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THE UNIVERSAL ZETA FUNCTION FOR CURVE

SINGULARITIES AND ITS RELATION WITH GLOBAL ZETA

FUNCTIONS

JULIO JOSÉ MOYANO-FERNÁNDEZ

Abstract. The purpose of this note is to give a brief overview on zeta func-
tions of curve singularities and to provide some evidences on how these and
global zeta functions associated to singular algebraic curves over perfect fields
relate to each other.

1. Introduction

1.1. Let X be a complete, geometrically irreducible, singular algebraic curve
defined over a perfect field k; from now on we will refer to such a curve simply as
‘algebraic curve over k’ . Let K be the field of rational functions on X. Extending
previous works of V. M. Galkin and B. Green—and based on the classical results
of F. K. Schmidt [23] for nonsingular curves—K.O. Stöhr (cf. [25], [26]) managed
to attach a zeta function to X for finite k in the following manner: If OX is the
structure sheaf of X, he defined the Dirichlet series

ζ(OX, s) :=
∑

a�OX

q−sdeg a, s ∈ C with Re(s) > 0,

where the sum is taken over all positive divisors of X, and deg ( · ) denotes the
degree of those divisors. Observe that the change of variables T = q−s allows to
consider the formal power series in T

Z(OX , T ) =
∞∑

n=0

#({positive divisors of X of degree n}) · T n.

Moreover, Stöhr considered local zeta functions, i.e., zeta functions attached to
every local ring OP of points P at X of the form

Z(OP , T ) :=
∑

a⊆OP

T deg a =

∞∑

n=0

#({positive OP−ideals of degree n}) · T n.

This series extends previous definitions by Galkin [12] and Green [13]. Further-
more, the Euler product formula for the formal power series yields the identity

Z(OX , T ) =
∏

P∈X

Z(OP , T ),
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which actually establishes a link between the local and global theory. Every local
factor Z(OP , T ) splits again into factors

Z(OP ,OP , T ) =
∞∑

n=0

#({principal integral O−ideals of codimension n}) · T n

which are determined by the value semigroup of OP (see §2.1 for the definition
of this semigroup) if the field is big enough, as Zúñiga showed in [29].

1.2. On the other hand, when studying the Gorenstein property of one-dimensio-
nal local Cohen-Macaulay rings, Campillo, Delgado and Kiyek [10, (3.8)] observed
the existence of a Laurent series—a polynomial in their situation—attached to
those rings, and satisfying a functional equation in the case of Gorenstein rings.
Further investigations by Campillo, Delgado and Gusein-Zade [2]–[8] led to the
definition of a Poincaré series associated to a complex curve singularity as an
integral with respect to the Euler characteristic (se also O. Viro [28]). They even
considered integration with respect to an Euler characteristic of motivic nature
and so they introduced the notion of generalized Poincaré series of a complex
curve singularity [9].

1.3. In the spirit of the preceding paragraphs, the author showed in his the-
sis [17] (see also the joint paper with his advisor Delgado [11]) that the fac-
tors Z(OP ,OP , T ) coincide essentially with the generalized Poincaré series of
Campillo, Delgado and Gusein-Zade, under a suitable specialization for finite
fields (see §3.7 below). These ideas have also provided some feedback: for in-
stance Stöhr achieved a deeper insight into the nature of the local zeta functions
(see [27], and [16] together with his student J.J. Mira).

1.4. The key ingredient that allows to relate those different formal power series
is the universal zeta function for a curve singularity defined by Zúñiga and the
author in [22]: for example, the local zeta functions and Poincaré series mentioned
above are specializations of this universal zeta function. After some preliminaries,
we devote Section 3 to describe this series. Moreover, we claim that one may
establish the local-global behaviour explained in §1.1 for curves defined over non-
finite fields. This conjectural behaviour has already shown some evidences in
particular cases; see e.g. the theorem in Section 4.

2. Preliminaries and notations

2.1. Consider the normalization π : X̃ → X of an algebraic curve X over k, and
let O = OP := OP,X be the local ring of X at P . For the sake of simplicity we
will assume the ring O to be complete.

It is π−1(P ) = {Q1, . . . , Qd} and so the corresponding local rings OQi
are

discrete valuation rings of K over O. The value semigroup associated to O is
defined to be

S(O) := {v(z) : z nonzero divisor in O} ⊆ Nd;

here v(z) = (v1(z1), . . . , vd(zd)), where each vi stands for the valuation associated
with OQi

; we write S for this semigroup from now on. Let c = c(S) denote the
conductor of S, i.e. the smallest element v ∈ S such that v +Nd ⊆ S. Moreover,
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O× denotes the group of units of O. Further details here and in the sequel can
be checked in [22] and the references therein.

2.2. We say that the ring O is totally rational if all rings OQi
, for i = 1, . . . , d

have k as a residue field.

2.3. The integral closure of O in K/k is Õ = ÕP = OQ1
∩ . . . ∩ OQd

. We

write Õ× for its group of units. The singularity degree δP of Õ is defined as
δP = δ := dimk Õ/O < ∞ (see e.g. [24, Chapter IV]).

2.4. For n ∈ S we set

In := {I ⊆ O | I = zO, with v(z) = n} ,

and for m ∈ N,

Im :=
⋃

n∈S
‖n‖=m

In,

where ‖n‖ denotes the sum of the components of the vector n = (n1, . . . , nd) ∈ Nd.

2.5. In the category Vark of k-algebraic varieties, we define the Grothendieck
ring K0(Vark), which is the ring generated by symbols [V ] for V ∈ Vark, with the
relations [V ] = [W ] if V is isomorphic to W , [V ] = [V \ Z] + [Z] if Z is closed
in V , and [V ×W ] = [V ][W ]. We write L := [A1

k] for the class of the affine line,
and Mk := K0(Vark)[L

−1] for the ring obtained by localization with respect to
the multiplicative set generated by L.

2.6. It is possible to associate to In resp. Im well-defined classes in the Grothen-
dieck ring [22, Section 5]; those classes will be denoted by [In] resp. [Im]. This
allows to attach to the local ring O the zeta functions

Z (T1, . . . , Td,O) :=
∑

n∈S [In]L
−‖n‖T n ∈ Mk[[T1, . . . , Td]],

where T n := T n1

1 · . . . · T nd

d , and Z (T,O) := Z (T, . . . , T,O).

2.7. Definition. Consider an algebraic curve X over k. If k has characteristic
p ≥ 0, then we say that k is big enough for X if for every singular point P in
X the following two conditions hold: 1) the ring O is totally rational and 2)

Õ×/O× ∼= (Gm)
d−1 × (Ga)

δ−d+1, with Gm = (k×, ·) and Ga = (k,+).

Note that the condition ‘k is big enough for X’ is fulfilled when p is big enough.

3. The universal zeta function for curve singularities

3.1. For k = C, we consider a semigroup S ⊆ Nd such that S = S (O). Moreover,
for n ∈ S set

In (U) := (U − 1)−1 U‖n‖+1 ∑
I⊆[d]

(−1)#(I) U− dimk

(
O/{z∈O:v(z)>n+1I}

)
,

for an indeterminate U , and where [d] := {1, 2, . . . , d}, and 1I is the d-tuple
with the components corresponding to the indices in I equal to 1, and the other
components equal to 0.

The notation In (U) is appropriate, since that expression coincides with [In]
when U specializes to L, cf. [22, Section 5].
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3.2. Let c = (c1, . . . , cd) be the conductor of the semigroup S, cf. §2.1. Let
J := {1, . . . , r} ⊆ [d], and let m ∈ Nd be such that c > m, i.e., ci > mi for all
i ∈ [d]. For a fixed ∅ ( J ( [d], set rJ := #J and

BJ := {m ∈ NrJ : HJ,m 6= ∅},

where HJ,m := {n ∈ S : nj ≥ cj if j ∈ J, and nj = mj otherwise}.

Definition We define the universal zeta function Z (T1, . . . , Td, U, S) associated
with S to be

∑
n∈S

06n<c

In (U)U−‖n‖T n +
∑

∅(J(I0

∑
m∈BJ

(U − 1)U‖c‖−δ−1IfJ (m) (U)U−‖c‖−‖fJ (m)‖×

×
T fJ (m)

rJ∏
i=1

(1− U−1Ti)

+
(U − 1)d−1 U δ−d+1U−‖c‖T c

d∏
i=1

(1− U−1Ti)

,

where fJ(m) = (c1, . . . , crJ , mrJ+1, . . . , md) ∈ S, with mi < ci, rJ + 1 6 i ≤ d,
and 1 6 rJ < d.

3.3. Observe that this universal zeta function is completely determined by S.
The adjective universal applied to this zeta function will be clear after the follo-
wing paragraphs.

3.4. The generalized Poincaré series Pg(T1, . . . , Td) of Campillo, Delgado and
Gusein-Zade ([9]; see also [10], [11]) as an integral with respect to an Euler char-
acteristic of motivic nature is very close to the zeta function Z(T1, . . . , Td,O) of
§2.6, and therefore to the universal zeta function via the specialization U = L:

Proposition. If S = S(O) and k is big enough for Y , then

Z(T1, . . . , Td,O) = Lδ+1Pg(T1, . . . , Td) = Z (T1, . . . , Td, U, S) |U=L.

3.5. In addition, a certain specialization of the universal zeta function coincides
with the zeta function of the monodromy transformation of a reduced plane curve
singularity acting on its Milnor fibre, as we briefly explain now.

Definition. Let (X, 0) ⊆ (C2, 0) be a reduced plane curve singularity defined
by an equation f = 0, with f ∈ O(C2,0) reduced. Let hf : Vf → Vf be the
monodromy transformation of the singularity f acting on its Milnor fiber Vf .
The zeta function of the monodromy hf is defined to be

ςf (T ) :=
∏

i>0

[
det(id− T · (hf)∗|Hi(Vf ;C))

](−1)i+1

.

A result of Campillo, Delgado and Gusein-Zade ([2, Theorem 1]) allows us to
prove:

Theorem. Let k = C. Then for every O = O(C2,0)/ (f), with f ∈ O(C2,0) reduced,
and for every S = S (O), we have

ςf (T ) = Z (T1, . . . , Td, U, S) | T1 = . . . = Td = T
U = 1

.
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3.6. In [29] Zúñiga introduced a Dirichlet series Z(Ca(X), T ) associated to the
effective Cartier divisors on an algebraic curve X defined over k = Fq, which
admits an Euler product of the form

Z(Ca(X), T ) =
∏

P∈X

ZCa(X)(T, q,OP,X),

with ZCa(X)(T, q,OP,X) :=
∑

I⊆OP,X

T dimk(OP,X/I), where I runs through all the prin-

cipal ideals of OP,X . In addition, ZCa(X)(T, q,OP,X) = Z(T,OP,X), cf. §2.6.

Observe that this zeta function is nothing but the zeta function Z(O,O, T )
appearing as a local factor in the Stöhr zeta function, cf. Section 1.

3.7. Remark. In the category of Fq-algebraic varieties, [·] specializes to the
counting rational points additive invariant #(·). We write #(Z (T1, . . . , Td,O))
for the rational function obtained by specializing [·] to #(·). From a computa-
tional point of view, #(Z (T1, . . . , Td,O)) is obtained from Z (T1, . . . , Td,O) by
replacing L by q.

3.8. Theorem. Let k = Fq and let Z (T1, . . . , Td, U, S) be the universal zeta
function for S. Moreover, let X be an algebraic curve defined over k, and let
OP,X be the (complete) local ring of X at a singular point P . Assume that k is
big enough for X and that S = S

(
OP,X

)
.

(1) For any O = O(C2,0)/ (f), with f ∈ O(C2,0) reduced, and S = S(O),

ZCa(X)

(
q−1T, q,OP,X

)
= #

(
Z
(
T1, . . . , Td,OP,X

))

= Z
(
T1, . . . , Td, U, S

)
| T1 = . . . = Td = T
U = q

.

In particular ZCa(X)

(
q−1T, q,OP,X

)
depends only on S. Moreover, if X is plane,

then ZCa(X)

(
q−1T, q,OP,X

)
is a complete invariant of the equisingularity class of

OP,X .
(2) For any O = O(C2,0)/ (f), with f ∈ O(C2,0), it holds that

ZCa(X)

(
q−1T, q,OP,X

)
|q→1= ςf(T ).

4. Some connections between local and global zeta functions

4.1. For a smooth algebraic variety Y defined over a field k, M. Kapranov defined
a zeta function as the formal power series in an indeterminate u

ζmot,Y (u) =

∞∑

n=0

[Y (n)]un ∈ K0(Vark)[[u]],

where Y (n) stands for the n-fold symmetric product of Y (cf. [14, §1]). (For
instance, if k = Fq, then one obtains the usual Hasse-Weil zeta function of Y ,
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cf. §3.7). When Y is a curve, Baldassarri, Deninger and Naumann introduced in
[1] a two-variable version of the Kapranov zeta function, namely

Zmot,Y (t, u) =
∑

n,ν>0

[Picnν ]
uν − 1

u− 1
tn ∈ K0(Vark)[[u, t]],

where the algebraic k-scheme Picnν = Picn>ν \Pic
n
>ν+1 (with Picn>ν being the closed

subvariety—in the Picard variety of degree n line bundles on Y —of line bundles
L with h0(L) > ν) defines a class in K0(Vark).

4.2. The connections between the universal zeta function and the motivic zeta
functions of Kapranov and Baldassarri-Deninger-Naumann are being currently
investigated by A. Melle, W. Zúñiga and the author; we believe that the zeta
functions discussed in the previous sections are factors of motivic zeta functions
of Baldassarri-Deninger-Naumann type for singular curves (as mentioned before,
this is known when k = Fq). In order to give some evidence supporting this belief,
this note will be finished by stating the relation between local and global zeta
functions in a particular situation.

The context will be the one of a modulus: Following Serre [24], let k be an
algebraically closed field, and let C be an irreducible, non-singular, complete
algebraic curve defined over k. If F is a finite subset of C, a modulus m supported
on F is defined to be the assignment of an integer nP > 0 for each point P ∈ F ;
this is sometimes identified with the effective divisor

∑
P nPP .

4.3. It is possible to attach a curve to m starting from C, essentially by “placing”
the points in F all together into one (see again [24]). The resulting singular curve
Cm has then this point as its only singularity. It holds the following

Theorem. Let Cm be a curve arising from a modulus m supported on a finite set
of points of a curve C as above, and let P be its only singular point. Furthermore,

let π : C̃m → Cm be the normalization morphism. Then

Zmot,Cm
(L−1T,L) = Zmot,C̃m

(L−1T,L)

♯(π−1(P ))∏

i=1

(1− L−1T ) · Z(T,OP ).

The proof of this statement will appear in a forthcoming paper.
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