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1.INTRODUCTION 

 

1.1.0 Motivation  
 

What is the reason for doing this final degree dissertation?  

 

Quantum Mechanics is one of the most important theories in the last century. Nowadays,              

this theory is ​behind many discoveries in different fields of science. When studying Quantum              

Chemistry, you can discover the most fundamental part of nature and intimate with it. In the                

Quantum Chemistry one can prove that the concept of beauty is linked to that of chaos on                 

many occasions [6]. 

 

This work has started with a quote about other ways to improve science. Scientific theory               

can many times be improved step by step and, after the quantum revolution, this area of                

science has been improved with smalls steps. Smalls steps which together have performed             

a great advance.  

 

To finish this section, I would like to talk about the main question which ​will largely be                 

addressed in this work. Which is the influence of the mathematical methods in modern              

quantum chemistry?  

 

Obviously, Mathematics is the language of science and therefore it is behind all the              

theoretical frameworks and, what is more, they nowadays have a special importance thanks             

to the development of computers and the growing calculation capability they have.  

 

Thus, in order to simulate and understand complex quantum system, new methods are             

becoming increasingly relevant. In this final degree dissertation, the reader will be introduced             

into a mathematical method of approximation which is pivotal in modern quantum chemistry:             

the theory of linear variations built on a basis of Gaussian functions. 
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1.1.1 Objective  
 

This project consists in a exploration about some aspects in quantum chemistry and             

how it can use an approximated method to give solution to some quantum models without               

analytical solution.  

 

To begin with, the reader will be able to know the basis and the background of a                  

Gaussian-software quantum resolution method in this project The reader will also be able to              

deepen in one of the methods of algebraic resolution with most elegant mono electronic              

systems used in quantum mechanics, called factorization method.  

 

Therefore, one of the main objectives in this project is also to get acquainted with some of                  

the basic research methods in chemistry as well as to learn to have a critical view. In                 

general, this project consist in creating a computer programme based on Gaussians and             

variational principle  in order to give solution to some quantum systems.  

  

 
1.2.1 Historic context 
 

Quantum mechanics was born in 1850 with the statement of the black-body radiation             

problem by Gustav Kirchhoff (1824-1887). Yet it was not until 1900 when the German              

physicist Max Planck (1858-1947) introduced a revolutionary ​hypothesis which consists in           

the fact that any energy-radiating atomic system can theoretically be divided into a number              

of  "energy elements" .  

 

Albert Einstein (1879-1955) in 1905, needed to take Max Planck’s hypothesis in order to              

explain the photoelectric effect. Definitely, a new concept was born, a concept which would              

settle the basis of the modern physics and chemistry and this concepts was called quantum               

mechanics. 
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Therefore, a new subatomic world was discovered thanks to this theory. There have been a               

lot of advances from those days unt now, and great scientists have contributed with their               

genius in this field. It is the case of wave mechanics by Schrödinger, the uncertainty principle                

by Heisenberg and the relativistic mechanics and delta notation by Dirac among many             

others.  

 

At that time, as along XX century, the theoretical studies advanced. However, its             

implementation in chemistry problems so as to resolve complex systems like polyelectronic            

atoms or in order to follow the energy mechanism in one reaction had several problems due                

to the great amount of calculations, as well as the time spent. 

 

Thus, a new challenge was born, and to get a solution to this problem a new era started for                   

the computational quantum chemistry in 1970 by some quantum programs such as            

Gaussian,Gamess... 

 

This project is focused in Gaussian software. Thus, the next question that it can be solved                

are the following: 

Who created Gaussian? What is Gaussian?  

 

Gaussian was invented by John Pople [1]. 

John Pople​ (31 October 1925 – 15 March 2004)​ ​was born in ​Burnham-on-Sea​, Somerset, 

At ​the age of twelve he became interested in mathematics. He joined a scholarship at the                

University of Cambridge in 1943, where he graduated in mathematics in 1946 and received              

his doctorate in chemistry in 1951. 

 

He moved to the United States in the decade of 1960 whd for there he lives rest of his life. In                     

1961 he was appointed to the Royal Society of London and in 2003 he was appointed sir by                  

the Queen Elizabeth II of the United Kingdom. Finally, John died on March 15, 2004 at his                 

residence in Sarasota, located in the US state of Florida. 

 

His first contribution was a theory of approximate calculations of molecular orbitals on pi              

bonding systems in 1953. This theory was identical to that developed by Rudolph Pariser              

and Robert Parr in the same year, which is why it was called Pariser-Parr Pople. 
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Interested in quantum chemistry, he developed quantum computing methods, on which he            

based the Gaussian computer programme. Through this type of methods the so-called            

computational chemistry was developed, which allows to investigate the properties of           

molecules in chemical processes. 

 

In 1998, he was awarded with half of the Nobel Prize in Chemistry for the development of                 

computational methods of quantum chemistry. The other half of the prize went to the              

American physicist Walter Kohn for the development of the functional theory of density. 

 

 

1.2.2 Gaussian program.  
 

A fundamental and characteristic feature of Gaussian is that it provides computationally            

orbitals by resorting to the description of complex molecular orbitals by means of the use of                

STO-nG basis functions [5]. The underlying idea is to replace slater orbitals - which are the                

natural solution of hydrogenoid atoms- by a linear combination of Gaussian orbitals providing             

the closest possible solution. For example, a STo-3G basis set:  

 

 

(1.1)(STO G) ₁ ɸ₁ ₂ ɸ₂ ₃ ɸ₃ Ѱ − 3 = C + C + C  

 

Where:  

- (1.2)ɸ₁ e    = N  −α₁ r 2

 

- (1.3)ɸ₂  e     = N  −α₂ r 2  
 

-    (1.4)ɸ₃ e    = N  −α₃ r 2

 

 
 

Where “ , ”​ are coefficient to be optimized variationally.₁C ₂ , ₃C C  

The choice of Gaussian functions, instead of Slater ones, is motivated by the availability of 

analytical integrals, in many of the Hamiltonian matrix elements, as we show in the section 

2.2.1 This renders calculations very efficient.  
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Gaussian is a commercial software used in theoretical chemistry. The programme solves the 

molecular Schrödinger equation based on the theory of molecular orbitals (TOM) from some 

initial parameters, such as the ab initio method type (Hartree-Fock, Möller-Plesset, etc.), 

Functional of Density (DFT) or semi-empirical, (AM1, PM3, CNDO ...), base functions 

(STO-3G, 6-31G, 6-311 + G * ...).  

 

The programme works in cartesian coordinates (indicating the position x, y, z of the atoms of                

the molecule) or in internal coordinates (z-matrix) (distances, angles and dihedrals), and the             

charge and multiplicity calculates the function of the molecular wave and from there a series               

of atomic and molecular properties are obtained (energy of the molecule, optimization of the              

coordinates, electronic density, dipolar moments, quadrupoles, etc.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ​  Degree project                                                                                                   2018/2019    
 
 

7 



 ​   Ezequiel Valero Lafuente              ​                                                              ​  Jaume I University  

 

2. BACKGROUND 

2.1.1 ​Linear variational principle 

 

In this section the reader will be able to know the background behind the method which is                 

going to be used.  

The importance of the variational principle is because of ​only in very few cases the               

Schrodinger equation (2.1) has analytical solution [7]  

  

    ​(2.1)ϕ ϕ  H  
︿

= E  

Where, “ ” ​is a Hermitian operator called Hamiltonian, “ ” is the wavefunction and “E” is   H  
︿

        ϕ        

the eigenvalue. 

This method is based on the variational method [4]. The basis of this method can be written                 

with one theorem.  

 

Theorem: ​The average value of the Hamiltonian calculated with an arbitrary function "Ψ"             

that meets the boundary conditions, is continuous and derivable and is greater than the              

lower eigenvalue of the cited Hamiltonian. 

 

The mathematical expression of the previous theorem is detailed in the following equation: 

 

(2.2)E₀W = <Ѱ/Ѱ>
<Ѱ/Ĥ/Ѱ> ≥   

 

 
Furthermore, this method consist in applying the variation method [4] with the guess             

function. The property of the guess function which makes it useful is that it can be                

approached as a linear combination of linearly independent functions. 

(2.3)i f i Φ = ∑
 

i
c  
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Where   ​is the most approximated function that we wan build with the ​ “ ”​  ​basisΦ if  

functions. And​ “ ”​ ​the variational coefficient which is going to be minimized in order toic  

obtain the solution and​ “ ”​ ​is the basis function which has to satisfy  the boundaryif  

conditions. For a more general solution, it is going to be assumed that the basis functions 

are not orthonormals .< i/f j =  )  ( f > / 1  

 
 
 
Example: 
First of all we are develop to obtain the following expression (2.2). For a simple case in                 

which the function is spanned in a basis of two functions. 

Next, it is necessary to define the following expressions:  

  

  Overlap integral:​ This concept is the scalar product between two functions​ ​. The 

mathematical expression "overlap” is detailed in expression (2.4) 

 

 ​(2.4)jk j/fk i  fk dσS =  < f >  =  ∫
 

 
f  *  

 and we assume that the functions  are real ( ) f i "  " jk jk  S = S  

 

 

To prove this method we going to take two basis functions: f1 , f2 }  {   

 

So, the arbitrary function can be expressed into the following expression:  

(2.5)   ₁ f₁ c₂ f₂ Φ = c +    

 

Once it has the expression of the arbitrary function, the overlap integral ​will result: 
 

/Φ ₁ f₁ c₂  f₂  / c₁ f₁ c₂ f₂ c₁ S₁₁ 2c₁c₂ S₁₂ ₂ S₂₂ < Φ >  =  < c +  +  >  =   2 
+  + c  2

(2.6) 

 

On the other hand, the integral of the Hamiltonian average value will result: 
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 /H  /Φ = ₁ f₁ c₂ f₂ / H   / c₁ f₁ c₂ f₂  c₁  H₁₁ 2c₁ c₂ H₁₂ c₂  H₂₂< Φ
︿

>  < c +  
︿

+  >  =   2 +  +   2

(2.7) 

 

Where, because of the Hamiltonian is an hermitian operator.  

 

 (2.8)jk j / H   / fk k / H   / f j H  kj H =  < f
︿

>  =  < f
︿

>  =   

 

Thus, the energy has the next expression, 

 

 ​ (2.9)E =  
c₁ S₁₁ + 2c₁c₂ S₁₂ +c₂ S₂₂ 2  2

c₁  H₁₁ + 2c₁ c₂ H₁₂ + c₂  H₂₂ 2  2

 

 

Energy will be a function of a coefficients of the basis ( ).E ( c₁, ₂)  E =  c   

 

Thus, since this method consists in finding the best function and the energy that is closer to 

the real, the next step is applying the  minimum condition (  )  in order to find theE/∂ci 0  ∂ =   

best coefficients of the basis functions. So the following equations are the result of deriving 

expression ( 2.9) with respect to the coefficients c₁ and c₂. 

 

- Respect to c1: (2.10)₁ H₁₁ c2 H₁₂ E ( c₁ S₁₁ c₂ S₁₂ )  c +  =  +   

 

- Respect to c2: (2.11)₁ H₁₂ c₂ H₂₂ E ( c₁ S₁₂ c₂ S₂₂ )  c +  =  +   

 

 

Furthermore, the equations (2.12) and (2.13) can be expressed as a homogenous system:  

 

              (2.12)₁ ( H₁₁  S₁₁) c₂ ( H₁₂  S ₁₂ )   c − E +  − E = 0  

               (2.13)₁ ( H₂₁  S₂₁) c₂ ( H₂₂  S₂₂ )  c − E +  − E = 0  

 

And the solutions of this system are  and . If we agrupate this energy from the lowesto  E ₁  E  

to the highest the result is:  

 <  (2.14)o  E ₁  E  
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Where “ ” is the  approximate energy to the fundamental state and “ ” is theo  E ₁  E  

approximate energy to the first excited state.  

 

The method of linear variations can be solved in an alternative way. To do this, we will write 

in a matrix form the system of equations (2.12) and (2.13): 

 

  (2.15) 
 

An the expression (2.15) can be written as:  

 

 (2.16)C SCH = E   

 

 

The expression (2.16) is the matrix representation of the variational linear principle.  

Then, if you multiply on the left the expression (2.16) by the inverse of the matrix  youS""  

obtain:  

 

 (2.17)HC SECS  −1
= S  −1

 

 (2.18)H  C ECS  −1
=   

 

Therefore, we get a matrix equation of eigenvalues. In order to get the solution, we 

diagonalize the matrix “ ”.HS  −1
  

When we diagonalize the previous matrix, we get the eigenvalues and the eigenvectors.  

Thus, the wavefunction for a state “i” is:  

(2.19)   i ₁  f₁ c₂  f₂ Φ = c  (i) +   (i)  
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2.1.2 Useful Properties of Gaussian functions. 
 

The background of useful properties of Gaussian functions [3] consists principally in one 

mathematical function which has many useful  properties such a product rule. In this section, 

we are going to demonstrate the product rule.  

 

 ​As an observation, it should be noted that throughout the following mathematical treatment 

the normalization constant has been omitted to facilitate calculations.  

The gaussian function has the following expression: 

  (2.20)(r a) e  g − R =   −α(r−Ra) 2

 

Where “Ra” is the position in which the gaussian is situated. “ ” is the envelope of theα  

function.  

 

 

Product rule: 
 

The product rule is one of the most useful properties. It states that the product of two 

Gaussians functions, is yet another function displaced with respect to the original ones. 

 

 (2.21)(r a) g(r b)  g(r p) K e   g − R − R = K − R =   −p (r−Rp) 2

 

Where: 

 

-  (2.22) eK =   [−ɑ β/(ɑ+ β)  (Ra−Rb) ]*
 2

 

-   ​(2.23)pR =
ɑ+ β

ɑ Ra +β Rb  

- +  ​(2.24) p = ɑ β  
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Graphic demonstration  
 

Once the product rule is known, in this  section it this rule is going to be demonstrated with 

one simple graph:  

In figure 2.1 the two gaussians functions and their graphics are detailed: 

 

 

 

 

Figure 2.1: ​Two gaussian  functions and their graphics 

                                     g(x) = e −(x+2) 2

 f (x) = e − (x−2) 2

  

 

      
 
  
and then, the product of these two functions is detailed in the figure 2.2 
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Figure 2.2​:Result of gaussian f(x) and g(x) product 

                                                  t(x)  e   = 8 −2 (r−0)   2  
 

                            

 

 

This rule is used in solving analytically the following quantum concepts. It should be noted 

that the following demonstration are based on that of Szabo [3], but considering a 1D system 

instead of a 3D one, and providing more explicit analysis.  

  

Analytical demonstration  
 

First,it has two Gaussian functions, 

 ​(2.25)(r)  f = e −α(r−Ra) 2

 

(2.26)(r)  g = e −β(r−Rb) 2

  

 

Then, it makes the product of the previous functions.  
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(2.27)(r) (r) g(r)  e    k = f = e −α(r−Ra) 2
 −β(r−Rb) 2

 

 

 (2.28)(r)     k = e −α(r−Ra) −β(r−Rb) 2  2

 

 

(2.29)(r)     k = e −α(r −2 r Ra  + Ra )−β(r −2 r Rb + Rb  ) 2  2  2  2

 

 

(2.30)(r)     k = e −αr +2αrRa −Ra α − βr + 2βrRb−βRb 2  2  2  2

 

 

(2.31)(r)     k = e −(α+β)r +2r(αRa +βRb)−( Ra α+ βRb ) 2  2  2

 

 

Thus, it takes into account the exponential part in the expression (2.32)  

 

(2.32)α )r r(αRa Rb) Ra α βRb ) − ( + β  2 + 2 + β − (  2 +   2  

 

We can do some algebraic transformations: 

 

  ​ (2.33)α )r r(αRa Rb) Ra α βRb )− ( + β  2 + 2 + β − (  2 +   2  

 

(2.34) [− α )r r(αRa Rb)]  [Ra α βRb ]1
−(α+β) ( + β  2 + 2 + β − 1

−(α+β)
 2 +   2  

 

  

(2.35)r [2r(αRa Rb)]  [Ra α βRb ]  2 − 1
(α+β) + β + 1

(α+β)
 2 +   2  

 

 ​(2.36)r [2r(αRa Rb)] ( )  [Ra α βRb ] ( )  2 − 1
(α+β) + β +  α+β

αRa+βRb  2 + 1
(α+β)

 2 +   2 −  α+β
αRa+βRb  2  

 

By identifying the first term as the square, we obtain: 

 

 (2.37)[ r ( ) ]   [Ra α βRb ] ( )−   2 −  α+β
αRa+βRb  2 − 1

(α+β)
 2 +   2 +  α+β

αRa+βRb  2  
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Thus, we can rewrite the exponent of the gaussian function as: 

 

(2.38)(r) e  e  k =  − [ r − ( ) ] 2
α+β

αRa+βRb  2   −  [Ra α + βRb ]+ ( )1
(α+β)

 2  2
α+β

αRa+βRb  2  

 

 

Where the first exponential is a function of “r” and the second exponential is a constant then, 

 

(2.39)(r) K e   k =  − [ r − ( ) ] 2
α+β

αRa+βRb  2

 

 

(2.40)(r) K e   k =  − (r − Rp)  2

 

 

With: 

 (2.41)e   K =    −  [Ra α + βRb ]+ ( )1
(α+β)

 2  2
α+β

αRa+βRb  2

 

 

Application of product rule 
 

This rule is used in solving analytically the following quantum concepts. It should be noted 

that in the following demonstrations it has considered a 1D system.  
 

- Overlap integral. ​As we already know from the previous section, the overlap 

mathematical expression between two centers is ./B  < A >  

 ​Hence, ,in this section we are going to resolve these overlap integrals with the gaussian 

product rule: 

 

 ​(2.42)/B  g(r₁ a)  C g(r₁ b) dV< A >  =  ∫
∞

−∞
C − R  * − R   

(2.43)/B  g(r₁ a)   g(r₁ b) r dr₁ < A >  = C  2 ∫
∞

−∞
 − R  * − R  2  

(2.44)/B K (r₁ p) r dr₁ < A >  = C  2 ∫
∞

−∞
g − R  2  
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(2.45)/B K   r dr₁ < A >  = C  2 ∫
∞

−∞
e −p (r₁−Rp) 2

 2  

 

And if we know let and , then₁ p  r = r − R r₁ r  d = d  

(2.46)/B K   r dr < A >  = C  2 ∫
∞

−∞
e −p r 2

 2  

 

The last integral is just , so that) /4π( p
π  3/2

 

 

(2.47)/B )  e< A >  = ( π
(α+β)

 1/2  ((−αβ/(α+β)  Ra−Rb  )| | 
2

  

   (2.48) /B )  e < A >  = ( π
(α+β)

 1/2  ((−αβ/(α+β)  Ra−Rb  )| | 
2

  

 

 

There are other concepts which are important for a quantum system such as the hamiltonian 

of the system. So, we are going to evaluate the hamiltonian. Thus,  we are going to evaluate 

the kinetic energy. The treatment of the potential energy is shown in [3].  

 

- Kinetic energy: ​The mathematical expression of the kinetic energy integral is (in 

atomic units) 

 

 (2.49)/ ∇₁  / B  g(r₁ a)  (− ∇₁  )  C g(r₁ b) dV  < A − 2
1  2 >  = ∫

π

−∞
C − R  *  2

1  2 − R  

Where    (2.50) i j k)  = ( ∂
∂x + ∂

∂y + ∂
∂z   

The kinetic energy can be evaluated in a similar way after applying the operator. Thus, the 

final expression is:  

 

/ ∇₁  / B β/(α ) [3  Ra b ] [π/(α )]  e  < A − 2
1  2 >  = α + β − 2αβ

α+β | − R | 
2

+ β  3/2  [−αβ/(α+β)  Ra−Rb  ]| | 
2

(2.51)  

 

(2.52)/ ∇₁  / B β/(α ) [3  Ra b ] [π/(α )]  e< A − 2
1  2 >  = α + β − 2αβ

α+β | − R | 
2

+ β  1/2  [−αβ/(α+β)  Ra−Rb  ] | | 
2
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3.COMPUTATIONAL METHODS. 
 

3.1.0 Single harmonic oscillator 1D 
Single harmonic oscillator is a quantum vibration system which has an analytical solution. In 

the figure (3.1) the form of the potential of the system are detailed [2]. 

 

  

Figure 3.1​ Form of  one single harmonic oscillator potential 

 

 

In this section, we will obtain the analytical solution of the fundamental state of the single 

harmonic oscillator in 1D. 

 

First of all, we introduce the classical hamiltonian for our system.  

(3.1) k xH  
︿

=  2m
p   2

+  2
1  2   

 

Where the first term refers to kinetic energy and the second term refers to potential energy. 

In order to change into a quantum point of view,we  introduced the following operators:  

 

 (3.2)ħ  p︿ =  − i ∂
∂x   
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 (3.3)x 
︿

= x   

 

Thus, the hamiltonian is:  

 (3.4)  k xH  
︿

= 2 m
−ħ 2 ∂ 2 

 

∂x 2 +  2
1  2   

 

Once we obtain the hamiltonian of the system, the problem is resolved with the Shrödinger 

stationary equation.  

(3.5)φ E φ H  
︿

=   

 

Then, we obtain the differential equation,  

 ​(3.6)    k  x  ] φ E φ [ 2m
−ħ   2 ∂ 2 

 

∂x 2 +  2
1  2 =    

 

In order to resolve the previous differential equation,we are going to proceed with one 

elegant method called factoring method.  

This method is valid for equations that has the structure like:  

(3.7)f  ( x,  ) φ C φ 0
∂x 2

∂ φ 2
  

+  m +  =   

Note that the equation (3.6) can be written such as: 

(3.8)( ) φ ( E ) φ 0
∂x 2

∂ φ 2
  

+  
ħ 2

−m k x 2 +  
ħ 2
2 m =   

 

To get started with the factoring demonstration, the equation (3.6) is rewritten like a:  

 (3.9)  (  ) [  ) (  )    x  ] φ E φ 2
 ħ k

m
 1/2 

− (  ħ  
 k m 1/2  1/2 ∂x 2

∂  
2 

+  ħ 
m   k 1/2  1/2

 2 =  
 

 

 

Next, we are going to make a change of variables in order to eliminate the constants that 

accompany the variable x. This change will be: 

 (3.10) ( )   x  Ɛ =   ħ 
m   k 1/2  1/2  1/2

  

 

Where “ ” is adimensional constant. Ɛ   

Then,  

(3.11)    ∂x
∂  

= ∂  

∂Ɛ  ∂x  
∂Ɛ  
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=  (3.12) ∂x  
∂Ɛ  

  

( )  ħ 
m   k 1/2  1/2  1/2

  

 

So, if we take the derivative (3.12) and we substitute it into the equation (3.11): 

 (3.13)  ( )   ∂x
∂  

= ∂  

∂Ɛ   ħ 
m   k 1/2  1/2  1/2

 

And then,  

(3.14)( )     ∂ 2
  

∂x 2 =   ħ 
m   k 1/2  1/2  1/2 ∂ 2

  

∂Ɛ 2 ∂x  
∂Ɛ      

  

If we take into account the equation (3.12), the expression results: 

 (3.15)( )   ∂ 2
  

∂x 2 =   ħ 
m   k 1/2  1/2   ∂ 2

  

∂Ɛ 2   

 

Once we have the expression (3.15), the Schrödinger equations results:  

(3.16)  (  )  [ Ɛ  ]  φ E φ 2
 ħ k

m
 1/2  2 −  ∂ 2

  

∂Ɛ 2 =    

The element inside square bracket can be expressed in the following way:  

 ​(3.17)  (Ɛ d/Ɛ ) (Ɛ d/Ɛ  ) Ɛ 2 −  ∂ 2
  

∂Ɛ 2 =    −      +    + 1  

Thus, if we take the equation (3.16) and (3.17) we obtain the following expression:  

(3.18)ħ (  )  [ (Ɛ d/Ɛ )  (Ɛ d/Ɛ  ) 1/2]  k
m

 1/2 1
 √2

  −    1
 √2

  +    +    

Now, we are going to define two new operators:  

- Creation operator:  (Ɛ d/Ɛ )b + =  1
 √2

  −      

- Annihilation operator:  (Ɛ d/Ɛ )b  = 1
 √2

  +      

And we are going to apply the following relation:  

 (3.19) w = (  ) k
m

 1/2
 

So, the expression (3.18) changes to:  

 (3.20)ħ w [ b b   ] φ E φ   + +  2
1 =    

 (3.21) w b b φ  E  )  φ ħ  + = ( − 2
ħ w  

        (3.22) w b b φ E´  φ ħ  + =    

 

Where E´  = E − 2
ħ w  
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Once we obtain the Schrödinger equation with the factorial method and with the new creator 

and annihilation operators, we can solve this equation for the fundamental state with the 

lower eigenvalue: 

 (3.23) w b b φo Eo´  φo ħ  + =   

Then, we multiplicate to the left by the operator “b”: 

(3.24) wb b b φo Eo´ bφo ħ  + =   

To  start with the demonstration, it is necessary to know the next commutation rule:  

(3.25)b b ][  + = 1   

This commute rule implies that:  

(3.26) b  b bb  + −   + = 1  

 (3.27) b b bb  + = 1 +   +  

If we carry the expression (3.27) to the expression (3.24):  

 

 (3.28) w(1 b) b φo Eo´ bφo  ħ + b + =   

  (3.29) wb b( b φo )  Eo´  w)( bφo )  ħ  + = ( − ħ  

 

The equation (3.29) presents one paradox if we take into account that “ ” has a positive w  ħ  

value. We have found one state which has less energy than the fundamental state ( )o´  E   

The only way that the expression (3.29) is correct ​and the fact that “ ”​ corresponds to theo´  E  

fundamental state, is that . This conclusion allows us to obtain  “ ”, Indeed,φo 0  b =  o  φ  

 

(3.30)φo  (Ɛ d/Ɛ )φo  0b = 1
 √2

  +    =   

 (3.31)Ɛ φo d(φo)/dƐ  0     +    =   

(3.32)(φo)/φo  d =  − ƐdƐ  
  

 

The differential equation (3.32) has an analytical solution (separable variables), so the 

fundamental state wavefunction results:  

 

       (3.33)o C e  φ =   (−Ɛ /2 ) 2
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 Where “ ” is the normalization constant. C   

This results remark the wavefunction for the fundamental state. It should be noted that the 

form of the wavefunction is the same as a gaussian function. This similarity will allow us to 

obtain solutions in systems that cannot have an analytical solution.  

 

 In order to obtain the energy “ ”​, we take the expression  (3.33)  and we introduce it inEo´    

the equation (3.28):  

 

(3.34)w b b  C e   Eo´ C  e  ħ  +  (−Ɛ /2 ) 2

=   (−Ɛ /2 ) 2

 

(3.35)w (  )  b (Ɛ d/dƐ )  e  Eo´ C e    ħ C
 √2

 +   +     (−Ɛ /2 ) 2

=   (−Ɛ /2 ) 2

(3.36)(  )  b [ Ɛ   e Ɛ  e  ]  Eo´   e    
 √2

ħ w  +    (−Ɛ /2 ) 2

−     (−Ɛ /2 ) 2

=   (−Ɛ /2 ) 2

 

(3.37)(  )  b 0 Eo´  e     
 √2

ħ w  + =   (−Ɛ /2 ) 2

 

 ​(3.38)o´ 0  E =   

Finally, if we introduce the previous result ( = 0) and we introduce it in the expresion (xx)o´  E  

we obtained the energy of the fundamental state:  

  

               (3.39)Eo w/2    = ħ  

 

This result marks the energy of the fundamental state for a single harmonic oscillator.  
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3.1.1 Coupled 1D harmonic oscillators (H.O)  
For a higher number of harmonic oscillator, an algebraic solution like the one in the previous 

section is no longer available. 

  

At this point, it is worth resorting to approximate methods such as the method of linear 

variation described in section 2.2.2. In what follows, we apply the linear variations method 

built on a basis of Gaussian functions to study the low lying energy levels of two and three 

harmonics oscillators coupled.  

 

To this end, we take advantage of the product rule properties described in the section 2.1.2. 

The comparison between single and coupled harmonic oscillator with rearing distance 

between oscillators, will in turn provide basic insight into the formation and dissociation of 

“single-electron” molecules, revealing some of the fundamental concepts that are often 

introduced in Introductory Chemistry textbooks.  

 

These include the formation of bonding and antibonding molecules states, the presence of 

an equilibrium interatomic distance, and the different behaviour of homonuclear and 

heteronuclear molecules..  

 

The mathematical programme which is used in order to get the energies and the 

wavefunctions is detailed in the Annex I.  
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3.1.1.1 Two coupled H.O.s : homo and heteronuclear molecules 
First of all, we consider a quantum system that represents a homonuclear diatomic molecule.  

The hamiltonian of this system has the form:  

 

(3.40) m Min[wa (x a) , x b) ]H  
︿

=  2m
p   2

+  2
1  2 − x  2 ( − x  2  

 

Where:  

- The first term corresponds to kinetic energy and the second term is the potential 

function of the quantum system.  

- “ ” ​and “ ” ​are the quantum confinement of the two atoms and it is representeda  w b  w  

by the frequency of the oscillator.  

- “ ” and “ ” ​are the position where the oscillators are on the axis.a  x b  x   

 Let me remark that in these exemples we are going to work with the atomic units  

( ). , me  ħ = 1  = 1  

 

Homonuclear molecule 
 

Thus, the potential of this system is detailed in the figure (3.2)  

 

 

Figure 3.2:​ Potential of two coupled harmonic oscillators.  
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Where:  

-We choose “ ” ​and “ ” equal to 1 a.u.a  w b  w   

- “ ” and “ ” ​have the value of 2 and -2  respectively.a  x b  x   

 

This potential cannot resolve with the analytical form because the differential equation 

formed by function “Min” can’t be resolved by analytical methods. Thus, in order to find the 

energy and the wavefunction of the system we have used the linear variation principle which 

is explained in section (2.1.2).  

First, the guess wavefunction that we have taken is a linear combination between the 

following functions:  
 

 (3.41)₁ N  eɸ =    −ɑ(x−xa) 2

 

 (3.42)₂ N  eɸ =    −β(x−xb)   2

 

 

Where:  

- “N” is the normalized constant that, for the fundamental state, has the value of:  

(3.43) / πN = 1  1/4
  

-  has the value of: ɑ   

) (3.44)/(2  ɑ = 1 √h/ (m wa)  

-  has the value of: β   

) (3.45)/(2  β = 1 √h /(m wb)  

 

We choose this functions because they provide exact solutions in the limit of distant 

(decoupled) oscillators. 

 

 

So, the guess wavefunction that we take is:  

 

(3.43)C₁ ɸ₁ C₂ ɸ₂  Ψ =  +   
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Once it has the guess function we apply the linear variational principle in matrix form. 

Therefore, we apply the following matrix equation which is explained in section 2.2.2:  

 

(3.44)HC ECS  −1
=   

Furthermore, if we diagonalize the matriz ( ), ​we obtain the coefficients of theHS  −1
 

wavefunctions (C) and the energy (E) of the system.  

 

 

 

 

Results. 
First, we describe the change of behavior in the system when we change the separation               

between the oscillators. In order to get the solution, we take into account that the energy of                 

the fundamental state in one single harmonic oscillator is 0.5 u.a. (expression 3.39) for              

. , w  ħ = 1  = 1   

 

Thus, if ​we perform a representation of the energy according to the separation between the               

two oscillators, this energy has to get the result of 0.5 for a wide separation (high values on x                   

axis). 

This fact is because when the oscillators are widely separated from each other, they have a                

behaviour such as one single harmonic oscillator.  

This concept is demonstrated in figure 3.3 

  ​  Degree project                                                                                                   2018/2019    
 
 

26 



 ​   Ezequiel Valero Lafuente              ​                                                              ​  Jaume I University  

 

Figure 3.3​ Dissociation diagram of diatomic homonuclear molecule formed by harmonic 

oscillators 

 

 

Where the blue function represents the behavior of the excited state and the pink functions 

represents the behavior of the fundamental state.  

 

Figure 3.4 has the expected behaviour of a diatomic molecule dissociation diagram. In the              

limit of long inter-oscillator distance, both states tend towards the energy of two independent              

degenerate state. As the oscillators approach to each other, the ground and excited states              

split energetically.  

 

An equilibrium distance is found around 0.8 bohr radii, where the ground state energy              

reaches 0.296414 hartree, well below the energy of the single harmonic oscillator. For small              

distances the ground state energy increases again because quantum confinement          

increases. Eventually, when the two parabole overlap, the energy of the ground state should              

be 0.5 hartree because that of and independent harmonic oscillator. However, our method             

cannot reach such a limit because the overlap matrix becomes singular.  
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First case. 
 

The first case consists in the fact that when the Gaussian functions are focused in 10 bohr.                 

the representation of the Gaussian functions are shown in figure 3.4. 

Thus, the reader can prove the results of the fundamental state and the excited state as well                 

as the wavefunctions of the system in the table 3.1, and the representation of the               

fundamental state and excited state are detailed  in figure 3.4.  

 

 

 

Figure 3.4:​Gaussian functions centred in 10 and -10​ ​bohr radio 

 

Table 3.1​: Results of the homonuclear coupled harmonic oscillators for a large distance.  

Ground state  

Energy (u.a) 0.5 

Wavefunction    ɸ₁  Ψ = 1  

Excited state 

Energy(u.a) 0.5 

Wavefunction   ɸ₂  Ψ = 1  
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Figure 3.5​:Wavefunction for a ground state (blue) and excited state (pink).  

 

 

 

Remark that this results indicate that for this position, our systems change into a one simple                

harmonic oscillator whose energy is degenerated ​located either in a Gaussian function or in              

the other with a value of 0.5 hartree.  

The wavefunctions in this case are converted into a one Gaussian function. 

 
 
 
 
Second case.  
 

In this case, we going to consider that the position of our system is focused around the                 

equilibrium point.  

The Gaussian functions which are focused in 0.8 and -0.8 bohr are detailed in figure 3.6. 

The results are detailed in table 3.2 and the wavefunctions are detailed in figure 3.7 
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Figure 3.6​:Gaussian functions focused in 0.8 A and -0.8 A. 

 

 

 

Table 3.2​: Results of the homonuclear coupled harmonic oscillators for an equilibrium point. 

Ground state 

Energy (u.a) 0.296414 

Wavefunction  o /   ɸ₁ /   ɸ₂   Ψ = 1 √2 + 1 √2  

Excited state 

Energy(u.a) 0.849167 

Wavefunction 1 /   ɸ₁ 1/   ɸ₂   Ψ = 1 √2 −  √2  
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Figure 3.7​:Representation of ground state (pink) and excited state (blue).  

 

Remark that this results indicate that for this position, our systems change and the              

eigenvalues stop being degenerate. It obtains two different energies, the lower corresponds            

to the fundamental state and the higher corresponds to the excited state.  

 

The wavefunctions in this case are converted into two different linear combination Gaussian             

function. The function which represents the ground state has not any node whereas the              

wavefunction of excited state has one in “ ”. The nodes mean that the probability to find        x = 0          

the particle in this position can’t exist. Another conclusion is that the excited state present               

symmetry as long as the Hamiltonian does.  

 
Optimized of frequency  
 
Now, we are going to study ​how the system behaves when the frequency parameter is               

optimized . For each separation, we will optimize the frequency of the oscillator and then, we                

represent one curve such a figure 3.4 in order to prove the changes that there are when we                  

optimized the parameter and when we don't do it (3.8) 
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Figure 3.8​:​Dissociation diagram of diatomic homonuclear molecule formed by harmonic 

oscillators  with the frequency optimization (blue) and with w=1 (pink). 

.  
 

As can bee seen  in  figure 3.8, the behaviour of the curve is almost the same for a “wa” and 

for the best “w” but, in the case of frequency optimization, the  

 

Therefore, in figure 3.9 can be observed that  the best value of the frequency is around 1 

with little changes near to  equilibrium point.  
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Figure 3.9​:​Value of optimization frequency depending on the distance.  

 

Figure 3.9 has the expected the optimization value of “w” depending on the distance. Can be                

conclude that the value of the best “w” changing near to the equilibrium point because of the                 

harmonic oscillators start to overlap, whereas for a huge separation, the best “w” is 1 due to                 

the harmonic oscillators are separated and they adopt the energy of the one single harmonic               

oscillator.  
 

Heteronuclear molecule:  
 

In this system we take into account that the molecule is heteronuclear.  

The difference between the heteronuclear and homonuclear molecule is that in the            

heteronuclear molecule the frequencies (“wa” and “wb” ) ​which marks the curvature of the              

potential, and therefore the quantum confinement for each particle is different.  

The mathematical treatment to show this relation is the following: 
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 ​(3.45)a(hetero)   wa(homo)  w = n  

 Where “n” is a positive scalar number.  

 ​(3.46) w = √ k
m  

 ​(3.47)mk = w   2
 

 ​(3.48)a(homo) wa(homo) mk =   ·2  

 ​(3.49)a(hetero) n wa(homo)) mk = (  ·2  

 ​(3.50)ka(homo)
ka(hetero) =  wa(homo) 2

(n wa(homo))   2  

 

  ​(3.51)ka(homo)
ka(hetero) = 1

n   2  

 

(3.52)a(homo)  ka(hetero)  k = 1
n   2  

 

Thus, with the expression (3.52) it has been demonstrated that when you change the              

frequence, the force constant and therefore the curvature of potential changes as well. 

 

The conclusion that we can get is that when the frequency is higher, the force constant and                 

the quantum confinement is also higher.  

In this example it has considered that  u.a.wa"  , wb"  " = 2 " = 1  

In this case, it takes into account that the normalization constant of the gaussian is different.  

Thus, in this case the constant of the gaussian wavefunctions are:  

 

(3.53)₁ )N = ( π
2ɑ  1/4

 

(3.54)₂ )N = ( π
2β  1/4

 

 

 

Thus, the representation of potential in this case is detailed in figure 3.10 
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Figure 3.10 :​ Potential heteronuclear molecule  

 

Remark that the Gaussian functions are equal to functions (3.41) and (3.42) but with              

different value of frequences.  

 

Therefore, in heteronuclear molecule we also considered two cases, when the oscillators are             

separate with a huge distance and near to equilibrium point. In the figure 3.11 the behaviour                

of the system is detailed. 

 

Figure 3.11: ​Dissociation diagram of diatomic heteronuclear molecule formed by harmonic 

oscillators 
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Figure 3.11 has the expected behaviour of a heteronuclear diatomic molecule dissociation            

diagram. The difference between homonuclear and heteronuclear dissociation is that in the            

limit of long inter-oscillator distance, the  heteronuclear system is not degenerate. 

 

An equilibrium distance is found in the same radii, but the ground state is less stabilized than                 

the homonuclear molecule (0.491225 hartree) because the quantum confinement increases. 

 

Thus, we study the system for a large distance and for an equilibrium point.  

The guess Gaussian functions which are centred in 10 and -10 are detailed in figure 3.12. 

The results are detailed in table 3.3 and the wavefunctions in figure 3.13. 

 

Figure 3.12:​Gaussians functions for a 10 bhor.  

 

Table 3.3​: Results of the heteronuclear coupled harmonic oscillators for a large distant. 

Ground state 

Energy (u.a) 0.5 

Wavefunction  o  ɸ₂   Ψ =   

Excited state 

Energy(u.a) 1 

Wavefunction ₁  ɸ₁  Ψ =   
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Figure 3.13: ​Wavefunction of ground state (pink) and excited state (blue) for a 10 bhor. 

 

 

So the linear combination is the own function focused in “xa” and “xb” . The energy of the                  

fundamental state is 0.5 hartree whereas the energy of the excited state is 1 hartree. 

 

 
Second case  
In this case, we going to consider that the position of our system is focused around the                 

equilibrium point.  

The gaussian functions which are focused in 1.5 and -1.5 (bohr) are detailed in figure 3.14 

The results are detailed in table 3.4 and the wavefunctions are detailed in figures 3.15. 
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Figure 3.14:​Gaussians functions near to the equilibrium point  

 

 

 

 

 

Table 3.4​: Results of the heteronuclear coupled harmonic oscillators for an equilibrium point. 

Ground state 

Energy (u.a) 0.491225 

Wavefunction  ₀ 0.993692  ɸ₁ .112142 ɸ₂  Ψ =  + 0  

Excited state 

Energy(u.a) 0.984896 

Wavefunction ₁ .987391 ɸ₁ .1583  ɸ₂   Ψ = 0 − 0  
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Figure 3.15​:Representation of wavefunction for a ground state (blue) and excited state 

(pink) around the equilibrium point.  

 

As we can see, the node persists but the symmetry about the ​antisymmetric plane has been                

broken. 
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3.1.1.2 Three coupled H.O. : Trinuclear molecules.  
 

In this section another quantum system is going to be explored. This quantum system              

represents a trinuclear molecule. Thus, in this case the quantum confinement, the            

hamiltonian of the system and the potential are different.  

 

First, the study of the hamiltonian is this one:  

It has another harmonic oscillator in order to describe the third atom. Therefore, the              

hamiltonian of the system is the following:  

 

(3.55) m Min[wa (x a) , b (x b) , c (x c) ]H  
︿

=  2m
p   2

+  2
1  2 − x  2 w  2 − x  2 w  2 − x  2  

 

Where:  

- “ ​are the quantum confinement of the third atom and it represents by thec"  w               

frequency of the oscillator.  

- “ ” ​are the position where  the  third harmonic oscillator are on the axis.cx   

 

 

 

In this case it is going to be considered that the frequency of the three harmonic oscillators                 

are the same and equal to 1.  

Then, the potential of the quantum system can be represented by the figure 3.16 

 

 

Figure 3.16​: Three harmonic oscillator coupled  
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Then, in this quantum system the arbitrary gaussians wavefunctions are:  

 

 

 ​(3.56)₁ N₁ eɸ =    −ɑ(x−xa)   2

 

 ​(3.57)₂ N₂ eɸ =   −β(x−xb)   2

 

 ​(3.58)₃ N₃ eɸ =   −γ(x−xc) 2

 

 

 

Where:  

- “ ”, ”​ is the normalized constant that for the fundamental state and their valueN₁   N₂  "  

is shown in the expressions ( 3.53) and (3.54)  

 

- and are detailed in expressions (3.44) and (3.45).α"  " β"  "   

 

-  has the value of:γ"  "   

 (3.58)γ = 1
2 √ h/ (m wc) 

 

and, 

  ​(3.59)₃ )N = ( π
2γ  1/4

 

 

 

Furthermore, the next step is to follow the behaviour of the quantum system depending on 

the separation of the harmonic oscillators.  
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 ​Figure 3.17​:Representation of the three harmonic oscillators behaviour.  

 

 

Thus, on the one hand, in the figure 3.17 it can be observed that for a large distance the                    

system obtains the value of the fundamental state for one single harmonic oscillator (0.5              

hartree)  and that the three states are degenerate. 

 

On the other hand, when the harmonic oscillators approach one to each others the quantum               

confinement and the potential affect the system and the degenerate changes into a one              

bonding state, one nonbonding state and one antibonding state with different energies.  

 

In order to study the three harmonic oscillators coupled, they can be studied when the               

degeneracy has been broken. Thus, the energy and the wavefunctions of the different states              

are shown in the table 3.5 and in the figure 3.18 respectively. 
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Table 3.5​: Results of the three harmonic oscillators coupled  

Bonding state  

Energy (u.a) 0.390129 

Wavefunction  ₀ .500232  ɸ₁ .706776 ɸ₂ .500236 ɸ₃  Ψ = 0 + 0 + 0  

Non bonding state 

Energy(u.a) 0.500199 

Wavefunction ₁ 0.707109  ɸ₁ .707105 ɸ₃  Ψ =  − 0  

Antibonding state 

Energy (u.a) 0.648102 

Wavefunction  ₂ 0.499801 ɸ₁ .70739 ɸ₂ .499799 ɸ₃  Ψ =  + 0 − 0  

 

 

The wavefunctions of the bonding state, non bonding state and antibonding state are 

detailed in the figures 3.18. 
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 ​Figure 3.18​:Wavefunction of bonding state (blue), non bonding state (pink) and antibonding 

state (brown).  

 

 

 

 

Therefore, it can be seen that the bonding state has not any node, in the non bonding state                  

there is one node and in the antibonding state there are two nodes. The increasing number                

of nodes with energy is consistent with the properties of one-dimensional systems in             

Quantum Mechanics [2] 

 

To sum up, it can concluded that when one oscillator is added, the quantum system is                

perturbed and the behaviour of the molecule is different. Can be concluded also that for a                

two H.O.s they are two states (ground state and excited state) while for a three H.O.s there                 

are three states ( bonding, non bonding and antibonding).  
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4.CLOSING REMARKS  
 

Once the background, the computational programme and the results have been exposed, it             

can be concluded that the project aimed at:  

 

- Knowing the importance and the historical context of the Gaussian method, as well             

as the history of its creator Jhon People and his research group.  

 

- Understanding the mathematical foundation used in many computational quantum         

systems. This background consist in a quantum method called linear variational,           

which is used in order to resolve systems that can’t be solved by analytical methods,               

as well as in the property of the Gaussian functions and how it can be applied in                 

modern Quantum Chemistry. 

 

- Knowing the behaviour of the diatomic and triatomic molecule with harmonic           

oscillator couples.  

 

- Knowing the basis of the mathematical programmation as well as convert the            

theoretical foundations into an operational programme. 

 

- Improving my knowledge in quantum chemistry as well as learning new concepts            

such as the factoring method.  

 

 

Therefore, I can conclude that after these months learning and focusing on some aspects of               

quantum chemistry, I expose that this science is brilliant, and also that the theoretical              

chemistry and the scientific challenges of today are very close to each other. 
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7 ANNEX 
 

Annex I. Mathematica codes.  

 

 A.1.1 Three H.O.s coupled 1D  
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A.1.2 Two H.O.s coupled  
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A.1.3 Frequency optimization  
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