TITLE
ROLE OF MICROBIOTA GUT-BRAIN AXIS ON STRESS

RUNNING HEAD
STRESS AND GUT-BRAIN AXIS

AUTHORS
Molina-Torres, Guadalupe¹; Rodriguez-Arrastia, Miguel¹; Roman, Pablo¹*; Sanchez-Labraca, Nuria¹; Cardona, Diana¹.

AFFILIATIONS
1. Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería (Spain)

CORRESPONDING AUTHOR
Dr. Pablo Román López
Edificio de Ciencias de la Salud, Universidad de Almería
Ctra. Sacramento s/n, 04120 La Cañada de San Urbano (Almería, Spain)
Telephone: (+34) 950 214 563 Email address: pablo.roman@ual.es

CONFLICTS OF INTEREST AND SOURCE OF FUNDING
The authors declare no conflict of interests.
ABSTRACT

Stress is a nonspecific response of the body to any demand imposed upon it, disrupting the body homeostasis and that manifests with symptoms such as anxiety, depression or even headache. Response, which is quite frequent in the present competitive world. The aim of this review is to explore the impact of stress on gut-microbiota. Firstly, we summarize evidences in which the microbiota composition has changed as response of a stress situation, thus microbiota impact by stress-response. Likewise, we summarize the different interventions that can modulate microbiota and so then could modulate the stress according to the underlying mechanisms that involved the gut-brain axis on the stress. Finally, we show evidence through the gut modulation impact on stress, both preclinical and clinical studies. In conclusion, the influence of stress on gut-microbiota and gut-microbiota on stress modulation is clear through different stressors, although the preclinical evidence is so extended, the clinical evidence is more limited. A better understanding of the mechanism underlying the stress modulation through the microbiota may open new avenues for the design of therapeutics that could enhance the clinical benefits pursued. Not only on stress, but also on stress-related disorders such as anxiety and depression, both in healthy subjects and in different populations.

KEYWORDS

Gut; microbiota; gut-brain; gastrointestinal microbiome; stress; stress disorders; anxiety; diet; probiotics; faecal transplantation.
1. INTRODUCTION

Stress is a nonspecific response of the body to any demand imposed upon it (Selye, 1985). This demand can be induced by a psychological, environmental, or physiologic stressor, that disrupts homeostasis (Jafari et al., 2014; Moloney et al., 2016), and it is manifested with symptoms such as anxiety, depression or even headache. Thus, the stress can be classified in relation to the duration of the stress as acute psychological stress (surgical operation or examination) and chronic psychological stress (anxiety about family conflicts, financial problems, etc.) (L. Yang et al., 2015). Early life stress has been implicated in many psychiatric disorders such as depression or anxiety (O’Mahony et al., 2011). Exposure to stress affects sleep negatively and the sleep/wake cycle; for example, experiencing work-related stressors, having low social support (Mellman & Hipolito, 2006), or exposure to trauma/combat (Rothbaum & Foa, 2002) can all disrupt sleep and the sleep/wake cycle.

Nevertheless, stress can be hardly avoided in the present competitive world, and also important for people’s rapid reaction to threats; however chronic stress is associated with detrimental effects on physical health and adverse implications on the immune, neuroendocrine and central nervous systems (Le et al., 2016). Over time, the number and frequency of diagnoses of stress-related disorders, such as depression and anxiety, have indeed grown. Due in part to greater awareness of manifestations of disease symptoms, but also because of the pace of modern life, inclusion of society, diet, and stress in association with urbanization, industrialization, westernization, and resulting changes in agriculture and food processing (revised in Schnorr & Bachner, 2016).

On the other hand, chronic stress is a considerable health concern for society, associated with various disease states including an increased risk for neuropsychiatric disorders like
depression and anxiety (L. Yang, 2015). More than 25% of individuals are affected by these disorders (Househam et al., 2017), as well as the chronic stress are related with gastrointestinal (GI) disorders such as irritable bowel syndrome (IBS) (Moloney, 2016).

Both chronic and psychological stress can have an impact on the developmental trajectory of the intestinal barrier (Lennon et al., 2013; Smith et al., 2010) and have been associated with an increase in gut permeability (Söderholm et al., 2002). Indeed, the effects of stress on intestinal permeability are complex and likely involve both the gut and the brain (Kelly et al., 2015). Additionally, psychological stress is an important factor for the development of IBS. More and more clinical and experimental evidence showed that IBS is a combination of irritable bowel and irritable brain (Qin, 2014), and is well-known that psychological stress causes bowel dysfunction like nausea, vomiting, abdominal pain and alteration in bowel habits.

The pathways through the stress influence in IBS include the following: (a) activation of mast cells and the sympathetic nervous system, (b) vagus nerve inhibition on inflammatory pathways, (c) the prefrontal cortex and amygdala control over the hypothalamic pituitary axis (HPA), (d) the hypothalamic-corticotropin releasing factor (CRF)-ergic system, (e) the peripheral CRF-ergic system, (f) the effect of early life events on colitis (the HPA axis is programmed by early life events, and neonatal inflammatory stimuli exert long-term changes in HPA activity), (g) the impact of depression on exacerbating colitis possibly through shared proinflammatory cytokines, and (h) the intestinal microbiota-brain axis (Bernstein, 2017).

Individuals suffering from chronic daily-life stressors such as loss, financial problems, unemployment, etc., are predisposed to disease in the GI tract (Mayer, 2000), e.g. exacerbations of IBS (Bennett et al., 1998), ulcerative colitis or gastroesophageal reflux
disease (Naliboff et al., 2004). Current evidence suggests that the stress-induced gut mucosal response is primarily mediated by neuroimmune interactions between the autonomic and enteric nervous systems and the intestinal immune system, and many studies have identified that chronic stress is associated with a decrease in systemic immune function (McEwen, 2003).

Stress has profound effects on the GI tract including but not limited to alterations in intestinal motility (Venkova et al., 2010), mucosal transport, gut barrier function (Hyland, 2014), and visceral perception (Moloney et al., 2012). In addition, recently, the role of the gut microbiota in the bidirectional communication along the gut–brain axis (GBA), and subsequent changes in behavior, has emerged (Cryan & Dinan, 2012), suggesting that stress can lead to long-term changes in the gut microbiota. The GBA is a bidirectional communication network between the gut and brain, in which communication occurs through three different pathways: (a) neural via, mainly by the vagus nerve and the enteric nervous system, (b) endocrine via, through glucocorticoids, such as cortisol, as well the (c) immunological pathway, through the modulation of cytokines (Bercik & Collins, 2014; De Palma et al., 2014; Mayer et al., 2015; Sherwin et al., 2016).

Nonetheless, the importance of the gut microbiota and their role in visceral sensation and nociception remains to be further explored (Moloney, 2016). Chronic stress can induce dysbiosis and enhance bacterial wall adherence, while the interaction between host and microbiota can modulate the neuro-immune-endocrine systems (Aguilera et al., 2013). Thus, the aim of this review is to explore the impact of stress on gut-microbiota and to underlying the mechanisms that involved the gut-brain axis on the stress. Finally, we show evidence through the gut modulation impact on stress, both preclinical and clinical studies.
2. Microbiota: new insight on stress disorders

**Stress impact on microbiota composition**

The gut microbiota has recently emerged as one of the most fascinating entities in modern biomedical research (Cryan & Dinan, 2012). The gut microbiome has been implicated in a whole host of physiological functions from energy metabolism to psychiatric well-being (Moloney, 2016). There is evidence linking various gut-related biological pathways and mechanisms to the etiology of depressive and anxiety disorders (Penninx et al., 2013). Many of these are related to the gut, such as inflammation associated with increased intestinal permeability, microbial dysbiosis (Zheng et al., 2016), HPA axis dysfunction, neuroactive substances and dietary deficiencies (Petridou et al., 2016).

Mammalian microbial colonization begins at birth, although this colonization could begin during the pregnancy given that a diverse range of microbes has been found in amniotic fluid, the placenta, umbilical cord blood, and the fetal membranes. Following parturition, the gut microbiota is refined and modified until adult-like communities reach homeostasis in its diversity around 2 years old (Ohland & Jobin, 2015).

Human GI tract is dominated by two phyla: *Firmicutes* and *Bacteroidetes*, together with members of *Actinobacteria*, *Verrucomicrobia*, *Proteobacteria*, *Fusobacteria*, and *Cyanobacteria* phyla (Lach et al., 2018; Moloney, 2016). This relative abundance of microbial population remains stable throughout adult life, but can be altered. Thus, the composition of the core bacteria harbored throughout adult life is shaped by a number of factors including mode of delivery (vaginal or cesarean section), breastfeeding or bottle-feeding, diet, some medication (specially, antibiotics), exposure to viral or bacterial infections, stress and others such as smoking (Kochhar & Martin, 2015; Martin et al., 2009; Mountzouris et al., 2015; Rea et al., 2017; Savin et al., 2018; Sukoh et al., 1998).
Concerning to the stress and the impact on microbiota, its impact begins from prenatal stress. Psychological stressors can change the intestinal microbial community and these perturbations can contribute to stressor-induced changes in immune function, neurodevelopment, and behavioral deficits (A.R. Mackos et al., 2016). Pre-clinical data shows long-lasting alterations in intestinal microbiota composition where lactobacilli was decreased. On top of that, early-life stress impact on GI microbiota, host health, and behavior, such as increased plasma corticosterone, behavioral deficits, decreased noradrenaline in the brain, increased visceral sensitivity, and increased immune response. Furthermore, early-life stress has shown results both in composition and diversity of gut-microbiota (Wiley et al., 2017). Moreover, maternal stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment (Gur et al., 2015). In fact, gastrointestinal microbial communities were different in adult females born from stressed pregnancies and adult female offspring also shows alterations in cognition and anxiety (Gur et al., 2017).

However, the early-life stress impacts on the microbiota and social stress has also shown to reduce microbial diversity whereby the relative abundance of Bacteroides and Lactobacillus spp. decreased whilst bacteria in the genus Clostridium increased, even having an impact on behavior mediated by microbiota. Other type of stress, evaluated in adulthood such as restraint stress, has altered the relative abundance of various groups of bacteria (i.e., a reduction in the Lactobacillus genus in colonic mucosa). Also, the genus Oscillospira, Lactobacillus, Akkermansia and Anaeroplasma are affected in rodent exposed to a model of post traumatic disorder stress (Gautam et al., 2018). Prolonged restraint stressor exposure also reduced short chain fatty acids SCFAs but increase in infectious mice (Maltz et al., 2018). Although human studies are more limited, results are
shown as similar than in preclinical studies concerning to the impact of stress on microbiota diversity (Wiley, 2017).

As for stressors and their impact on microbiota, not only would physical and psychological stressors affect the composition and metabolic activity of the gut microbiota, but it is also suggested that the intestinal microbiome affects the brain by the humoral and neuronal mechanisms with particular attention to the vagus nerve, one of the pathways of GBA. Signals from the brain may influence sensory, motor, and secretory modalities of the GI tract, and signals from the GI tract influence brain functions, despite its exact mechanisms are not well understood (revised in Grochowska et al., 2018).

In this connection, most researches working in the area of gut-microbiota-brain (GMB) axis agree on the importance of the stress to analyse the changes of microbiota composition (Foster et al., 2017; Mayer, 2015; Rea, 2017). Nevertheless, although there is no consensus as to which symptoms or biomarkers define stress, some common signs that are widely accepted in the scientific literature include clinical, hormonal indicators and other symptoms associated with fatigue, performance decline, insomnia, change in appetite, weight loss and mood disturbances such as irritability, anxiousness, as well as inflammation and immunosuppression.

**Mechanisms underlying the gut-brain axis on stress**

Stress physiology includes processes across the autonomic nervous system, the immune system, and even over the gut microbiota (Househam, 2017). The cumulative physiological effect of stressors causes the dysregulation of multiple host systems due to allostatic overload (Bharwani et al., 2017).

As mentioned previously, stress usually influences the depression and anxiety disorders. Both disorders are stress-related and the common mechanism between them are the HPA
axis, mediating the biological effect of stress on the host. The HPA and sympathomedullary axes are the two stress response pathways in mammals. The HPA axis is slower-acting and adaptive, encompassing a network of anatomical constituents located both in the central nervous system and in the periphery. The crucial components are the paraventricular nucleus of the hypothalamus, the pituitary gland (anterior lobe) and the adrenal gland (Smith et al., 2006).

The HPA axis appears to be the most important stress response system, with CRF as mediator, since stress-induced release CRF can also lead to bowel dysfunction by acting directly on the bowel itself and also through the central nervous system (Armario, 2006). The HPA mediates the microbiota through the glucocorticoids released from adrenal cortex, cortisol in humans and corticosterone in rodents. Thus, the administration of *Lactobacillus* during the early stress period has been found to normalize basal corticosterone levels. Furthermore, the immune via of communication in the GBA can be mediated by the stress; the microbiota can influence the central nervous system via the immune system and enteric nervous system in the presence of stress (Foster & McVey Neufeld, 2013). In addition, glucocorticoids can also induce non-neuronal catecholamine enzymes which may add to the multiple signalling mechanisms of chronic stress exposure (Holzer et al., 2017).

Other pathway is the influence of microbiota on central nervous system functions directly through neuronal activation of stress circuits; specifically some food-borne pathogens have shown an activation of vagal pathways. Likewise, sensory neurons of the myenteric plexus in the enteric nervous system are the first point of contact for the intestinal microbiota residing in the gut lumen. These sensory neurons synapse on enteric motor neurons controlling gut motility. Moreover, there is anatomical evidence of closing, synaptic-like connections with vagal nerve endings in the gut (Foster, 2013).
The major response to stress is releasing glucocorticoid hormones, as mentioned, that leads to a range of biological effects, including immune modulation and energy metabolism. Permanently increased glucocorticoid levels are associated with reduced hippocampal volume and impairments in cognitive domains, such as memory, perception, and attention. Even, chronic stress has been found to induce alteration in various neurotransmitter systems and affect inflammatory cytokine expression (Wiley, 2017).

The immunological pathway is other via through the stress can modulate the microbiota from, since psychological stressors cause formation of proinflammatory cytokines. Hence, a clinical evidence is found in stress-related psychiatric disorders as patients with treatment-resistant major depression display highly elevated serum levels of IL-6 (Holzer, 2017).

**Restoring the microbiota**

Current research seems to indicate that it is possible to interact with this axis, even modulate the stress throughout the intestinal microbiota using probiotics, prebiotics, symbiotics and parabiotics, among others (Fond et al., 2015).

**Probiotics**

Probiotic is defined as a live bacterium which when administered in adequate amounts confers a health benefit on the host (WHO, 2001). Among the most commonly used are *Lactobacilli, Bifidobacteria* and *Saccharomyces boulardii*. The action mechanism supports the idea that these bacteria can compete against pathogen bacteria to join the host epithelial cells, thus improving its barrier function by inhibiting the pathogen growth and secreting antimicrobial peptides (Hardy et al., 2013).

Despite previous probiotic health claims have been exaggerated (Hoffmann et al., 2013; Sanders, 2016; Shanahan, 2002), it is particularly interesting to consider the possibility
that probiotics can affect emotion in health and disease by modulating the GMB and confer a health benefit in the host (Dinan et al., 2013). Therewith, animal studies have demonstrated that the administration of probiotics maintains mucosal barrier function under stressful situations and mitigates stress-induces glucocorticoid and inflammatory cytokine responses in association with a reduction of depression and anxiety-related behavior (Eutamene & Bueno, 2007; Kelly, 2015; Logan & Katzman, 2005; Mennigen & Bruewer, 2009).

Probiotics have also been shown to reduce the mRNA expression of the GABA receptor and c-Fos in the brain, possibly by modulating the GMB via vagal pathways. Same studies noted that probiotics have beneficial effects by alleviating psychological distress in healthy subjects and normalizing the stress-induced reduction of natural killer cell numbers and gastrointestinal symptoms (Akito Kato-Kataoka, Nishida, Takada, Kawai, et al., 2016). In this sense, some studies have shown that some probiotics can increase tryptophan levels in plasma, serotonin precursor, a neurotransmitter which modules brain functions such as emotion, cognition, motor function and pain process, as well as neuroendocrine functions such as food ingestion, circadian rhythms and reproductive activity (Desbonnet et al., 2008; Martinowich & Lu, 2008). Furthermore, probiotics have a catalytic activity over oligosaccharides, increasing short-chain fatty acids, which are capable of trespassing the hematoencephalic barrier, affecting the central nervous system and therefore the mood and behavior (Dinan, 2013; Macfabe, 2012; Ohland et al., 2013).

To sum up, not only will it have positive effects in mental health but it will also increase the immune response or intestinal flora, reduce fecal enzymes related to cancer initiation, diarrhea, controlling colitis caused by rotavirus or Clostridium spp. and prevent ulcers related to Helicobacter pylori spp. (Kaur et al., 2002; Khoder et al., 2016).
Tillisch et al. (2013) investigated the effects of probiotics on brain function in healthy female participants on a 4-week chronic probiotic treatment, including *Bifidobacterium animalis* subspecies *Lactis*, *Streptococcus thermophiles*, *Lactobacillus bulgaricus*, and *Lactococcus lactis* subspecies *Lactis*. Reduced brain response to the emotional faces attention task, particularly in sensory and interoceptive regions, was evident in participants who ingested the probiotic. Besides, probiotic ingestion was also associated with changes in mid-brain connectivity, although no differences in mood were observed between the treatment groups (Malan-Muller et al., 2017; Tillisch et al., 2013).

Continuing with the gut microbiota structure, a number of studies have found that one approach used to alleviate the negative effects of stressor exposure on its structure is through prophylactic administration of probiotics. Certain probiotics, such as *Lactobacilli* spp. and *Bifidobacteria* spp. can modulate brain function and stress responses (Burokas et al., 2015; Dash et al., 2015; Forsythe & Kunze, 2013; G. R. Gibson & Roberfroid, 1995; Galland, 2014; Monteagudo-Mera et al., 2016; Neuman et al., 2015; Saulnier et al., 2013; Takada et al., 2016a; Zhou & Foster, 2015). In humans, for example, consumption of *Lactobacillus* spp. and *Bifidobacteria* spp. significantly reduced self-reported cognitive reactivity to sad mood in depressed individuals, thus alleviating stress-induced symptoms (Steenbergen et al., 2015). In addition, *Lactobacillus reuteri* administered to infants reduced colic and colic-associated maternal depression (Mi et al., 2018). Similarly, *Lactobacillus rhamnosus* reduced anxiety and depressive-like behavior and exaggerated HPA axis activation in rodent models (Bravo et al., 2011). On the other hand, *Lactobacillus farciminis* attenuated stress-evoked HPA responses (Afifa Ait-Belgnaoui et al., 2012; Rea et al., 2016; Sudo, 2014) and *Lactobacillus plantarum* attenuated early-life stress-induced depressive behavior (Liu et al., 2016). Finally, *Bifidobacterium*
*longum* was also reported to reduce anxiety-like behavior in the innately anxious BALBc mice (Savignac et al., 2014).

**Prebiotics**

Another approach that may yield long-term benefits to the gut microbiota structure is to administer prebiotics in the diet, specifically starting early in life (Schmidt et al., 2015). Prebiotics are defined as non-viable food components that confer a health benefit on the host associated with modulation of the microbiota (Glenn R. Gibson, 2008; Glenn R. Gibson et al., 2010; Hoseinifar et al., 2014; Roberfroid et al., 2010). Compounds that can enhance the growth of administered or commensal probiotic microbes are typically identified as prebiotics. For example, human milk oligosaccharides can be considered prebiotics, because they have been demonstrated to play a significant role in the growth of specific bacteria including probiotic members of the genus *Bifidobacterium* and *Lactobacillus* (Bindels et al., 2015; Coppa et al., 2006). Moreover, *Bifidobacterium* and *Lactobacillus* spp. strongly affect the GMB (Dinan, 2013; Zhou, 2015). Prebiotic-induced enhancement of these beneficial microbes is thought to have multiple beneficial effects on host immunity and physiology (Vandenplas et al., 2015). After ingestion, human milk oligosaccharides pass mainly unabsorbed through the small intestine into the colon, where they are fermented to short-chain fatty acids and lactic acids. These fatty acids act on G-protein-coupled receptors located along the GI tract to regulate energy homeostasis via the stimulation of leptin production in adipocytes, and the secretion of gut peptides from colonic enteroendocrine cells (Caporaso et al., 2011; Lach, 2018; Martín-Sosa et al., 2003; Ogawa et al., 1992; Witaicenis et al., 2010).

Conversely, additional dietary components lactoferrin and milk fat globule membrane can also affect the gut microbiota. A recent study reported an association between the concentration of human milk lactoferrin, which has antimicrobial properties, and the
abundance of *Bifidobacteria* and *Lactobacilli* in breast-fed infants (Mastromarino et al., 2014). Thus, lactoferrin may also help promote the growth of beneficial bacteria in the host, specifically in early-life. Furthermore, milk fat globule membrane also provides a variety of important nutritional, antimicrobial and cognitive benefits (Chatterton et al., 2013; Dewettinck et al., 2008; Timby et al., 2014). In this sense, some studies suggest that dietary prebiotic such these can have a positive influence in the gut microbiota and potentially promote stress resistance (Kelly, 2015; Sarao & Arora, 2017; Thompson et al., 2017).

Evidence also suggest that prebiotic galacto-oligosaccharides can improve intestinal barrier function in rats (Zhong et al., 2015). Moreover, mice treated with prebiotics exhibit improvements in intestinal permeability, tight junction integrity decreased plasma Lipopolysaccharides and cytokine levels in addition to decreased hepatic expression of inflammatory and oxidative stress markers (Cani et al., 2009).

**Para-probiotics or ghost probiotics**

Para-probiotics or ghost probiotics are non-living probiotic strains, resulting from exposure to high temperatures or irradiation, or some probiotic fractions (Taverniti & Guglielmetti, 2011). Fermentation is a biochemical process involving microorganisms being deliberately added to foods or occurring naturally in foods. The two main types of fermenting processes are alcoholic and lactic acid fermentation, which includes genera such as *Lactobacillus*, *Streptococcus*, *Enterococcus*, *Lactococcus*, *Bifidobacterium*, and *Leuconostoc*. Due to the fermentation process, fermented foods – such as sauerkraut, kichi, miso, soy sauce, tempeh, kombucha, kefir, cheese and yoghurt – contain three main functional components that may be present in varying amounts: functional microorganisms (probiotics), prebiotics and biogenics –metabolites that make fermented foods functionally active. Some or all of these components can influence the gut
microbiome composition and function, alter macronutrient breakdown and absorption, change gut permeability, and stimulate immune cells in the gut. Fermented foods have also been reported to have direct anti-inflammatory, immunomodulatory, and brain modulatory effects. For this reason, fermented foods may have the potential to modify depression and anxiety by altering the underlying pathways involved in the etiology of these common mental disorders (Aslam et al., 2018).

3. **STRESS MODULATION THROUGH MICROBIOTA INTERVENTIONS**

According to the relationship between microbiota and stress aforementioned, there are certain researches showing the modulation of stress through microbiota interventions, mainly with probiotics in both pre-clinical and clinical studies.

**Preclinical evidence**

The effects of microbiota interventions have been widely studied on emotional disorders, mainly on anxiety and depression disorders and on stress. Numerous studies have evaluated the effects of probiotics on emotional disorders (revised in Roman, Abalo et al., 2018). Others microbiota interventions, such as diet, prebiotics or fecal transplant have been less explored and the evidence is scant. The mainly preclinical evidence about the microbiota interventions on stress is summarized in Table 1.

*INSERT TABLE 1 AROUND HERE*

*Probiotics*

One of the first studies was carry out by Zareie et al. (2006) with rats exposed to a chronic stress in a model of chronic water avoidance stress (WAS) during 10 days. Probiotic treatment (*L. helveticus* and *L. rhamnosus* combination) reduced luminal bacterial adherence and translocation to the mesenteric lymph nodes after this chronic stress.
However, the probiotic supplementation has no effect in behavior. Another probiotic formulation, in this case of *L. helveticus* and *B. longum*, prevent abnormal brain plasticity and reduction in neurogenesis and attenuated the HPA response to chronic stress induced by WAS (A. Ait-Belgnaoui et al., 2014), whereas the administration of one of them alone is less effective to reduce this chronic stress (Afifa Ait-Belgnaoui et al., 2018). Similar results over HPA response have been observed after *L. casei*, which suppresses the increase in plasma corticosterone and the number of CRF-expressing cells (Takada et al., 2016b). Also, a symbiotic treatment has been found useful to reduce the effect observed in the intestinal morphology and permeability after acute stress (Takadanohara et al., 2012). *L. rhamnosus* as well *L. helveticus* have demonstrate its efficacy in other stress related disorders such as anxiety and depression (Bravo, 2011; Liang et al., 2015). Likewise, the ability of other *Lactobacillus* strain, *farciminis*, to prevent WAS-induced epithelial barrier impairment and visceral hypersensitivity has been proved (Silva et al., 2014).

The stress modulation through microbiota has been evaluated too in animals exposed to a protocol of early life stress, maternal separation (MS). This model also has been considered a model of depression where efficacy of probiotics to reversed the depressive phenotype has been demonstrated (Desbonnet et al., 2010). MS is an excellent model of brain-gut axis dysfunction for the study of disorders such as IBS, anxiety or depression (O’Mahony, 2011). García-Ródenas and co-workers (2006) evaluated if an adapted diet with prebiotic and probiotics could attenuate the negative effects of early stress. According to their results, the adapted diet was able to normalize gut permeability and further restore growth rate that had been impaired after early stress. In the same line, the administration of a mixture of two strains of *Lactobacillus* species normalised gut physiology and prevented bacterial attachment into the mucosa. Moreover, it was able to
revert the enhanced level of circulating corticosterone induced by MS (Gareau et al., 2007). Furthermore, a multispecies formulation (L. rhamnosus and L. helveticus) prevents accelerated emotional development in MS infants (C S M Cowan et al., 2016), as well prevents the precocious physical maturation observed in stressed females (Caitlin S M Cowan & Richardson, 2018). L. rhamnosus seems to be able to revert the effects of maternal stress in memory that are transmitted to the new generation (Callaghan et al., 2016). Another Lactobacillus, L. fermentum, increased exploratory behavior in an elevated plus maze, and reduced permeability in the small intestine and stress-induced by WAS and MS model (Vanhaecke et al., 2017). It is also interesting to note that probiotics seems to be a sex depended effect due to reduced WAS-induced colonic microinflammation in female rats but not in male rats (Lee et al., 2017).

Other stress models such as restraint and passive avoidance are employed to evaluated stress in adulthood and are associated with gut hypersensitivity in response to rectal distension in rats (Gué et al., 1997). Also, chronic stress in adulthood induced, gut-derived, pro-inflammatory milieu exacerbates the Parkinson disease via a dysfunctional microbiota-gut-brain axis (Dodiya et al., 2018). The colorectal distension induced by acute stress is reduced by L. farciminis (ait-belgnaoui et al., 2009) and prevented HPA axis stress response and increased hypothalamic expression of pro-inflammatory cytokines (Afifa Ait-Belgnaoui, 2012). Another probiotic, Escherichia coli Nissle, protects gastric mucosa against restraint stress due to antiinflammatory and vasodilatory actions involving heat-shock protein, prostaglandins and sensory afferent neurons (Konturek et al., 2009). Visceral sensitivity was analysed in rats subjected to partial restraint stress pre-treatment with fermented milk containing Bifidobacterium lactis. Probiotic product prevented the increase in intestinal permeability and restored colonic occluding (Agostini et al., 2012). Another Bifidobacterium, pseudocatenulatum CECT
ameliorate the exaggerated HPA mediated stress response to acute physical and social stress observed in obese mice exposed to restraint (Agusti et al., 2018). Additionally, exposure to prolonged restraint significantly enhanced *C. rodentium* induced infectious colitis in resistant mice that is ameliorate by *L. reuteri* treatment although it did not reduce all the effects caused by the stress (Amy R. Mackos et al., 2013). *L. rhamnosus* also attenuates peripherally and centrally induced visceral hypersensitivity produced by restraint that is similar to IBS symptoms (Darbaky et al., 2017). Similar effects were observed after administration of *L. Reuteri* in mice exposed to prolonged restraint. This probiotic significantly attenuated the effects of stressor exposure on *C. Rodentium* exposed mice reducing colonic inflammation (A R Mackos et al., 2016) but not microbial community composition in a model of social disruption stress (Galley et al., 2017). One possibility could be that stressor affect in the same line that infection, so future studies should be evaluated the similarities in the composition of the microbiota between between stressor-induced and inflammation-induced (Galley, 2017).

In the same line, the effects of a combination of several stressors, include restrain, are alleviated by a mixture of three probiotic strains (*L. helveticus* R0052, *L. plantarum* R1012, and *B. longum* R0175), reversing changes in microbiota composition caused by stress (Li et al., 2018). Nevertheless, the strains should be considered in future studies due to a reduction in stress reactivity following treatment with *L. rhamnosus* was observed in BALB/c but no in Swiss Webster mice (McVey Neufeld et al., 2018).

Recently, the forced swim test (FST) has been employed to evaluate the effect of ADR-159, a heat-killed fermentate generated by two *Lactobacillus* strains, on the acute stress in mice (Warda et al., 2019). Their results show that ADR-169 fed animals has lowers levels resting stress levels, showing a reduction in baseline corticosterone levels. Also, this sedative effects is associate with a little change in the composition of the microbiota,
characterized by a reduction of both *Alistipes* and *Odoribacter*, as well an increase of *Prevotella*, a similar pattern was observed in other researches about anxiety and microbiota (Bangsgaard Bendtsen et al., 2012).

*Other microbiota interventions*

The modulation of stress through microbiota manipulations such as prebiotic, diet or fecal transplant have been less evaluated. In this sense, prebiotic composed by an enzyme-treated rice fiber has been shown efficacy reducing hypersensitivity induced by WAS (Larauche et al., 2012). IMO, a prebiotic that promote the growth of *Lactobacillus* and *Bifidobacterium*, is able to repairing stress injury on the ultrastructure of intestinal mucosal epithelial cells induced by WAS (Wang et al., 2017). In addition, the effects of prebiotics on consequences of chronic unpredictable social stress have been also evaluated. Specifically, a prebiotic combination of fructo-oligosaccharides and galacto-oligosaccharides protect to reduced social isolate caused by chronic stress (Burokas et al., 2017).

Tarr and co-workers evaluate the effect of two probiotics (3’S’L and 6’S’L) over modulation of social stressor in mice. Their results showed that the disruption in the composition of the intestinal microbiota associated to an stressor exposure (Bailey et al., 2010) is not observed in mice fed 6’S’L or 3’S’L (Tarr et al., 2015).

An early life supplementation of two prebiotics (galactooligosaccharide and polydextrose), and the glycoprotein lactoferrin suggested a differential effect of each diet, although all diets studied attenuate the effects on learned helplessness induced by stress, also alter gene expression in brain circuits implicated (Mika et al., 2017). A combination of prebiotic (polydextrose), probiotic (*L. rhamnosus*) and galactooligosaccharide, reduce the effects of MS in anxiety and memory (McVey Neufeld et al., 2017). Moreover, effects
of chronic stress could be potentiated by a high-fat-high-fructose diet, both promoted changes in intestinal proteins and increases in insulin resistance and plasma cholesterol (de Sousa Rodrigues et al., 2017).

On the other hand, SCFAs supplementation alleviates selective and long-lasting alterations induced by repeated psychosocial stress in mice. However, chronic stress-induced alterations in body weight gain, faecal SCFAs and the gene expression of the SCFA receptors remained unaffected by SCFA supplementation (van de Wouw et al., 2018). Similarly, dietary manipulations with n-3 polyunsaturated fatty acids have behavioural effects in control but not early-life stressed rats (Pusceddu et al., 2015).

Finally, it is necessary to highlight that faecal transplantation might be a useful tool to treat different effects of chronic stress, preventing the elevation of plasma KC and IL-6 induced by stress, among others (Langgartner et al., 2018). Once said that, it is also necessary to explore in more detail this recent intervention.

**Clinical evidence**

Despite the widely evidence on preclinical studies, little is known about the clinical. As for preclinical evidence, the most used study intervention is the probiotic administration. Table 2 shows the clinical evidence about the different interventions on stress measures.

*INSERT TABLE 2 AROUND HERE*

**Probiotics**

As said, probiotics is the most used intervention exploring the microbiota modulation on stress. Diop and co-workers (2008) explored the effects of a probiotic preparation (Probio-Stick; *L. acidophilus* and *B. longum*) during 3 weeks on stress-induced symptoms in volunteers affected by daily stress with at least two symptoms induced by stress
(anxiety, nervousness, irritability, sleeping problems, gastrointestinal disturbances) during the last month. Results show that the probiotic used provided a beneficial effect on the gastrointestinal symptoms experienced by individuals affected by chronic stress.

In the double-blind, placebo-controlled, and parallel-group clinical trial conducted by (Kato-Kataoka, 2016a), the daily administration of a fermented milk, containing *L. casei* strain Shirota during 8 weeks in medical students previous to the exposition of a brief naturalistic stressor (academic examination), preserved the diversity of the gut microbiota and relieved the stress-associated psychological, physiological, and physical stress responses to prevent the onset of common abdominal dysfunction. In addition, *L. casei* strain Shirota may exert beneficial effects preventing the onset of physical symptoms in healthy subjects exposed to stressful situations (Kato-Kataoka et al., 2016b). In other clinical trial performed by Takada and coworkers (2016) in a large sample, the same intervention (*L. casei* strain Shirota, during 8 weeks) prevented hypersecretion of cortisol and physical symptoms under an academic exam, compared with placebo administration.

The treatment with *B. longum 1714* strain ameliorate both the physiological and psychological response to an acute stressor, as well as longer-term daily self-reported psychological stress, in healthy human adults exposed to the cold pressor test (Allen et al., 2016). However, the treatment with *L. Rhamnosus* has no a differential effect in the same model (Kelly et al., 2017). Recently, Papalini and co-workers have observed that the group treated with a multispecies probiotic showed an increased buffer against the negative effects of stress on working memory (Papalini et al., 2019).

On another population, patients scheduled for laryngectomy, probiotic administration (*Clostridium butyricum*) has shown to ameliorate the clinical anxiety and biochemical features of stress in compared with placebo administration (H. Yang et al., 2016). So
probiotics could be an effective anxiolytic previous a surgery intervention, although more research is required to understand this effect.

Other trials have not shown howbeit a positive effect of probiotics in the stress-modulation. Thus, the daily administration of a multistrain and multispecies probiotics probiotic ((B. breve, B.longum, B. infantis, L. acidophilus, L. plantarum, L. paracasei, L. bulgaricus, and S. thermophilus)) during 2 weeks have not shown an influence on psychological reactions to acute psychological stress during post stress recovery in young adults (Möller et al., 2017).

Other interventions

There is a scarce of evidence of other interventions and, for our knowledge, only a few studies have performed diet interventions and their impact on stress through the gut or microbiota modulation. The administration of dark chocolate (40g) during 2 weeks modifies the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism. Specifically, dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, alanine) and gut microbial activities (hippurate and p-cresol sulfate) (Martin, 2009). Curiously, the p-cresol is related with autism, which has been recently revised (Roman, Rueda-Ruzafa, et al., 2018).

Conclusions

This study sought to explore the impact of stress on gut-microbiota. According to the evidence, both clinical and preclinical, we can conclude that the influence of stress on gut-microbiota and gut-microbiota on stress modulation is clear through different stressors like a surgical intervention, academic examination or military training among
others (H. Yang, 2016; Karl et al., 2017; Kato-Kataoka, 2016a; Takada, 2016). Although the preclinical evidence is so extended, the clinical evidence is more limited and the actual challenge is translating the promising preclinical studies to healthy human participants with different stressors or different stress situations.

As specified, there are different microbiota modulation interventions. Notwithstanding, one of the most considerable interventions could be probiotics, given that the cumulative evidence. Future studies must consider aspects such as study design, intervention, adherence, safety assessment, strain specificity, bacterial quantification and microbial metabolites (Shane et al., 2010; Welch et al., 2011).

Lastly, a better understanding of the mechanism is needed, underlying the stress modulation through the microbiota. It may open new avenues for the design of therapeutics that could enhance the clinical benefits pursued, on stress and stress-related disorders such as anxiety and depression, both in healthy subjects and in different populations.
REFERENCES


mice through a mechanism involving GLP-2-driven improvement of gut permeability. *Gut*, 58(8), 1091–1103. https://doi.org/10.1136/gut.2008.165886


García-Renedas, C. L., Bergonzelli, G. E., Nutten, S., Schumann, A., Cherbut, C.,


Penninx et al. (2013). Understanding the somatic consequences of depression: Biological


Table 1. Effects of stress modulation through microbiota interventions: Evidence from animal models.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Animal model</th>
<th>Microbiota manipulation</th>
<th>Test</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Li et al., 2018)</td>
<td>Male C57BL/6 mice</td>
<td><em>L. helveticus</em> R0052, <em>L. plantarum</em> R1012, and <em>B. longum</em> R0175 4 weeks</td>
<td>Chronic mild stress (CMS)</td>
<td>Decreasing hippocampal levels of proinflammatory cytokines (IFN-γ and TNF-) produced by CMS</td>
</tr>
<tr>
<td>(Warda et al., 2019)</td>
<td>Male C57BL/6 mice</td>
<td>ADR-159 contains a co-fermentate of <em>Lactobacillus fermentum</em> and <em>Lactobacillus delbrueckii</em>, 3 weeks</td>
<td>FST</td>
<td>Reduction in baseline corticosterone levels in ADR-159 fed animals reducing both <em>Alistipes</em> and <em>Odoribacter</em>, as well increasing <em>Prevotella</em></td>
</tr>
<tr>
<td>(van de Wouw et al., 2018)</td>
<td>Male C57Bl/6J mice</td>
<td>A mix of the three principal short-chain fatty acids</td>
<td>Stress-induced hyperthermia test</td>
<td>Increase in body temperature after an acute stressor in psychosocially stressed mice was restored by SCFAs SCFAs ameliorated the stress-induced corticosterone</td>
</tr>
<tr>
<td>Study/Strain</td>
<td>Treatment</td>
<td>Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprague-Dawley female rats (Pusceddu et al., 2015)</td>
<td>Eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) (80% EPA, 20% DHA) n-3 PUFAs mixture 10 days</td>
<td>n-3 PUFAs have little positive benefit in animals exposed to early life stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprague-Dawley female rats (Cowan and Richardson, 2018)</td>
<td>Lactobacillus rhamnosus R0011, 95%, and Lactobacillus helveticus R0052, 5% 12 days</td>
<td>Probiotic treatment prevents this precocious physical maturation in stressed females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male wild-type C57BL-6 mice high-fat diet (HFD) (Agusti et al., 2018)</td>
<td>B. pseudocatenulatum CECT 7765 standard diet (SD) 14 weeks</td>
<td>Acute Bacterial strain to reverse the anxiogenic obesity profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BALB/c and Swiss Webster mice (McVey Neufeld, 2018)</td>
<td>L. rhamnosus JB-1 28 days</td>
<td>Acute Feeding L. rhamnosus JB-1 to BALB/c attenuates plasma corticosterone. No effects on Swiss Webster mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Treatment</td>
<td>Diet Details</td>
<td>Animal Strain</td>
<td>Microbial Strain</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>(Tarr et al., 2015)</td>
<td>Male C57/BL6 mice</td>
<td>IN-93G semi-purified laboratory mouse diet, a modified AIN-93G diet supplemented with 6′SL or a modified AIN-93G diet supplemented with 3′SL 2 weeks</td>
<td>Social Disruption Stressor (SDR)</td>
<td>Prebiotic diminish stressor-induced alterations in colonic mucosa-associated microbiota community structure</td>
</tr>
<tr>
<td>(Mackos et al., 2016)</td>
<td>Male CD-1 mice</td>
<td><em>Lactobacillus reuteri</em> 13 days</td>
<td>Prolonged restraint</td>
<td>Probiotic attenuate the stressor-induced increases in pathogen translocation from the colon to the spleen, elevations in circulating IL-6, and anxiety-like behaviour</td>
</tr>
<tr>
<td>(Galley et al., 2017)</td>
<td>Male C57Bl/6 mice</td>
<td><em>Lactobacillus reuteri</em> 6 days</td>
<td>Social disruption stress (SDR)</td>
<td><em>L. reuteri</em> reduces colonic inflammation, but not microbial community composition</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zareie et al., 2006)</td>
<td>Male Brown Norway rats, <em>Lactobacillus rhamnosus</em>, strain R0011 and <em>Lactobacillus helveticus</em>, strain R0052 (Lacidofil) 17 days</td>
<td>No changes in behaviour and no effect in intestinal barrier function. Luminal bacterial adherence and translocation to the mesenteric lymph nodes reduced.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(García-Rídenas, 2006)</td>
<td>Female Long-Evans rats, <em>Lactobacillus para-casei</em> NCC2461 combined with diet (arachidonic and docosahexaenoic acids, galacto- and fructo-oligosaccharides) 20 days</td>
<td>Intestinal permeability normalized and the growth rate recovery improved and it resulted in increased villus length in small intestine. Diet does not restore intestinal mucin content or microbiota.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gareau, 2007)</td>
<td>Sprague-Dawley female rats, <em>Lactobacillus rhamnosus strain</em> R0011 (95%) and <em>L helveticus</em> strain R0052</td>
<td>It restores normal ion transport and macromolecular permeability in colon.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Group/Strain</td>
<td>Probiotic</td>
<td>Duration</td>
<td>Condition</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>(ait-belgnaoui, 2009)</td>
<td>Female Wistar rats</td>
<td><em>Lactobacillus farciminis</em></td>
<td>14 days</td>
<td>Restraint stress</td>
</tr>
<tr>
<td>(Konturek, 2009)</td>
<td>Rats</td>
<td><em>Escherichia coli Nissle</em></td>
<td>14 days</td>
<td>Restraint stress</td>
</tr>
<tr>
<td>(Agostini, 2012)</td>
<td>Female Wistar rats</td>
<td><em>Bifidobacterium lactis CNCM I-2494</em></td>
<td>15 days</td>
<td>Restraint stress</td>
</tr>
<tr>
<td>Study</td>
<td>Animal Model</td>
<td>Probiotic Strain</td>
<td>Duration</td>
<td>Stressor</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Afifa Ait-Belgnaoui, 2012</td>
<td>Female Wistar rats</td>
<td><em>Lactobacillus farciminis</em></td>
<td>2 weeks</td>
<td>Partial restraint stress</td>
</tr>
<tr>
<td>Takadanohara, 2012</td>
<td>Sprague-Dawley rats</td>
<td><em>Symbiotic preparation</em> containing microbial lysates</td>
<td>10 days</td>
<td>WAS</td>
</tr>
<tr>
<td>Amy R. Mackos, 2013</td>
<td>Male CD-1 mice</td>
<td><em>Lactobacillus reuteri</em></td>
<td>12 days</td>
<td>Prolonged restraint stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silva, 2014</td>
<td>Male Wistar rats</td>
<td><em>Lactobacillus farciminis</em></td>
<td>14 days</td>
<td>WAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Organism</td>
<td>Duration</td>
<td>Treatment</td>
<td>Results</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>(A. Ait-Belgnaoui, 2014)</td>
<td><em>Lactobacillus helveticus</em> and <em>Bifidobacterium longum</em>, C57Bl6 mice</td>
<td>2 weeks</td>
<td>WAS</td>
<td>Plasmatic levels of corticosterone, adrenaline, and noradrenaline in stressed mice decreased. Changes in central neuronal activation and neurogenesis prevented.</td>
</tr>
<tr>
<td>(Takada, 2016b)</td>
<td><em>Lactobacillus casei</em>, Male F344 rats</td>
<td>2 weeks</td>
<td>WAS</td>
<td>It suppresses the increase in plasma corticosterone and the number of CRF-expressing cells.</td>
</tr>
<tr>
<td>(Darbaky, 2017)</td>
<td><em>Lactobacillus rhamnosus</em>, Male Sprague Dawley rats</td>
<td>8 days</td>
<td>Restraint stress</td>
<td>Peripherally and centrally induced visceral hypersensitivity attenuated.</td>
</tr>
<tr>
<td>(Vanhaecke, 2017)</td>
<td><em>Lactobacillus fermentum</em>, Sprague-Dawley rats</td>
<td>15 days</td>
<td>WAS/MS</td>
<td>Permeability in the ileum but not in the proximal colon reduced. Increase corticosterone reduced and exploratory behaviour increased</td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Probiotic Strains</td>
<td>Duration</td>
<td>Effect</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Lee (2017)</td>
<td>Male and female Wistar rats</td>
<td><em>Lactobacillus farcininis</em></td>
<td>10 days</td>
<td>Colonic mucosal mast cell count in females reduced. The mRNA levels of IFNR, TNFA, and IL6 in females reduced.</td>
</tr>
<tr>
<td>Afifa Ait-Belnaoui (2018)</td>
<td>C57BL/6J male mice</td>
<td><em>Lactobacillus helveticus R0052</em> and <em>B. longum R0175</em> (combined and alone)</td>
<td>2 weeks</td>
<td>Both probiotics strains combined reduce the chronic stress-induced visceral hypersensitivity, attenuated of stress hormones, and has a potential effect on GR expression. Each probiotic strain alone are less effective.</td>
</tr>
</tbody>
</table>

**Other interventions (prebiotics, diet)**
<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Species</th>
<th>Diet</th>
<th>Stress</th>
<th>Effects on Corticosterone</th>
<th>Effects on Microbiota</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Burokas, 2017)</td>
<td>Male C57BL/6J mice</td>
<td>fructo-oligosaccharides and galacto-oligosaccharides</td>
<td>3 weeks</td>
<td>Chronic stress-induced corticosterone release reduced.</td>
<td>Chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels normalizing the effects of stress on the microbiota reduced.</td>
</tr>
<tr>
<td>(Wang, 2017)</td>
<td>Male Wistar rats SPF</td>
<td>IMO</td>
<td>14 days</td>
<td>Visceral hyperalgesia repaired intestinal mucosal.</td>
<td></td>
</tr>
<tr>
<td>(Mika, 2017)</td>
<td>Male Fischer 344 rats</td>
<td>Galactooligosaccharide, polydextrose, and the glycoprotein lactoferrin</td>
<td>Inescapable stress</td>
<td>Stress-induced learned helplessness attenuated. Stress-evoked cfos mRNA in the DRN attenuated stress-evoked decreases in mRNA for the 5-HT1A autoreceptor in the DRN and increased basal BDNF mRNA within the prefrontal cortex.</td>
<td></td>
</tr>
<tr>
<td>de Sousa Rodrigues, 2017</td>
<td>Male C57Bl/6 mice</td>
<td>High-fat high-fructose</td>
<td>Predatory stress</td>
<td>Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: WAS: chronic water avoidance stress; MS: maternal separation; SPF: specific pathogen free; IMO: isomalto-oligosaccharides; DRN: dorsal raphe nucleus; GR: glucocorticoid receptors; BDNF: brain-derived neutrophic factor.
Table 2. Effects of stress modulation through microbiota interventions: Evidence from clinical studies.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population</th>
<th>Intervention</th>
<th>Stress Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Allen, 2016)</td>
<td>22 healthy male</td>
<td><em>Bifidobacterium longum</em> 1714</td>
<td>Cold pressor test</td>
<td>Total cortisol output was significantly affected by probiotic</td>
</tr>
<tr>
<td></td>
<td>volunteers</td>
<td>strain 4 weeks</td>
<td>(SECPT)</td>
<td></td>
</tr>
<tr>
<td>(Allen, 2016)</td>
<td>44 healthy male</td>
<td><em>L. Rhamnosus</em> 4 weeks</td>
<td>Cold pressor test</td>
<td>Total cortisol output was significantly affected by probiotic</td>
</tr>
<tr>
<td></td>
<td>volunteers</td>
<td></td>
<td>(SECPT)</td>
<td></td>
</tr>
<tr>
<td>(Papalini et al., 2019)</td>
<td>58 healthy volunteers</td>
<td>Ecologic barrier 28 days</td>
<td>Cold pressor test</td>
<td>Stress-induced working memory performance in DS (digits span) backward that was differentially affected by the probiotics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SECPT)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Intervention</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>(Diop et al., 2008)</td>
<td>Volunteers affected by stress</td>
<td>Probio-Stick (L. acidophilus and B. longum)</td>
<td>Stress-induced gastrointestinal symptoms (VAS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n = 37) or a placebo (n=38)</td>
<td>Placebo (3 weeks)</td>
<td>Improvement of stress-induced gastrointestinal symptoms (abdominal pain, nausea)</td>
<td></td>
</tr>
<tr>
<td>(Kato-Kataoka et al., 2016a,b)</td>
<td>Medical students previous academic examination</td>
<td>Milk fermented with L. casei strain Shirota</td>
<td>Feelings of stress (VAS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=25) or placebo (n=24)</td>
<td>Milk (Placebo) (8 weeks)</td>
<td>Abdominal dysfunction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anxiety (STAI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salivary Cortisol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Others measures indirectly stress-related stress responses.</td>
<td></td>
</tr>
<tr>
<td>(Takada, 2016b)</td>
<td>Medical students previous academic examination</td>
<td>Milk fermented with L. casei strain Shirota</td>
<td>Physical symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Milk (Placebo) (8 weeks)</td>
<td>Physical symptoms were significantly suppressed in the LcS group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anxiety (STAI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physical symptoms present (abdominal, cold symptoms, etc.)</td>
<td></td>
</tr>
<tr>
<td>Study (Author)</td>
<td>Group</td>
<td>Intervention</td>
<td>Outcomes</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>(H. Yang, 2016)</td>
<td>Laryngeal cancer patients scheduled for laryngectomy (n=20)</td>
<td>Probiotic (Clostridium <em>butyricum</em>)</td>
<td>CRF levels and heart rate did not increase before surgery.</td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Other interventions**

<table>
<thead>
<tr>
<th>(Martin, 2009)</th>
<th>Healthy volunteers (n=30)</th>
<th>Daily consumption of 40 g of dark chocolate (14 days)</th>
<th>Anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physiological determinations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>variation of both host and gut microbial metabolism.</td>
</tr>
</tbody>
</table>

HAMA: Hamilton Anxiety Rating Scale; STAI: State-Trait Anxiety Inventory; VAS: Visual Analogue Scale.