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Abstract The emergent technology of Multi-Processor System-on-Chip (MP-
SoC), which combines heterogeneous computing with the high performance of
Field Programmable Gate Arrays (FPGAs) is a very interesting platform for
a huge number of applications ranging from medical imaging and augmented
reality to high-performance computing in space. In this paper, we focus on
the Xilinx Zynq UltraScale+ EG Heterogeneous MPSoC, which is composed
of four different processing elements (PE): a dual-core Cortex-R5, a quad-core
ARM Cortex-A53, a graphics processing unit (GPU) and a high end FPGA.
Proper use of the heterogeneity and the different levels of parallelism of this
platform becomes a challenging task. This paper evaluates this platform and
each of its PEs to carry out fundamental operations in terms of computational
performance. To this end, we evaluate image-based applications and a matrix
multiplication kernel. On former, the image-based applications leverage the
heterogeneity of the MPSoc and strategically distributes its tasks among both
kinds of CPU cores and the FPGA. On the latter, we analyze separately each
PE using different matrix multiplication benchmarks in order to assess and
compare their performance in terms of MFlops. This kind of operations are
being carried out for example in a large number of space-related applications
where the MPSoCs are currently gaining momentum. Results stand out the
fact that different PEs can collaborate efficiently with the aim of accelerating
the computational-demanding tasks of an application. Another important as-
pect to highlight is that leveraging the parallel OpenBLAS library we achieve
up to 12 GFlops with the four Cortex-A53 cores of the platform, which is a
considerable performance for this kind of devices.
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1 Introduction

Multi-Processor System-on-Chip (MPSoC) devices are gaining momentum in-
side the category of very-large-scale integrated (VLSI) systems [1]. Modern
MPSoCs, such as the Xilinx Ultrascale+ EG device, whose performance is
analyzed in this work, combine heterogeneous computing with the high per-
formance of Field Programmable Gate Arrays (FPGAs) [2]. MPSoCs have
been traditionally used in networking, automotive, communications, signal
processing, and multimedia among other applications [3]. They are currently
attracting the attention of the space agencies in order to carry out the compute
demanding tasks on board, and efforts are being carried out to improve their
radiation tolerance [4–6]. As a matter of fact, NASA is testing commercial
Xilinx Zynq SoC devices in the International Space Station (ISS) [7], since
hardware of this kind could face the increasing demand of performance per
watt in processors used in space [8].

The Xilinx Zynq Ultrascale+ MPSoC platform offers high levels of het-
erogeneity and paralellism since it is composed by four different Processing
Elements (PEs): a dual-core Cortex-R5, a quad-core ARM Cortex-A53, a low
end Graphics Processing Unit (GPU) and a high end FPGA. Therefore, this
MPSoC offers multiple parallelism levels, although leveraging properly its com-
putational resources becomes a challenging task. In fact, management issues
become even more difficult when different programming environments are in-
volved.

Different performance studies have already been carried out in order to
assess if different types of processing elements such as the ones included in the
Ultrascale+ MPSoC can fit with the increasing needs in the space field. One
of the difficulties of the researchers in this field is the access to specific space
benchmarks. Researchers can use ESA benchmarks: NIR Hawaii-2RG BM [9]
and Next Generation DSP [10]. ESA is already using Next Generation DSP
benchmark for performance assessment of processors and computers. Some
representative examples of performance studies are briefly mentioned next. For
example, in [11] Lentaris et al. evaluate 30 devices for vision-based navigation,
including CPUs, GPUs, DSPs and FPGAs in terms of speed, performance per
watt and radiation tolerance. In [8] Kosmidis et al. study the applicability of
embedded GPUs in space, as they have become an attractive option in terms of
performance per watt. Performance comparison between conventional CPUs to
embedded ARM processors integrated in SoC devices such as OMAP 4460 are
performed in [12], where a relation that involve CPU frequencies, performance
and types of CPUs is shown. The study in [13] shows that the throughput
of embedded CPUs could be increased tenfold when clock rates of 2.3 GHz
are used. From [14], it is derived that the Cortex-A15 processor at 1.2 GHz
is 3-5x faster than the Cortex-A9 of Zynq at 667 Mhz. Comparison of GPU
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and FPGAs in terms of throughput was carried out by Tippets et al in, [15]
where the authors compare the performance of several stereo vision algorithms.
GPUs achieve 0.1 -7 Gde/s, whereas FPGA achieve 1-6 Gde/s, where Gde/s is
defined as the billions of disparity evaluations per second when comparing the
disparities for all pixels in four image data sets. Vision algorithms for space
are evaluated in desktops CPU and GPU in [16], where the GPUs achieve one
order of magnitude higher performance per watt than the desktop CPUs.

The works presented in [17,18] indicate that heterogeneous platforms in
the form of SoC composed by an ARM processor and FPGA are promising
candidates for space computing, where the FPGA can be used as a hardware
accelerator for intensive computational requirements [19]. All works presented
above deal with one or two kinds of processing elements per platform, but none
of them explores the possibilities offered by an MPSoC, as an heterogeneous
device that combines four kinds of processing elements. Although a deep anal-
ysis regarding space issues should be done in the future, we want to present
in this work an initial exploration of the performance possibilities of each one
of those processing elements, as well as an analysis regarding the flexibility
offered by the heterogeneity and parallelism of the UltraScale+ MPSoC. To
this end, we have selected two kinds of computations that are present in a
large number of applications and that have two clearly different targets:

– A computation intensive application that can be executed on the four PEs
of the MPSoC so that, the different performances of the PEs can be assessed
and compared. Specifically, we use matrix multiplication, a basic lineal
algebra core that arises in multiple applications.

– A complex application, [20], that allows us to evaluate the heterogeneity
of the platform, i.e, how the PEs interact with each other in order to carry
out tasks collaboratively. To this end we use an application that performs
two well-know image processing tasks by combining different PEs of the
platform.

The rest of the paper is structured as follows: the following section overviews
important concerns to consider when MPSoC is used in the space environment.
In Section III, we briefly describe the computational resources of the MPSoC
Xilinx Zynq Ultrascale+ together with the software to develop and run ap-
plications on this kind of platforms. Next, in Section IV, we introduce the
different applications leveraging the PEs of the MPSoC and evaluate their
computational performance. Finally, Section V provides some concluding re-
marks.

2 Radiation tolerance in space environments

Throughput, performance per watt and memory bandwidth are becoming in-
creasingly important for computational platforms in space. However, on this
environment we require also to have into account the harmful radiation effects
that can affect the spacecraft’s electronics [21].
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Due to potential radiation-based malfunctioning of electronics in space,
commercial circuits require additional testing before they can be used for space
applications. COTS (Commercial Off-The-Shelf) have been used by space
agencies for decades. Firstly, when they were the only technological choice
that can meet requirements, usually dealing with performance. Traditionally,
in both space and aeronautics fields the preferred choice for COTS is military
or automotive grade parts, when they are available, because they are tested
and designed for increased reliability requirements,for instance temperature.

Nowadays, space is not only accessed by space agencies, and the require-
ments, electronics used and available budget are in constant change. Many
companies are launching nanosatellites constellations with limited budget and
tight constraints in performance and size, power and weight. Such scenario
focuses mainly in COTS. However, mission success, relies also in electronics
reliability [22]. NASA guidelines [23] can provide more insight into the risk of
using commercial parts and the tests that could be performed to qualify com-
ponents. The limited budget scenario, also constraints the testing capabilities,
radiation qualification tests are quite expensive, and some other approaches
are considered instead of traditional component qualification.

Due to the increased interest in commercial circuits in radiation environ-
ments, researchers, space agencies and even manufacturers are carrying out
radiation tests with commercial components. For example, in the near future,
it is expected that the Zynq Ultrascale SOC FPGA will qualify as rad-tolerant
and provide more FPGA resources than any other space-grade device (e.g., 10x
more logic and 7x more memory compared to the Xilinx Virtex-5QV), as stated
in [11]. Regarding the device under study in this work, some studies have been
recently carried out to characterize its response to high energy irradiation [24,
25].

3 Exploring the Xilinx Zynq Ultrascale+ MPSoC

Nowadays, high end FPGAs contain not only programmable logic but a vari-
ety of components that make possible an outstanding computational capacity.
This work is based in the Xilinx Zynq UltraScale+ MPSoC family [26] which
is subdivided into three subfamilies intended for different application fields.
The CG subfamily is intended for optimized industrial applications, covering
among others: IoT, motor control, sensors, etc. The EG subfamily is intended
for aerospace and defense applications, covering 5G communications and cloud
computing, and the EV subfamily is intended for high definition video applica-
tions. All elements of all subfamilies contain a dual-core ARM Cortex R5 [27]
and a quad core ARM cortex A53 [28]. The EV and EG subfamilies have
also a low end Mali GPU [29] and only subfamily EV adds a H.264/H.265
video codec. In all MPSoC devices from Zynq UltraScale family the system is
subdivided in two main parts:

– PS (Processing System), which contains all the microprocessors. On the one
hand, the quad-core ARM Cortex-A53 that implements the ARM v8-A 64-
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Fig. 1 Functional block diagram of the MPSoC Xilinx Zynq Ultrascale+ EG.

bit instruction set with frequency up to 1.5 GHz. We are accessing to these
cores in two different ways : 1) by using the Xilinx Software Development
Kit (SDK) [30]; and 2) by using the operating system Petalinux [31] which
allows us to customize, build and deploy embedded Linux solutions on
Xilinx processing systems. On the other hand, the dual-core ARM Cortex-
R5 that belongs to the family of 32-bit RISC ARM v7-R processors can
be used in lockstep mode (micro-synchronized dual execution), and in split
mode (each core can work in parallel and executing different tasks). Besides
those microprocessors, the PS also contains a Mali 400 MP2 GPU where
OpenGL ES 2.0 can be used to perform general purpose computations, as
shown in [32–34].

– PL (Programmable Logic), which contains the re-configurable logic. This
is the part that can fit different hardware designs according to the needs of
the application and the available resources. For this work, we have selected
the development board Ultra96 [2] from Avnet which contains a Xilinx
Zynq UltraScale+ MPSoC ZU3EG A484 FPGA of the EG subfamily. The
selected device contains: 154K System Logic Cells, 141K CLB Flip-Flops,
71K CLB LUTS, 360 DSP slices and block RAM that makes a total of
7.6 MBytes. In order to design and optimize the hardware that is located
in the Programmable Logic, we use the tool SDSoC [35], available in the
Xilinx Environment.

Inside the device, multiple interconnection options between PL and PS
are available, making possible high-speed data transfer suitable for the most
demanding applications. Figure 1 shows a general scheme of the Xilinx Zynq
UltraScale+ EG subfamily including its main components.

4 Experimental Setup and Evaluation

In order to assess the potential of the computational resources of the Xilinx
platform, we evaluate an application that performs two image processing tasks
using heterogeneous computing and a basic algebra operation that arises in
multiple applications: matrix multiplication.
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4.1 Image-based Applications

We have selected an application developed by Xilinx to test the possibili-
ties offered by the heterogeneity of the platform. Specifically, we use the Tar-
geted Reference Design (TRD), which is a video processing application dis-
tributed among different Processing Elements of the board [20]. This appli-
cation demonstrates the possibility of offloading computation intensive tasks
from the CPU to the FPGA. We can accelerate the computation and free-up
the CPU cores to run other applications.

The application allows the user to choose between two image processing
tasks: a 2D-convolution filter and the dense optical flow algorithm [36]. Both
tasks are applied to processing the frames from a video source that can also
be selected by the user. For example, the video source can be a webcam, a
Test Pattern Generator (TPG) or even a file, among others. The application
includes a graphic interface, that allows the user to choose if the 2D filter is
executed on the Cortex-A53 CPU cores or offloaded to the FPGA in order to
compare the performance in terms of CPU usage or frames per second. The
resulting processed frames are shown in the screen connected to the board.
Figure 2 summarizes the main software and hardware components of the TRD
application.

One of the Cortex-R5 cores is devoted to monitor the memory throughput
of the application reading the AXI performance monitors included in the PS.
To this end, it runs a perfamp-server bare-metal application that uses Ope-
nAMP communication framework to transfer the results to the perfamp-client
code run on one of the A53 cores under Linux. Finally, the Mali GPU is used
to show in an screen the GUI used to interact with the application and also
the video stream resulting of applying the image processing algorithms to its
successive frames.

The pure software implementation of the 2D filter is accomplished using
OpenCV, while its FPGA-accelerated version and the optical flow algorithm
are implemented using the Xilinx xfOpenCV library [37]. Both filters operate
on YUYV pixel format, which uses 16 bits per pixel. However, both image
processing algorithms are applied only to the 8 bits including the luma (Y)
component of the pixels, which is essentially a grayscale image. The 2D filter
uses a 3x3 window size to perform the convolution of successive frames of the
video source. The optical flow computes the motion vector from two consecu-
tive images by processing them in parallel on the FPGA (see [37, Chap. 6] for
more details).

Table 1 shows the performance parameters obtained when the applications
run only over the quad-core ARM Cortex-A53 for two different frame sizes; and
when the applications run over the quad-core ARM Cortex-A53 in combination
with the FPGA. The frame sizes are defined by the available resolutions of the
screen used to show the processed video frames. We have also used the FPGA
as video source, as it can generate up to 60 frames per second (fps) of the test
pattern stressing the PEs of the platform to process them. Results using an
A53 core as video source show that it can only generate 15 fps and those can
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Fig. 2 Main hardware and software components of the image-based application.

be processed without producing much load on another core of the same kind
and without having to use the FPGA.

Table 1 Performance parameters when the applications run only over the quad-core ARM
Cortex-A53; and when the applications run over the quad-core ARM Cortex-A53 in com-
bination with the FPGA for frame sizes of 1920x1080 and 1280x720. OF and 2D-F refer to
the optical flow and the 2D filtering applications, respectively.

Frame Size 1920 x 1080 1280 x 720

PE A53 A53 + FPGA A53 A53 + FPGA

Application 2D-F OF 2D-F OF 2D-F OF 2D-F OF

CPU use (%) 100% — 93% 94% 100% — 44% 40%

frames per sec. (%) 5 — 60 60 12 — 60 60

As it can be seen, the use of the FPGA greatly accelerates the frames per
second that can be managed by the MPSoC up to 60, while when using one
ARM Cortex-A53 core, only 5 and 12 frames per second are processed for res-
olutions of 1920x1080 and 1230x720 pixels, respectively. Using the FPGA not
only increases the frames per second that can be processed, but also reduces
the load of the CPU core, specially with the lower resolution. Note also that
the tackled application did not allow us to run the optical flow on the ARM
Cortex-A53 cores. This fact is pointed with a dash at Table 1

These results demonstrate that the MPSoC can be leveraged as a full het-
erogeneous platform where applications with independent and irregular tasks
(in terms of type of operation, loops, etc.) can be distributed among specific-
tasks-oriented processing elements.

Many of the applications that can be executed on the Xilinx platform deal
with different data types. For example, image processing algorithms usually
deal with images stored as integers of different sizes, but in some cases the
information is stored as floating point values. To test the effect of the data type
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on the performance of the image processing algorithms we have implemented
another version of the 2D filter algorithm that performs 3x3 convolutions on
static images. Table 2 shows the performance of the algorithm with square
images of different sizes stored using different data types. Results show the
frames per second that can be processed on one Cortex-A53 core on each case.
As expected, the fastest version is the one dealing with bytes as we use only 8
bits per element as opposed to the 32 bits used with the other two data types.
The different performance obtained with floating point and 32-bit integers is
due to the cost of the basic arithmetic operations used by the algorithm on
the Cortex-A53 core.

Table 2 Frames per second processed by the 2D filter algorithm with different data types
when applied to square images of size n× n.

n byte int float

32 107,948.2 111,405.2 82,913.9

64 40,000.0 25,641.0 16,666.7

128 15,151.5 6,369.4 4,273.5

256 4,629.6 1,618.1 1,089.3

512 1,404.5 392.8 245.6

1024 371.1 86.0 59.1

4.2 Matrix multiplication: a simple code

The aim of this experiments is to test that we are able to launch the same
code in every processing element so that we can compare them and verify
the flexibility of the platform. To this end, we have first selected a naive
matrix multiplication implementation, known as ijk -algorithm, composed of
three nested loops.

Figure 3 shows the performance that is achieved by every processing el-
ement when they run the ijk -algorithm in single precision. Broadly stated,
on both CPUs the performance quickly decreases as the matrix size increases
and memory-access is a bounding factor. Results show that the ARM Cortex-
A53 cores are much more appropriate for this kind of computation, while the
ARM Cortex-R5 cores offer the worst performance and should not be used for
computation intensive tasks. Intermediate results are obtained by the FPGA,
which can only manage sizes of matrices up to 256 because of the limited num-
ber of resources offered by the selected device. It is important to note that we
have used the same code on every processing element, i.e. it is not a customized
version to leverage the different PEs. In the case of the FPGA version of the
product we have used the basic implementation provided by the Xilinx SDK.
We show the results obtained with the best blocking factor allowed by the re-
sources available on the platform when partitioning the matrices. That is, we
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increased the number of blocks as much as possible for each of the matrix sizes
to increase the parallelism of the implementation. To obtain the performance
with the FPGA and GPU accelerators we have included in the execution time
the time required to transfer data to the accelerator device and back.

Figure 3 also includes the results obtained with the multiplication imple-
mented using OpenGL ES 2.0 and run on the Mali GPU. In this case we are
using a specific implementation for this kind of processing element that pro-
duces results with limited floating point precision [32]. We can see that the
performance using the Mali GPU is lower than the one achieved with both
types of CPU cores for small matrices. However, as the GPU performance
does not decrease with the size of the problem, it overcomes the naive im-
plementation of the multiplication using both kinds of CPU cores with large
matrices.
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Fig. 3 Performance of the matrix multiplication (naive) for a different sizes of square
matrices in the different Processing Elements of the Xilinx Ultrascale+ EG.

We have also tested an optimized version of the matrix multiplication 1

that tries to leverage the memory hierarchy of the processor. To this end it
implements a block version of the product and unrolls the innermost loop.
Figure 4 compares the performance of running this optimized code on one
ARM Cortex-A53 core and one ARM Cortex-R5 core working in lockstep
and split modes. This implementation clearly scales better than the naive
version shown above, and improves the performance of the ARM Cortex-R5.
Despite of this fact, the results confirm the superiority of the A53 architecture

1 https://github.com/deuxbot/fast-matrix-multiplication/blob/master/mxm.c
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with respect to the R5 for this kind of computation. On the other hand, the
experiments show that the execution mode, lockstep or split, does not affect
the performance of the product on the Cortex-R5 cores.
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Fig. 4 Performance of an optimized version of the matrix multiplication that compares one
core ARM Cortex-A53 and the ARM Cortex-R5 working in lock-step and split modes.

Finally, we have tested the effect of the data type on the performance of
the matrix multiplication. We have compared the results of our first version
of the matrix multiplication using single precision floating point values and
32-bit integer values on the FPGA component of the board. Table 3 shows the
results obtained with matrices of different sizes. The factor values shown in
the table correspond to the number of blocks used to partition both matrices
involved in the multiplication using the HLS array partition pragma. The
table shows results obtained with the maximum factor allowed by the resources
of the FPGA measured and the millions of arithmetic operations per second
achieved. We can see that for the smaller matrices, the best performance is
obtained with the floating point version of the multiplication. However, as we
increase the size of the matrices, the integer version uses less resources than
the floating point version and allows us to use larger partition factors, which
results in better performances. Experiments also show that FPGA on the Xil-
inx UltraScale+ does not have enough resources to execute the multiplication
with square matrices of size 512 on one step. It would be necessary to imple-
ment a block version of the multiplication dealing with blocks that could fit
into the resources offered by the FPGA.

We have also compared the performance of both versions of the matrix
multiplication on the two types of CPU cores of the board. The performances
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obtained with floating point and 32-bit integer elements are very similar. This
is because the simple version of the matrix multiplication is a memory bound
algorithm. We have checked that the cost of the basic arithmetic operation
is quite different when using floating point and integer elements both in the
Cortex-A53 and Cortex-R5 cores. However the cost of the algorithm is clearly
dominated by the cost of the memory accesses, which is the same when using
floating point and 32-bit integer elements.

To complete our analysis of the effect of the data type, we have executed the
OpenGL ES 2 implementation of the matrix multiplication on the Mali-400
GPU using floating point and 32-bit integer elements both signed and un-
signed. The performance depends on the cost of the numeric transformations
needed to store elements of different data types as texture and framebuffer
values on the GPU memory as described in [32] . Our experiments show that
the these transformations have a similar cost for the three data types thus
producing similar performances for the three versions of the matrix multipli-
cation.

Table 3 Performance of the matrix multiplication on the FPGA using floating point and
integer elements with square matrices of size n× n

n
float int

MFlops factor MInts factor

32 122.83 32 36.09 32

64 271.62 32 37.82 64

128 313.58 16 566.78 128

256 227.66 8 900.13 64

4.3 Matrix multiplication with OpenBLAS

OpenBLAS is an open source implementation of the BLAS (Basic Linear Al-
gebra Subprograms) [38] which allows to launch parallel executions among all
the cores by using OpenMP and is optimized at assembler level for each ar-
chitecture. We have run the multiplication of two square matrices by using
its corresponding invocation to the BLAS routine sgemm. The Petalinux op-
erating system installed on the Xilinx platform does not provide the required
Fortran compiler or the OpenMP libraries to compile OpenBLAS. Therefore,
the library has been cross-compiled in a different platform with the same kind
of ARM architecture: ARMv8.0-A. Once we have obtained the compiled version
of the library, we have copied it to the Xilinx board, where we conducted the
following experiments. Specifically, we have used the Jetson TX1 platform [39]
and applied the compiling flags -march=armv8-a -mtune=Cortex-A53 to ob-
tain the library optimized for the kind of core included in the Xilinx board.
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Figure 5 shows the performance that is achieved by the quad-core ARM
Cortex-A53 of the Xilinx board when running a matrix multiplication varying
the number of cores and the size of the square matrices. The sequential version
of the code obtains a better performance than the block version previously
shown, being highly stable with the size of the matrices around 3.5 GFlops.
Using 2 cores we get an almost optimal speedup independently of the size of
the problem. The performance increases when we use more than 2 cores, but
only with sizes up to 768. We obtain a speedup of 3.5 and a maximum of 12
GFlops using four cores with matrices of size 512. With matrices larger than
768, the performance obtained with 3 or 4 cores is only slightly better than
the one obtained with 2 cores, probably due to the shared memory access that
bounds the parallelism of the computation on this architecture.
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5 Conclusions

The use of Multi-processor System-on-Chip (MPSoC) in space environments
is gaining momentum because of its flexibility and heterogeneity in terms of
computational resources, since it combines different multi-core processors with
a GPU and a FPGA. In spite of being used in different tests for space agencies
and the fact that there are studies in the literature about these systems, none
of them analyzes the computational capabilities of this kind of platforms.
This work highlights the potential of combining suitably the computational
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resources: ARM Cortex-A53, ARM Cortex-R5 and FPGA in imaged-based
applications, where an acceleration of 12x in the number of frames per second
is achieved.

Another important result that we must point out is the fact we are able
to launch the same code over all the processing elements using different devel-
opment environments. We have generated applications that can be executed
on a Linux OS or baremetal (without OS). To analyze their computational
capabilities, we have tested three sequential implementations of the matrix
multiplication kernel that demonstrate that the ARM Cortex-A53 gets the
best performance in terms of MFlops per second for this kind of computa-
tion. It is important to point out that the ARM Cortex-R5 could be used for
computing issues if it is necessary. However their poor performance results
indicate that it is better to assign them tasks related to control instead of
intensive computation. The same behaviour occurs with the GPU included in
the selected device (Mali 400 MP2 GPU), that despite of being able to perform
computational tasks, is aimed to graphic processing.

Finally we have used the OpenBLAS library, a widespread mathematical
framework, in order to evaluate the performance that can be obtained with
the quad-core ARM Cortex-A53 when using an optimized parallel code to
carry out a matrix multiplication. Results show that the peak performance is
obtained for a size of 512 achieving up to 12 Gflops.

At this work, we have explored the computational power of each process-
ing element (CPU, GPU and FPGA) and how they can interact with each
other. An evaluation that was not previously tackled from the computational
point of view. This work can help designers when choosing resources allocation
according to specific computational requirements.
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