effects of increased 

Br- content. To our knowledge, FA1-xCsxPb(I1-xBrx)3 PQDs are the only PQDs to exhibit longer 

PL lifetimes with increased bandgap. The Voc of FA1-xCsxPb(I1-xBrx)3 PQDs with bandgaps larger 

than 1.8 eV exhibit Voc nearly 100 mV higher than CsPb(I1-xBrx)3 PQDs of similar bandgap. While 

further optimization of wide bandgap PQD PVs is needed, these results suggest considerable 

promise for the continued improvement of wide bandgap perovskite PV device layers needed for 

high-efficiency, low-cost multijunction solar cells. 

Supporting Information. Experimental methods, characterizations, absorbance and 

photoluminescence of colloidal PQDs, TRPL transients including fitting parameters of colloidal 

PQDs, estimated radiative lifetimes for all colloidal PQD compositions, device metrics for PQD 

PVs in Fig. 2, device metrics for all other PQD PVs for this study, TRMC lifetime of PQD thin 

films, and TRMC yield-mobility product of PQD thin films. 
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