
For Peer Review

Improving the Management Efficiency of GPU Workloads in
Data Centers through GPU Virtualization

Journal: Concurrency and Computation: Practice and Experience

Manuscript ID Draft

Editor Selection: Special Issue Submission

Wiley - Manuscript type: Special Issue Paper

Date Submitted by the
Author: n/a

Complete List of Authors: Iserte, Sergio; Universitat Jaume I
Prades, Javier; Technical University of Valencia, Department of Computer
Engineering
Silla, Federico; Technical University of Valencia, Department of Computer
Engineering
Reaño, Carlos; Queen's University Belfast, School of Electronics,
Electrical Engineering and Computer Science

Keywords: CUDA, HPC, virtualization, InfiniBand, rCUDA, Slurm

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Improving the Management Efficiency of GPUWorkloads in
Data Centers through GPU Virtualization

Sergio Iserte*1 | Javier Prades2 | Carlos Reaño3 | Federico Silla2

1Dpto. de Ingeniería y Ciencia de los
Computadores, Universitat Jaume I, Castellón
de la Plana, Spain

2Departamento de Informática de Sistemas y
Computadores, Universitat Politècnica de
València, València, Spain

3School of Electronics, Electrical Engineering
and Computer Science, Queen’s University
Belfast, Belfast, UK

Correspondence
*Sergio Iserte, Dpto. de Ingeniería y Ciencia de
los Computadores, Universitat Jaume I,
Castellón de la Plana, Spain. Email:
siserte@uji.es

Abstract
Graphics Processing Units (GPUs) are currently used in data centers to reduce the execution time

of compute-intensive applications. However, the use of GPUs presents several side effects, such

as increased acquisition costs as well as larger space requirements. Furthermore, GPUs require a

non-negligible amount of energy even while idle. Additionally, GPU utilization is usually low for

most applications.

In a similar way to the use of virtual machines, using virtual GPUs may address the concerns

associated with the use of these devices. In this regard, the remote GPU virtualizationmechanism

could be leveraged to share the GPUs present in the computing facility among the nodes of the

cluster. This would increase overall GPU utilization, thus reducing the negative impact of the

increased costs mentioned before. Reducing the amount of GPUs installed in the cluster could

also be possible.

However, in the same way as job schedulers map GPU resources to applications, virtual GPUs

should also be scheduled before job execution. Nevertheless, current job schedulers are not able

to deal with virtual GPUs. In this paper we analyze the performance attained by a cluster using

the rCUDA middleware and a modified version of the Slurm scheduler, which is now able to

assign remote GPUs to jobs. Results show that cluster throughput, measured as jobs completed

per time unit, is doubled at the same time that total energy consumption is reduced up to 40%.

GPU utilization is also increased.

KEYWORDS:
CUDA; HPC; virtualization; InfiniBand; data centers; Slurm; rCUDA; GPU

1 INTRODUCTION

The use of GPUs (Graphics Processing Units) has become a widely accepted way of reducing the execution time of applications. The massive
parallel capabilities of these devices are leveraged to accelerate specific parts of applications. Programmers exploit GPU resources by off-loading
the computationally intensive parts of applications to them. In this regard, although programmers must specify which parts of the application are
executed on the CPU and which parts are off-loaded to the GPU, the existence of libraries and programming models such as CUDA (Compute
Unified Device Architecture) 1 or OpenCL (Open Computing Language) 2 noticeably ease this task. The net result is that these accelerators are used
to significantly reduce the execution time of applications from domains as different as data analysis (Big Data) 3, chemical physics 4, computational
algebra 5, image analysis 6, finance 7, and biology 8 to name only a few.

Many current data centers leveraging GPUs typically include one or more of these accelerators in every node of the cluster. Figure 1 shows an
example of such a deployment, composed of n nodes, each of them containing two CPU sockets and one GPU. The example in Figure 1 might be a

Page 1 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2 Sergio Iserte et al

Interconnection Network

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

Network

GPU

PC
Ie

CPU

CPU RAM

RAM

node nnode 2 node 3node 1

FIGURE 1 Example of a GPU-accelerated cluster.

representation of a typical cluster configuration composed of n SYS1027-TRF Supermicro servers interconnected by an FDR InfiniBand network.
Each of the servers in Figure 1 may include, for instance, two Xeon E5-2620 v2 processors and one NVIDIA Tesla K20 GPU. However, the use
of GPUs in such a deployment is not exempt from side effects. For instance, let consider the execution of an MPI (Message Passing Interface)
application which does not require the use of GPUs. Typically, this application will spread across several nodes of the cluster flooding the CPU
cores available in them. In this scenario, the GPUs in the nodes involved in the execution of such an MPI application would become unavailable
for other applications because all the CPU cores in those nodes would be busy. In other words, the execution of non-accelerated applications in
some nodes may prevent other applications from making use of the accelerators installed in those nodes, forcing those GPUs to remain idle for
some periods of time. The consequence will be that the initial hardware investment will require more time to be amortized whereas some amount
of energy is wasted because idle GPUs still consume some power1.

Another important concern associated with the use of GPUs in clusters is related to the way that workload managers such as Slurm 9 perform
the accounting of resources in a cluster. These workload managers use a fine granularity for resources such as CPUs or memory, but not for GPUs.
For instance, workload managers can assign CPU resources in a per-core basis, thus being able to manage a shared usage of the CPU sockets
present in a server among several applications. This per-core assignment increases overall CPU utilization, speeding up the amortization of the
initial investment in hardware. In the case of memory, workload managers can also assign, in a shared approach, the memory present in a given
node to the several applications that will be concurrently executed in that server. However, in the case of GPUs, workload managers use a per-
GPU granularity. In this regard, GPUs are assigned to applications in an exclusive way. Therefore, a given GPU cannot be shared among several
applications even in the case that this GPU has enough resources to allow the concurrent execution of those applications. This per-GPU assignment
causes that, in general, overall GPU utilization is low because few applications present enough computational concurrency to keep GPUs in use all
the time.

In order to address these concerns, the remote GPU virtualization mechanism could be used. This software mechanism allows an application
being executed in a computer which does not own a GPU to transparently make use of accelerators installed in other nodes of the cluster. In other
words, the remote GPU virtualization technique allows physical GPUs to be logically detached from nodes. This allows that decoupled (or virtual)
GPUs are concurrently shared by all the nodes of the computing facility. Furthermore, given that the remote GPU virtualization mechanism allows
GPUs to be transparently used from any node in the cluster, it is possible to create cluster configurations where not all the nodes in the cluster
own a GPU. This feature would not only reduce the costs associated with the acquisition and later use of GPUs, but would also increase the overall
utilization of such accelerators because workload managers would assign the acquired GPUs concurrently to several applications as far as GPUs
present enough resources for all of them. In general, remote GPU virtualization presents many benefits, as shown in in 10.

Notice, however, that workload managers need to be enhanced in order to manage virtual GPUs. This enhancement would basically consist
in replacing the current per-GPU granularity by a finer granularity that should allow GPUs to be concurrently shared among several applications.
Once this enhancement is performed, it is expected that overall cluster performance is increased because the concerns previously mentioned
would be reduced. It would also be possible to consider attaching a server owning several GPUs to a cluster that does not include GPUs. In this
way, upgrading a non-accelerated cluster so that it includes GPUs would become an easy and inexpensive process.

In this paper we present a study of the performance of a cluster that makes use of the remote GPU virtualization mechanism along with an
enhanced workload manager able to assign virtual GPUs to waiting jobs. To that end, we have made use of the rCUDA 11 remote GPU virtualization
middleware along with a modified version 12 of the Slurm workload manager, which is now able to dispatch GPU-accelerated applications to nodes
not owning GPUs while assigning such applications as many GPUs from other nodes as they require. A preliminary version of this work was already
presented in 13. Notice, however, that in this paper we further investigate the performance results reported by the integration of rCUDA and Slurm.

1Although GPUs present a favorable performance/power ratio while being used, they still require non-negligible amounts of energy while idle. For
instance, idleNVIDIA Tesla K20 andK40GPUs require, respectively, 25 and 20watts. On the contrary, newNVIDIA Tesla K80GPUs have significantly reduced
the amount of energy consumed in the idle state although they still present a non-negligible power consumption while being active without performing
computations.

Page 2 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 3

FIGURE 2 Architecture of the rCUDA remote GPU virtualization middleware.
Paper layout is the following: Section 2 presents the basic required background on the rCUDA remote GPU virtualization framework and on

the modified Slurm workload manager to understand the rest of the paper. Later, Section 3 presents a thorough performance study of a cluster
using rCUDA and the modified version of Slurm. Section 4 presents a review of the state-of-the-art on the remote GPU virtualization and workload
manager areas. Finally, Section 5 concludes the paper.

2 BACKGROUND ON rCUDA AND SLURM

The purpose of this section is twofold. First, this section presents the required background on the rCUDA remote GPU virtualization framework so
that the reader can understand the performance evaluation presented in Section 3. Notice that this section is focused on the rCUDA middleware.
A complete discussion on the remote GPU virtualization mechanism as well as a description of the available frameworks can be found in Section 4.
Second, this section also presents the required background on the Slurm workload manager in order to follow Section 3. A summary of the main
changes applied to Slurm so that virtual GPUs provided by rCUDA can be managed by Slurm is also provided. A detailed description of the applied
changes can be found in 12. Additionally, a complete discussion about workload managers can be found in Section 4.

2.1 Background on rCUDA
Frameworks such as CUDA 1 assist programmers in using GPUs for general-purpose computing. In addition, several remote GPU virtualization
solutions exist for this framework, such as GridCuda 14, DS-CUDA 15, gVirtuS 16, vCUDA 17, GViM 18, and rCUDA 11. Current virtualization frame-
works provide different features. This section focuses on describing the main characteristics of the rCUDA framework. A complete discussion on
the state-of-the-art on remote GPU virtualization frameworks can be found in Section 4.

Figure 2 depicts the architecture of the rCUDA framework, which is similar to that ofmost of these virtualization solutions, as shown in Figure 11.
The rCUDA framework follows a client-server distributed approach. The client part of the middleware is installed in the cluster node executing
the application requesting GPU services, whereas the server side runs in the computer owning the actual GPU. The client middleware offers
the same application programming interface (API) as does the NVIDIA CUDA Runtime 19 and Driver 20 APIs (except for graphics functions). It is
binary compatible with CUDA 9.0 and also provides support for the libraries included within CUDA (cuBLAS, cuFFT, cuDNN, etc). Every time the
accelerated application performs a CUDA call, the client side of rCUDA receives the request from the application and appropriately processes
and forwards it to the remote server. In the server node, the middleware receives the request and interprets and forwards it to the GPU, which
completes the execution of the request and provides the execution results to the server middleware. In turn, the server sends back the results to
the client middleware, which forwards them to the initial application, which is not aware that its request has been served by a remote GPU instead
of a local one.

The rCUDA framework supports several underlying interconnection technologies by making use of network-specific communication modules.
Currently, three communication modules are available: TCP/IP, InfiniBand, and RoCE. The former can be used in any TCP/IP compatible network
whereas the two latter make use of the high performance InfiniBand Verbs API available in the InfiniBand and RoCE network adapters. In order to
maximize performance, rCUDA has been perfectly tuned to the InfiniBand Verbs API 21. Furthermore, as shown in 22, rCUDA outperforms the rest

Page 3 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4 Sergio Iserte et al

of available remote GPU virtualization solutions. Additionally, rCUDA has been applied to different areas with very good results 23 24 25 26. rCUDA
can also be used in cloud computing scenarios 27 28. For these reasons, we use this middleware in our study.

Using rCUDA requires to set three environment variables prior to application execution: RCUDA_DEVICE_COUNT, RCUDA_DEVICE_j, and
RCUDA_NETWORK. The first variable indicates the amount of remote virtual GPUs accessible to the application. For example, if two remote GPUs
are assigned to the application, then the command “export RCUDA_DEVICE_COUNT=2” should be executed. The second environment variable,
RCUDA_DEVICE_j, indicates, for each of the n remote GPUs assigned to the application, in which cluster node the GPU with identifier j is located.
For instance, in the previous example, the commands “export RCUDA_DEVICE_0=192.168.0.1” and “export RCUDA_DEVICE_1=192.168.0.2”
should be executed to inform the rCUDA client about the location of the virtual GPUs assigned to the application. In case the GPU server owns
several accelerators, it is possible to declare which of those accelerators is assigned to the application. To that end, the RCUDA_DEVICE_j vari-
able should include the GPU identifier inside the server. For instance, the commands “export RCUDA_DEVICE_0=192.168.0.3:2” and “export
RCUDA_DEVICE_1=192.168.0.4:0” would assigne the application GPUs 2 and 0, respectively, of servers with IP addresses “192.168.0.3” and
“192.168.0.4”. Finally, the RCUDA_NETWORK environment variable sets the communication module to be used during the execution of the
application. For instance, the command “export RCUDA_NETWORK=IB” should be used in order to leverage the InfiniBand Verbs API.

2.2 Background on Slurm
Current workload managers do not support the virtual GPUs provided by frameworks such as rCUDA due to their novelty. In this regard, workload
managers are only able to deal with real GPUs. Therefore, when a job includes within its computing requirements one or more GPUs per node,
current workload managers will try to map that job to nodes owning the requested amount of real GPUs. Nevertheless, it is possible to enhance
current workload managers so that they become aware of virtual GPUs. This would make the assignment of GPUs more flexible because any
available GPU across the cluster might be assigned to a job, regardless of the exact GPU and job locations. In this way, by increasing the awareness
of workload managers, they would provide support for virtual GPUs, hence allowing the scheduling process to enjoy a larger degree of freedom.

In this paper we make use of an extended version of the Slurm workload manager 12 which supports the rCUDA middleware. Selecting Slurm
among the many available job schedulers was based on its open-source nature, at the same time that Slurm has demonstrated to be portable and
interconnect independent, thus making it suitable for many different cluster architectures. A complete discussion on workload managers can be
found in Section 4.

Next we present the six main modifications to the Slurm workload manager in order to make it virtual-GPU aware (the reader may refer to 12

for a thorough description of the modifications done to Slurm):

1. The GRes module, which manages the allocation and deallocation of consumable generic resources such as GPUs, has been augmented so
that all GPUs in the cluster can be accessed from all the nodes. Additionally, GPUs in the cluster can be shared among different jobs.

2. Two new plug-ins have been implemented. On the one hand, the new GRes plug-in “gres/rgpu” is responsible for the declaration of the
remote GPUs as a generic resource, which will be referred to as rGPU. On the other hand, the select plug-in “select/cons_rgpu” will
perform tasks related to selection and scheduling of the new rGPUs.

3. Several internal data structures within Slurm have been modified with new attributes in order to maintain the required information about
the new rGPUs.

4. The RPC packages within Slurm have been augmented with additional fields intended to carry the rGPU information required by Slurm.

5. The job submission commands within Slurm have been modified so that they accept the new parameters related to the use of the new
rGPU resources.

6. In order to connect the scheduling process with the rCUDA middleware, the Slurm scheduler has to set the three rCUDA environment
variables mentioned in the previous section.

In addition to the previous modifications, some policy must be followed during the scheduling process in order to select one GPU or another
from the many GPUs available in the cluster. In this work we have followed a round-robin approach while giving a higher priority to those rGPUs
located in the same node that will execute the application. Other selection policies were also considered although performance results did not vary
significantly.

Once these changes are implemented, Slurm users are able to submit jobs to the system queues in three different modes:

1. CUDA: no change is required to the original way of launching jobs.

Page 4 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 5

2. rCUDA shared: the job will use the new rGPU resources, which will be shared with other jobs. The required amount of GPUmemory should
be specified as a parameter to the job submission command. For instance, “srun –rcuda-mode=shar –gres=rgpu:4:100M job.sh” will
submit a job named “job.sh” requesting 4 virtual GPUs having each of them at least 100 MB of available memory. These GPUs may be
shared with other jobs.

3. rCUDA exclusive: the job will use the new rGPU resources but will not share them with other jobs. For instance, “srun –rcuda-mode=excl

–gres=rgpu:4 job.sh” will submit a job named “job.sh” requesting the exclusive use of 4 virtual GPUs.

3 PERFORMANCE ANALYSIS

In this section we study the impact that using the remote GPU virtualization mechanism in combination with Slurm has on the performance of a
data center. To that end, we have executed several workloads in a cluster by submitting a series of job requests to the Slurm queues. After job
submission we have measured several parameters such as total execution time of the workloads, energy required to execute them, GPU utilization,
etc. We have considered two different scenarios for workload execution. In the first one, the cluster uses CUDA and therefore applications can
only use those GPUs installed in the same node where the application is being executed. In this scenario, an unmodified version of Slurm has been
used. In the second scenario we have made use of rCUDA and therefore an application being executed in a given node can use any of the GPUs
available in the cluster. Moreover, the modified version of Slurm has been used so that it is possible to schedule the use of remote GPUs. These
two scenarios will allow to compare the performance of a cluster using CUDA with the throughput of a cluster using rCUDA.

In the following subsections we present the performance analysis. In this regard, we first present the cluster configuration and the workloads
used in the experiments. After that, we analyze the performance of combining rCUDA with Slurm in different cluster configurations.

3.1 Cluster Testbed
The testbed used in this study is comprised of 1027GR-TRF Supermicro servers. Each of the servers includes two Intel Xeon E5-2620 v2 processors
(six cores with Ivy Bridge architecture) operating at 2.1 GHz and 32 GB of DDR3 SDRAM memory at 1600 MHz. They also have a Mellanox
ConnectX-3 VPI single-port FDR InfiniBand adapter connected to a Mellanox Switch SX6025 (FDR InfiniBand compatible) to exchange data at a
maximum rate of 56 Gb/s. Furthermore, an NVIDIA Tesla K20 GPU is installed in each node.

In order to analyze how the obtained performance results depend on cluster size, we have considered three cluster sizes for the experiments:
4 nodes, 8 nodes, and 16 nodes. Obviously, the cluster configuration composed of 16 nodes is the most representative one (although it is still
smaller than most data centers). However, these three sizes will allow us to study the different trends of the performance metrics. In all the three
cluster sizes mentioned, one additional node has been leveraged. This additional node, which does not include a GPU, will be used as the Slurm
management node and will execute the central Slurm daemon responsible for scheduling jobs (the slurmctld process).

Regarding the software configuration of the cluster, Linux CentOS 6.4 was used along with Mellanox OFED 2.4-1.0.4 (InfiniBand drivers and
administrative tools). Slurm version 14.11.0 was used. The modifications described in Section 2.2 were applied to Slurm. It was configured to use
the backfill scheduling policy. In this way, jobs can overtake others. Finally, version 2.0b of the MVAPICH2 implementation of MPI, specifically
tuned for InfiniBand, was used for those applications requiring the MPI library.

3.2 Workloads
Several workloads have been considered in order to provide a more representative range of results. The workloads are composed of applications
(see Table 1) selected because of their different characteristics from the list of NVIDIA’s Popular GPU-Accelerated Applications Catalog 29.

• GPU-BLAST 30 has been designed to accelerate the gapped and ungapped protein sequence alignment algorithms of the NCBI-BLAST
(http://www.ncbi.nlm.nih.gov) implementation using GPUs.

• LAMMPS 31 is a classic molecular dynamics simulator that can be used to model atoms or, more generically, as a parallel particle simulator
at the atomic, mesoscopic, or continuum scale.

• mCUDA-MEME 32 is a parallel CUDA implementation of the MEME algorithm, used for discovering motifs in a group of related DNA or
protein sequences.

• GROMACS 33 is a molecular dynamics simulator, as LAMMPS. Although this package can use GPUs, in this study we will use a
non-accelerated version in order to achieve a higher degree of heterogeneity in our experimental workloads.

Page 5 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6 Sergio Iserte et al

TABLE 1 Applications used in this study. Configuration details for each application

Is an MPI Total amount Execution Memory
Application Configuration application? of GPUs time (s) per GPU

GPU-Blast 1 6-thread process in 1 node no 1 21 1599 MB
LAMMPS 4 1-thread processes in 4 nodes yes 4 15 876 MB
mCUDA-MEME 4 1-thread processes in 4 nodes yes 4 165 151 MB
GROMACS 2 12-thread processes in 2 nodes yes 2 167 -
BarraCUDA 1 1-thread process in 1 node no 1 763 3319 MB
MUMmerGPU 1 1-thread process in 1 node no 1 353 2104 MB
GPU-LIBSVM 1 1-thread process in 1 node no 1 343 145 MB
NAMD 4 12-thread processes in 4 nodes yes 4 241 -

• BarraCUDA 34 is a sequence mapping software that uses GPUs to accelerate the inexact alignment of short sequence reads to a particular
location on a reference genome.

• MUMmerGPU is the GPU implementation of MUMmer 35, which is a system for rapidly aligning entire genomes, whether in complete or
draft form.

• GPU-LIBSVM is a modification of the original LIBSVM 36 algorithm that exploits the CUDA framework to significantly reduce processing
time. LIBSVM is an integrated software intended for vector classification, regression and distribution estimation.

• NAMD 37 is a parallel molecular dynamics simulator designed for high-performance simulation of large biomolecular systems. Although this
application is able to use GPUs, the version of NAMD used in our study does not make use of them and therefore is intended to contribute
to a higher degree of heterogeneity of the workloads.

Table 1 provides additional information about the applications used in this work, such as the exact execution configuration used for each of
the applications, showing the amount of processes and threads used for each of them. It can be seen in the table that LAMMPS, mCUDA-MEME,
GROMACS, and NAMD are MPI applications that will spread across several nodes in the cluster. On the contrary, the other four applications will
execute in a single node. Additionally, some of the applications also make use of threads. For instance, the GPU-Blast application uses a single
process composed of 6 threads. During execution, each of these threads will use a different CPU core, although all of them will make use of the
same GPU. In a similar way, the NAMD application will be distributed across 4 different nodes of the cluster (4 processes) and 12 threads will be
launched at each node. Therefore, the NAMD application will make use of 4 entire nodes. In a similar way, the GROMACS application will keep
busy two entire nodes while being executed. Notice that we have configured the execution of the considered applications as shown in Table 1
according to a previous scalability analysis (not shown) which was carried out in advance to find out the best configuration for each application.

Table 1 also shows the execution time for each application, which ranges from 15 up to 763 seconds for LAMMPS and BarraCUDA, respectively.
Applications can be classified according to their execution time. In this regard, GPU-Blast, LAMMPS, mCUDA-MEME, and GROMACS require less
than 170 seconds to complete execution (they are “short” applications) whereas BarraCUDA, MUMmerGPU, GPU-LIBSVM, and NAMD require
more than 240 seconds to be executed (“long” applications). In addition to execution time, Table 1 also shows the GPU memory required by
each application. For those applications composed of several processes, the amount of GPU memory depicted in Table 1 refers to the individual
needs of each process. Notice that the amount of GPU memory is not specified for the GROMACS and NAMD applications because we are using
non-accelerated versions of these applications.

In summary, the eight applications used present different characteristics, not only regarding the amount of processes and threads used by each
of them and their execution time but they also present different GPU usage patterns, what includes both memory copies to/from GPUs and also
kernel executions. Therefore, although the set of applications considered is finite, it may provide a representative sample of a workload typically
found in current data centers. Actually, the set of applications in Table 1 could be considered from two different point of views. In the first one, the
exact computations performed by each application would receive the main focus. In this point of view, some applications address similar problems,
like LAMMPS, GROMACS, and NAMD. However, in the second point of view, the specific problem addressed by each application is not the focus
but applications are seen as processes that keep CPUs and GPUs busy during some amount of time and require some amount of memory. Now
the focus is the amount of resources required by each application and the time that those resources are kept busy. From this second perspective,
the set of applications in Table 1 becomes even more representative.

Table 2 displays the Slurm parameters used for launching each of the applications with CUDA and rCUDA. In the first case, CUDA will be used
(column labeled “Launch with CUDA”). In the second case, remote GPUs can either be used in an exclusive or shared way. In the first approach, the
column labeled as “Launch with rCUDA exclusive” shows that the rcuda-mode parameter is set to excl and no GPU memory is declared. In the
second approach, the column labeled as “Launch with rCUDA shared” shows that the amount of memory required at each GPU must be specified

Page 6 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 7

TABLE 2 Slurm launching parameters

Launch with Launch with Launch with
Application CUDA rCUDA exclusive rCUDA shared

GPU-Blast -N1 -n1 -c6 –rcuda-mode=excl –rcuda-mode=shar -n1
–gres=gpu:1 -n1 -c6 –gres=rgpu:1 -c6 –gres=rgpu:1:1599M

LAMMPS -N4 -n4 -c1 –rcuda-mode=excl –rcuda-mode=shar -n4
–gres=gpu:1 -n4 -c1 –gres=rgpu:4 -c1 –gres=rgpu:4:876MÂă

mCUDA-MEME -N4 -n4 -c1 –rcuda-mode=excl –rcuda-mode=shar -n4
–gres=gpu:1 -n4 -c1 –gres=rgpu:4 -c1 –gres=rgpu:4:151M

GROMACS -N2 -n2 -c12 -N2 -n2 -c12 -N2 -n2 -c12
BarraCUDA -N1 -n1 -c1 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c1 –gres=rgpu:1 -c1 –gres=rgpu:1:3319M
MUMmerGPU -N1 -n1 -c1 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c1 –gres=rgpu:1 -c1 –gres=rgpu:1:2104M
GPU-LIBSVM -N1 -n1 -c1 –rcuda-mode=excl –rcuda-mode=shar -n1

–gres=gpu:1 -n1 -c1 –gres=rgpu:1 -c1 –gres=rgpu:1:145M
NAMD -N4 -n48 -c1 -N4 -n48 -c1 -N4 -n48 -c1

in the submission command. On the other hand, it can be seen by comparing the parameters in the three columns that, when CUDA is used,
different processes of an MPI application must be mapped to different nodes (parameter “-Ni” where i is the amount of requested nodes) so that
each process can use a different GPU2. On the contrary, this requirement is removed when rCUDA is employed.

The previous applications have been combined in order to create three different workloads as shown in Table 3. Workload labeled as “Set 1” is
composed of 400 instances from applications GPU-Blast, LAMMPS, mCUDA-MEME, and GROMACS. Notice that these applications are the ones
with the shortest execution times. The exact amount of instances for each application is shown in the table. In a similar way, workload labeled
as “Set 2” is composed of 400 instances of applications BarraCUDA, MUMmerGPU, GPU-LIBSVM, and NAMD (these applications are the ”long”
applications). Finally, a third workload, referred to as “Set 1+2”, has been created with instances from all the applications. Notice that, for each of
the workloads, the instances from different applications as well as the exact sequence of instances within the workload are randomly set. However,
once workloads are set, they remain constant across the different experiments presented in this section. This means that the amount of instances
of each application and the exact sequence of these instances is not modified across experiments.

3.3 Initial Performance Analysis: n nodes with 1 GPU each
This first experiment considers the simplest scenario consisting of a cluster with n nodes each of them owning one GPU. The three cluster sizes
mentioned in Section 3.1 were used. Figure 3 shows the performance results for the 16-node case. The other two cluster sizes provided similar
trends. The figure shows, for each of theworkloads depicted in Table 3, the performancewhen CUDA is used alongwith the original Slurmworkload
manager (results labeled as “CUDA”) as well as the performance when rCUDA is used in combination with the modified version of Slurm. In this
case, label “rCUDAex” refers to the results when remote GPUs are used in an exclusive way by applications whereas label “rCUDAsh” refers to
the case when remote GPUs are shared among several applications. Among both rCUDA uses, the shared approach is the most interesting option.
The exclusive case is considered in this paper only for comparison purposes. Figure 3(a) shows total execution time for each of the workloads.

TABLE 3Workload composition

Workload
Application Set 1 Set 2 Set 1+2

GPU-Blast 112 - 57
LAMMPS 88 - 52
mCUDA-MEME 99 - 55
GROMACS 101 - 47
BarraCUDA - 112 51
MUMmerGPU - 88 52
GPU-LIBSVM - 99 37
NAMD - 101 49

Total 400 400 400

2In our cluster testbed there is only one GPU per node.

Page 7 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8 Sergio Iserte et al

0

4000

8000

12000

16000

Set 1 Set 2 Set 1+2Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA ex rCUDA sh

(a) Total execution time of the workloads.

Set 1 Set 2 Set 1+2
Workload

CUDA rCUDA ex rCUDA sh

0

0.1

0.2

0.3

0.4

0.5

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.

0
Set 1 Set 2 Set 1+2

Workload

CUDA rCUDA ex rCUDA sh

4

8

12

16

En
e

rg
y

(k
W

h
)

(c) Total energy consumed during the execution of
the workloads.

FIGURE 3 Performance results from the 16-node 16-GPU cluster.

Figure 3(b) depicts the averaged GPU utilization for all the 16 GPUs in the cluster. Data for GPU utilization has been gathered by polling each
of the GPUs in the cluster once every second and afterwards averaging all the samples after completing workload execution. The nvidia-smi

command was used for polling the GPUs. In a similar way, Figure 3(c) shows total energy required for completing workload execution. Energy has
been measured by polling once every second the power distribution units (PDUs) present the cluster. Used units are APC AP8653 PDUs, which
provide individual energy measurements for each of the servers connected to them. After workload completion, the energy required by all servers
was aggregated to provide the measurements in Figure 3(c).

As can be seen in Figure 3(a), workload “Set 1” presents the smallest execution time, given that it is composed of the applications with the
smallest execution times. Furthermore, using rCUDA in a shared way reduces execution time for the three workloads. In this regard, execution
time is reduced by 48%, 37%, and 27% for workloads “Set 1”, “Set 2”, and “Set 1+2”, respectively. Notice also that the use of remote GPUs in
an exclusive way also reduces execution time. In the case for “Set 2” this reduction is more noticeable because, when CUDA is used, the NAMD
application (with 101 instances in the workload) spans over 4 complete nodes thus blocking the GPUs in those nodes, which cannot be used by
any accelerated application during the entire execution time of NAMD (241 seconds). On the contrary, when “rCUDAex” is leveraged, the GPUs in
those four nodes are accessible from other nodes and therefore they can be used by other applications being executed at other nodes. Regarding
GPU utilizacion, Figure 3(b) shows that the use of remote GPUs helps to increase overall GPU utilization. Actually, when “rCUDAsh” is used with
“Set 1” and “Set 1+2”, average GPU utilization is doubled with respect to the use of CUDA. Finally, total energy consumption is reduced accordingly,
as shown in Figure 3(c), by 40%, 25%, and 15% for workloads “Set 1”, “Set 2”, and “Set 1+2”, respectively.

Several are the reasons for the benefits obtained when GPUs are shared across the cluster. First, as already mentioned, the execution of the
non-accelerated applications makes that GPUs in the nodes executing them remain idle when CUDA is used. On the contrary, when rCUDA is
leveraged, these GPUs can be used by applications being executed in other nodes of the cluster. Notice that this remote usage of GPUs belonging
to nodes with busy CPUs will be more frequent as cluster size increases because more GPUs will be blocked by non-accelerated applications (also
depending on the exact workload). Another example is the execution of LAMMPS and mCUDA-MEME, which require 4 nodes with one GPU.
While these applications are being executed with CUDA, those 4 nodes cannot be used by any other application from Table 1: on the one hand, the
other accelerated applications cannot access the GPUs in those nodes because they are busy and, on the other hand, the non-GPU applications
(GROMACS and NAMD) cannot use those nodes because they require all the CPU cores but LAMMPS and mCUDA-MEME already took one
core. However, when GPUs are shared among several applications, GPUs assigned to LAMMPS and mCUDA-MEME can also be assigned to other
applications that will run in any available CPU in the cluster, thus increasing overall throughput. This concurrent usage of the GPUs brings to a
second cause for the improvements shown in Figure 3.

The second reason for the improvements shown in Figure 3 is related to the usage that applications make of GPUs. As Table 1 showed, some
applications do not completely exhaust GPU memory resources. For instance, applications mCUDA-MEME and GPU-LIBSVM only use about 3%
of the memory present in the NVIDIA Tesla K20 GPU. However, the unmodified version of Slurm (combined with CUDA) will allocate the entire
GPU for executing each of these applications, thus causing that almost 100% of the GPU memory is wasted during application execution. This
concern is also present for other applications in Table 1. Moreover, if NVIDIA Tesla K40 GPUs were used instead of the NVIDIA Tesla K20 devices
employed in this study, then this memory underutilization would be worse because the K40 model features 12 GB of memory instead of the 5 GB
available in the Tesla K20 device. On the contrary, when rCUDA is used in a shared way, GPUs can be shared among several applications provided
that there is enough memory for all of them. Obviously, GPU cores will have to be multiplexed among all those applications, what will cause that
all of them execute slower. In this regard, Figure 4 presents execution times for the applications in Table 1 when several instances of the same
application are concurrently executed in a GPU3. Executions in Figure 4 have been manually constrained to a single node using CUDA without

3It is also possible to analyze concurrent executions when the applications concurrently using the GPU are different. However, using several instances
of the same application generates a higher pressure on the system because all the instances will try to synchronously perform the same operations.

Page 8 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 9

0

0.5

1

1.5

2

N
o

rm
al

iz
e

d
Ex

e
cu

ti
o

n
 T

im
e 1 Instance

2 Instances
4 Instances

FIGURE 4 Normalized execution time when several concurrent instances of the same application are executed with CUDA.

the use of Slurm. For some of the applications only two concurrent instances were executed due to their larger memory requirements. In a similar
way, BarraCUDA does not allow the concurrent execution of other instances due to its high memory requirements. As shown, executing several
instances of the same application reports a speed up for all of them: LAMMPS achieves the smallest one whereas GPU-LIBSVM obtains significant
benefits. In summary, sharing a GPU among several applications reduces total execution time. This reduction makes that combining rCUDA with
the modified version of Slurm results in important reductions in the time required to complete workload execution.

Another possible point of view related to sharing GPUs among applications is that all the applications sharing the GPU execute slower because
they have to share the GPU cores. However, despite of the slower execution of each individual application, the entire workload is completed
earlier, as shown in Figure 3. This means (1) that the time spent by applications waiting in the Slurm queues is reduced and (2) the execution of
each individual application is completed earlier. As a consequence, data center users increase their satisfaction regarding the service received.

One additional metric that could be analyzed is the time that GPUs remain allocated to applications. Figure 5 presents the time that any GPU
in the cluster is assigned to an application and also compares that time with total execution time of the workload. It can be seen that the use of
“rCUDAex” increases the percentage of time that GPUs are assigned to applications up to 96% whereas this percentage is reduced for “rCUDAsh”
to values equal to 59%, 83%, and 74% for “Set 1”, “Set 2”, and “Set 1+2” respectively. These lower percentages point out that, when rCUDAsh is
leveraged, execution time of workloads is dominated by the non-GPU applications because accelerated ones take advantage of available remote
GPU resources to complete their execution before all non-accelerated applications have finished.

Finally, as shown in Figure 4, the BarraCUDA application presents high GPU memory requirements, which reduce the opportunity to share its
GPU with other applications. Thus, executions of BarraCUDA behave in a similar way to the “rCUDAex” mode. In order to analyze the stability
of the results when this behavior is reduced, two new workloads have been created. Table 4 shows these new workloads. It can be seen that the
presence of the heavy BarraCUDA application has been noticeably reduced at the same time that the presence of lighter applications such as
GPU-LIBSVM has been increased. Figure 6 shows the performance results for these new workloads. It can be seen that although the workloads
have been noticeably modified, the trends of the results are similar to those in Figure 3. Results for cluster sizes of 4 and 8 nodes also showed
similar trends. Moreover, Figure 7 depicts the GPU allocation time with the new workloads. Again, the same trend as with the previous workloads
is followed. This suggests that the performance improvements shown in this section can be expected for many other workloads and cluster sizes.
Finally, once it has been seen that rCUDA exclusive performs better than CUDA but worse than rCUDA shared mode, henceforth we will continue
the performance study taking only into account rCUDA shared.

Set 1 Set 2 Set 1+2
Workload

CUDA rCUDA ex rCUDA sh

(a) Percentage of GPU allocation time. (b) Total GPU allocation time.

FIGURE 5 GPU allocation time in the 16-node 16-GPU cluster.

Page 9 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10 Sergio Iserte et al

TABLE 4 Composition of new workloads

Workload
Application Set 2 Set 1+2 New Set 2 New Set 1+2

GPU-Blast - 57 - 50
LAMMPS - 52 - 50
mCUDA-MEME - 55 - 50
GROMACS - 47 - 50
BarraCUDA 112 51 40 20
MUMmerGPU 88 52 100 50
GPU-LIBSVM 99 37 160 80
NAMD 101 49 100 50

Total 400 400 400 400

0

4000

8000

12000

16000

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA ex rCUDA sh

New Set 2 New Set 1+2

(a) Total execution time of the workloads.
Workload

CUDA rCUDA ex rCUDA sh

New Set 2 New Set 1+2
0

0.1

0.2

0.3

0.4

0.5

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.
Workload

CUDA rCUDA ex rCUDA sh

New Set 2 New Set 1+2
0

4

8

12

16

En
e

rg
y

(k
W

h
)

(c) Total energy consumed during the execution of
the workloads.

FIGURE 6 Performance of the 16-node 16-GPU cluster with the new workloads.

(a) Percentage of GPU allocation time. (b) Total GPU allocation time.

FIGURE 7 GPU allocation time in the 16-node 16-GPU cluster with the new workloads.

3.4 Introducing Additional Heterogeneity in the Cluster
Current data centers execute a large variety of applications. Some of them address highly parallel problems that can benefit from the use of
several GPUs. In these cases, the MPI library can be used in order to distribute the application processes across several nodes in the cluster so
that each process makes use of the GPU installed in the node executing that process. The net result is that the application is concurrently making
use of several GPUs thanks to the MPI library. However, using the MPI library for some applications may not be the best option. For instance, if
communications among processes are too intense, then the use of a messaging library would noticeably reduce overall performance. In these cases,
instead of following a distributed approach for designing the application, it could be programmed by leveraging the shared memory paradigm. In
this context, the application would be divided into threads and each thread would be responsible for submitting its kernels to the GPU. However,
in order to efficiently execute such a shared-memory parallel application, as many GPUs as threads should be available in the computer executing

Page 10 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 11

TABLE 5 Composition of workloads for non-uniform heterogeneous clusters

Workload
Application WL 1 WL 2

GPU-Blast 41 48
LAMMPS short 39 46
LAMMPS long 2p 20 10
LAMMPS long 4p 20 10
mCUDA-MEME short 39 46
mCUDA-MEME long 2p 20 10
mCUDA-MEME long 4p 20 10
GROMACS 40 40
BarraCUDA 40 47
MUMmerGPU 41 47
GPU-LIBSVM 40 46
NAMD 40 40

Total 400 400

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA sh

0

10000

20000

30000

40000

WL 1 WL 2

(a) Total execution time of the workloads.
Workload

CUDA rCUDA sh

WL 1 WL 2
0

0.1

0.2

0.3

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.
Workload

CUDA rCUDA sh

WL 1 WL 2
0

10

20

30

En
e

rg
y

(k
W

h
)

(c) Total energy consumed during the execution of
the workloads.

FIGURE 8 Performance results from a non-uniform cluster with fifteen 1-GPU nodes and one 4-GPU node.

the application. In our cluster example, for instance, where only one GPU is available in each node, it would not be possible to execute this kind
of applications. One possible solution could be to augment the cluster with one or more servers featuring several GPUs. This would create a
non-uniform heterogeneous cluster.

In order to model this scenario, we have replaced one of the nodes in our cluster by a node containing four GPUs. This node is based on the
Supermicro SYS7047GR-TRF server, populated with four NVIDIA Tesla K20 GPUs and one FDR InfiniBand network adapter. Additionally, in order
to model the use of these parallel shared-memory applications, we have modified the workloads used in the experiments by modeling applications
with two and four threads that require two and four GPUs, respectively. To that end, two different flavors of the LAMMPS and mCUDA-MEME
applications have been used, as shown in Table 5: (1) “LAMMPS long 2p” and “mCUDA-MEME long 2p” consist of two single-threaded processes
that are forced to be executed in the same node by using the launching parameters -N1 -n2 -c1. These instances of the applicationwill model the use
of two-thread shared-memory applications, (2) “LAMMPS long 4p” and “mCUDA-MEME long 4p” consist of four single-threaded processes that will
execute in the same node by using the launching parameters -N1 -n4 -c1. They will model the use of four-thread shared-memory applications. One
additional flavor of these applications will model single-thread shared-memory applications. This additional flavor is composed by the “LAMMPS
short” and “mCUDA-MEME short” cases shown in Table 5 which make use of one single-threaded process with launching parameters -N1 -n1 -c1.
Furthermore, small input data sets are used for the “LAMMPS short” and “mCUDA-MEME short” cases whereas the multi-threaded flavors use a
large input data set in order to lengthen their execution time. The idea behind the “2p” and “4p” flavors of LAMMPS and mCUDA-MEME is that
they necessarily require the 4-GPU server for their execution when a cluster not using rCUDA is employed. On the contrary, when rCUDA is used,
all the threads will be placed in the same node but these threads will be able to use any of the GPUs in the cluster, thus loosening up the initial
limitation of having to wait for the 4-GPU node and thus speeding up the execution of the workload.

Figure 8 depicts the performance results when the workloads in Table 5 are executed in a non-homogeneous cluster composed of 15 nodes
owning one GPU and one additional node populated with 4 GPUs. It can be seen that decoupling GPUs from nodes with rCUDA provides large

Page 11 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12 Sergio Iserte et al

FIGURE 9 GPU allocation time in a non-uniform cluster with fifteen 1-GPU nodes and one 4-GPU node.

benefits because applications requiring 2 (or 4) GPUs can start execution as soon as there are enough available resources in remote GPUs across
the cluster. Contrariwise, when CUDA is used, applications spend a lot of time waiting for the 4-GPU node. This wait can be seen in Figure 9
which shows the small percentage of GPU-allocation time when CUDA is used for these workloads. This small GPU allocation time suggests that
applications spend most of the time waiting for resources.

3.5 Attaching GPUs to a non-GPU Cluster
The use of GPUs in a cluster usually puts several burdens in the physical configuration of the nodes in the cluster. For instance, nodes owning a GPU
need to include larger power supplies able to provide the energy required by the accelerators. Also, GPUs are not small devices and therefore they
require a non-negligible amount of space in the nodes where they are installed. These requirements make that installing GPUs in a cluster which
did not initially include them is sometimes expensive (power supplies need to be upgraded) or simply impossible (nodes do not have enough space
for the GPUs). However, the workload in some data centers may evolve towards the use of GPUs. At that point, the concern is how to address the
introduction of GPUs in the computing facility.

One possible solution to the concern above is acquiring some amount of servers populated with GPUs and divert the execution of accelerated
applications to those nodes. The Slurm workload manager would automatically take care of dispatching the GPU-accelerated applications to the
new servers. However, although this approach is feasible, it presents the limitation that GPU-jobs will probably have to wait for long until one of
the GPU-enabled servers is available, even though GPU utilization is usually low. Another concern is that MPI accelerated applications will only be
able to span to as many nodes as GPU-enabled servers were acquired. Given these concerns, a better approach would be to acquire some amount
of servers populated with GPUs and use rCUDA to execute accelerated applications at any of the nodes in the cluster while using the GPUs in the
new servers. This solution would not only increase overall GPU utilization with respect to the use of CUDA in the previous scenario but would also
allow that MPI applications span to as many nodes as required because MPI processes would be able to remotely access GPUs thanks to rCUDA.
In summary, the remote GPU virtualization mechanism allows that clusters which did not initially include GPUs can be easily and cheaply updated
for using GPUs by attaching to them one or more computers containing GPUs. In this way, the original nodes will make use of the GPUs installed
in the new nodes, which will become GPU servers. Slurm would be used to manage the use of the GPUs in the new severs.

Figure 10 shows the performance results when a server with four GPUs has been attached to a cluster without GPUs. The original cluster is
composed of 15 nodes (the same as in the previous section, but GPUs have been removed). The 4-GPU server is the same as in previous section.

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA sh

WL 1 WL 2
0

20000

40000

60000

80000

(a) Total execution time of the workloads.
Workload

CUDA rCUDA sh

WL 1 WL 2

G
P

U
 U

ti
liz

at
io

n

0

0.1

0.2

0.3

0.4

(b) Average GPU utilization.
Workload

CUDA rCUDA sh

WL 1 WL 2

En
e

rg
y

(k
W

h
)

0

10

20

30

40

(c) Total energy consumed during the execution of
the workloads.

FIGURE 10 Performance results when a server with 4 GPUs is attached to a non-GPU cluster.

Page 12 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 13

FIGURE 11 Architecture usually deployed by GPU virtualization frameworks.

Results are similar to those presented in the previous section and show that decoupling GPUs from nodes with rCUDA allows applications to make
a much more flexible usage of the resources in the cluster and therefore execution time is reduced as well as energy consumption.

4 RELATEDWORK

In this section an overview of the state-of-the-art is provided. We first review other works related to GPU virtualization and then a review about
workload managers is addressed.

4.1 GPU Virtualization
Sharing accelerators among several computers has been addressed both with hardware and software approaches. On the hardware side, maybe the
most prominent solution was NextIO’s N2800-ICA 38, based on PCIe virtualization 39. This solution allowed to share a GPU among eight different
servers in a rack within a two-meter distance. Nevertheless, this solution lacked from the required flexibility because a GPU could only be used
by a single server at a time, thus preventing the concurrent sharing of GPUs. Furthermore, this solution was expensive, what may be one of the
reasons for NextIO going out of business in August 2013.

As a flexible alternative to hardware approaches, several software-based GPU sharing mechanisms have appeared, such as V-GPU, DS-CUDA,
rCUDA, vCUDA, and GridCuda, for example. Basically, these software proposals share a GPU by virtualizing it, so that they provide applications
with virtual instances of the real device, which can therefore be concurrently shared. Usually, these GPU sharing solutions place the virtualization
boundary at the API level, thus offering the same API as the NVIDIA CUDA Runtime API 19 does.

Figure 11 depicts the architecture usually deployed by these virtualization solutions, which follow a distributed client-server approach and is
very similar to the architecture depicted for the rCUDA middleware in Figure 2.

CUDA-based GPU virtualization frameworks may be classified into two types: (1) those intended to be used in the context of virtual machines
and (2) those devised as general purpose virtualization frameworks to be used in native domains, although the client part of these latter solutions
may also be used within a virtual machine. Frameworks in the first category usually make use of shared-memory mechanisms in order to transfer
data from main memory inside the virtual machine to the GPU in the native domain, whereas the general purpose virtualization frameworks in the
second type make use of the network fabric in the cluster to transfer data from main memory in the client side to the remote GPU located in the
server. This is why these latter solutions are commonly known as remote GPU virtualization frameworks.

Regarding the first type of GPU virtualization frameworks mentioned above, several solutions have been developed to be specifically used
within virtual machines, as for example vCUDA 17, GViM 18, gVirtuS 16, and Shadowfax 40. The vCUDA technology supports only an old CUDA
version (v3.2) and implements an unspecified subset of the CUDA Runtime API. Moreover, its communication protocol presents a considerable
overhead, because of the cost of the encoding and decoding stages, which causes a noticeable drop in overall performance. GViM is based on the
obsolete CUDA version 1.1 and, in principle, does not implement the entire CUDA Runtime API. gVirtuS is based on the old CUDA version 2.3 and
implements only a small portion of its API. For example, in the case of the memory management module, it implements only 17 out of 37 functions.
Furthermore, despite it is designed for KVM virtual machines, it requires a modified version of KVM. Nevertheless, although it is mainly intended
to be used in virtual machines, granting them access to the real GPU located in the same node, it also provides TCP/IP communications for remote
GPU virtualization, thus allowing applications in a non-virtualized environment to access GPUs located in other nodes. Regarding Shadowfax, this
solution allows Xen virtual machines to access the GPUs located at the same node, although it may also be used to access GPUs at other nodes of

Page 13 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14 Sergio Iserte et al

FIGURE 12Comparison between the theoretical bandwidth of different versions of PCI Express x16 and those of commercialized InfiniBand fabrics
and network adapters.

the cluster. It supports the obsolete CUDA version 1.1 and, additionally, neither the source code nor the binaries are available in order to evaluate
its performance.

In the second type of virtualization frameworks mentioned above, which provide general purpose GPU virtualization, one can find rCUDA 11,
V-GPU 41, GridCuda 14, DS-CUDA 15, and Shadowfax II 42. rCUDA, was already described in Section 2.1. V-GPU is a recent tool supporting CUDA
4.0. Unfortunately, the information provided by the V-GPU authors is fuzzy and there is no publicly available version that can be used for testing
and comparison. GridCuda also offers access to remote GPUs in a cluster, but supporting an old CUDA version (v2.3). Moreover, there is currently
no publicly available version of GridCuda that can be used for testing. Regarding DS-CUDA, it integrates a more recent version of CUDA (4.1) and
includes specific communication support for InfiniBand. However, DS-CUDA presents several strong limitations, such as not allowing data transfers
with pinned memory. Finally, Shadowfax II is still under development, not presenting a stable version yet and its public information is not updated
to reflect the current code status.

It is important to notice that although remote GPU virtualization has traditionally introduced a non-negligible overhead, given that applications
do not access GPUs attached to the local PCI Express (PCIe) link but rather access devices that are installed in other nodes of the cluster (traversing
a network fabric with a lower bandwidth), this performance overhead has significantly been reduced thanks to the recent advances in networking
technologies. For example, as depicted in Figure 12, the theoretical bandwidth of the InfiniBand network is 12.5 GB/s when using the most recent
Mellanox EDR InfiniBand adapters. This bandwidth is very close to the 15.75 GB/s of PCIe 3.0 x16. This makes that the bandwidth achieved by
EDR InfiniBand network adapters and that of the NVIDIA Tesla K40 GPU are very close. Moreover, the previous generation of these technologies
(NVIDIA Tesla K20 GPUs and FDR InfiniBand network adapters), provides performance figures that are also very close: the Tesla K20 GPU used
PCIe 2.0, which achieves a theoretical bandwidth of 8 GB/s, whereas FDR InfiniBand (which uses PCIe 3.0 x8) provides 7 GB/s. As a result, when
using remote GPU virtualization solutions in both hardware generations (Tesla K40 & EDR InfiniBand and Tesla K20 & FDR InfiniBand), the path
communicating the main memory in the computer executing the application and the remote accelerator presents a similar bandwidth in all of its
stages. This bandwidth is similar to the one initially attained by the traditional approach using local GPUs, as shown in 43. This has turned remote
GPU virtualization frameworks into an appealing option.

4.2 Workload Managers and Job Schedulers
In addition to Slurm, there is a myriad of job schedulers, such as PBSPro 44, LoadLeveler 45, Condor 46, MOAB 47, LSF 48, DPCS 49, Quadrics RMS 50,
BPROC 51, TORQUE 52, OAR 53, MAUI 54, Sun Grid Engine 55, etc. An in-depth analysis can be found in 56. We briefly review in the following the
most important ones in order to support our choice for Slurm.

The Portable Batch System (PBS) 44 is a commercial scheduler originally developed in NASA. Recently, support for GPU scheduling was intro-
duced with two different flavors: (a) a simple approach in which just a single GPU job can be run at a time in a node and (b) an advanced approach
that allows several GPU jobs to be concurrently run in a node. In any case, sharing a GPU among several jobs is not allowed. Although PBS is
portable, it mainly presents the concern of being single threaded and hence exhibits poor performance on large clusters.

LoadLeveler 45 is a commercial tool by IBMand supports very fewnon-IBM systems, thus reducing its portability to general clusters. Furthermore,
it presents a very poor scalability, requiring around 20 minutes to execute a trivial 8000-task 500-node assignment 9.

Condor 46 is a parallel job manager developed at University of Wisconsin. It was the basis for LoadLeveler and presents an elaborated check-
point/restart feature and an interesting advertising system that allows servers to announce their available resources and consumers to disclose
their requirements, so that a broker can later performmatches among them. Although the source code of Condor is available, thus making it a good
candidate for introducing virtual GPU awareness, this batch system is less used than Slurm, which is used in several of systems in TOP500 list 57.

MOAB 47 is a commercial scheduler derived from the PBS one. It provides the usual features in this kind of systems (backfilling, FCFS, preemption,
advance reservation, etc) but given that is is just a scheduler, it requires to be complemented with a resource manager system.

Page 14 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Sergio Iserte et al 15

Load Sharing Facility (LSF) 48 is a proprietary batch system and parallel job manager created by Platform Computing. Although it has interesting
features such as the possibility of being fed with thermal data from the computing nodes and thus try to balance the workload among servers, it
is not open-source, thus hindering the possibility of making any change on it.

DPCS (Distributed Production Control System) 49 was developed at Lawrence Livermore National Laboratory (LLNL) and provides support only
for a few computing systems. Furthermore, it requires an underlying infrastructure for parallel job management.

Quadrics RMS 50 is intended for Unix systems leveraging the Quadrics Eln interconnects, thus making its usability quite limited. Moreover, it is
proprietary, thus making it impossible to use it for the purposes of the work presented in this paper.

The Beowulf Distributed Process Space (BPROC) 51 is a suit of libraries and utilities that allow to start processes in a Beowulf-style cluster.
However, achieving scalability with this tool can be difficult.

The rest of schedulers mentioned above present similar concerns. On the contrary, Slurm is a simple, highly scalable and portable resource
management system which, additionally, is open-source and widely used in the HPC community. These characteristics made us to select Slurm
as the target for the modifications to achieve virtual GPU awareness. Actually, Slurm has also been previously used for including new features.
For example, in 58 an integer programming based heterogeneous CPU-GPU cluster scheduler was proposed for Slurm. However, this work did not
consider the use of virtual GPUs. Also, in 59 the use of GPU ranges is proposed. Such a feature can be very useful to runtime auto-tuning applications
and systems that can make use of a variable number of GPUs. However, this work does not consider the use of virtual GPUs which are decoupled
from the CPU cores. Furthermore, in 60 the reliability of job schedulers, with a focus on Slurm, is analyzed and two proposals are made. Finally,
in 61 the features provided by Slurm are enhanced with multi-core/multi-threaded support. As can be seen, Slurm has been extended many times
in order to consider new technology trends.

5 CONCLUSIONS

In this paper we have carried out a thorough performance evaluation of a cluster using a modified version of Slurm which is able to schedule the
use of the virtual GPUs provided by the rCUDA middleware. The main idea is that the rCUDA middleware decouples GPUs from the nodes where
they are installed, therefore making the scheduling process much more flexible at the same time that a better usage of resources is achieved.

Results from the execution of 7 different workloads composed of 8 applications in 3 different cluster configurations suggest that cluster perfor-
mance can be noticeably increased just by modifying the Slurm scheduler and introducing rCUDA in the cluster. It is also expected that as GPUs
feature larger memory sizes, the benefits presented in this work will become also larger.

ACKNOWLEDGEMENTS

This work was funded by Generalitat Valenciana under Grant PROMETEO/2017/077. The author from Universidad Jaume I was supported by
projects TIN2014-53495-R, TIN2015-65316-P, and TIN2017-82972-R from MINECO and FEDER.. The authors are grateful for the generous
support provided by Mellanox Technologies and the equipment donated by NVIDIA Corporation.

References

1. NVIDIA . CUDA C Programming Guide 7.0. 2015.

2. Group KOW. OpenCL 1.2 Specification. 2011.

3. Wu H, Diamos G, Sheard T, et al. Red Fox: An Execution Environment for Relational Query Processing on GPUs. In: CGO’14. ; 2014: 44–54.

4. Playne DP, Hawick KA. Data Parallel Three-Dimensional Cahn-Hilliard Field Equation Simulation on GPUs with CUDA. In: PDPTA’09. ; 2009:
104–110.

5. Yamazaki I, Dong T, Solca R, Tomov S, Dongarra J, Schulthess T. Tridiagonalization of a dense symmetric matrix on multiple GPUs and its
application to symmetric eigenvalue problems. Concurrency and Computation: Practice and Experience 2014; 26(16): 2652–2666.

6. Luo Y, Duraiswami R. Canny edge detection on NVIDIA CUDA. In: CVPRW’08. ; 2008: 1-8.

7. Surkov V. Parallel Option Pricing with Fourier Space Time-stepping Method on Graphics Processing Units. Parallel Comput. 2010; 36(7): 372–
380.

Page 15 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

16 Sergio Iserte et al

8. Agarwal PK, Hampton S, Poznanovic J, Ramanthan A, Alam SR, Crozier PS. Performance modeling of microsecond scale biological molecular
dynamics simulations on heterogeneous architectures. Concurrency and Computation: Practice and Experience 2013; 25(10): 1356–1375.

9. Yoo A, Jette M, Grondona M. SLURM: Simple Linux Utility for Resource Management. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 2003 (pp. 44-60).

10. Silla F, Iserte S, ReañoC, Prades J. On the benefits of the remoteGPU virtualizationmechanism: The rCUDA case.Concurrency andComputation:
Practice and Experience 2017; 29(13): e4072.

11. Reaño C, Silla F, Shainer G, Schultz S. Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. In: Middleware Industry ’15. ACM;
2015; New York, NY, USA: 4:1–4:7

12. Iserte S, Castello A, Mayo R, et al. Slurm Support for Remote GPU Virtualization: Implementation and Performance Study. In: ; 2014: 318-325.

13. Iserte S, Prades J, no CR, Silla F. Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm. In: ; 2016:
98-101.

14. Liang TY, Chang YW. GridCuda: A Grid-Enabled CUDA Programming Toolkit. In: WAINA. ; 2011: 141–146.

15. Oikawa M, Kawai A, Nomura K, Yasuoka K, Yoshikawa K, Narumi T. DS-CUDA: A Middleware to Use Many GPUs in the Cloud Environment.
In: SCC ’12. ; 2012: 1207–1214.

16. Giunta G, Montella R, Agrillo G, Coviello G. A GPGPU Transparent Virtualization Component for High Performance Computing Clouds. In:
Springer Berlin Heidelberg; 2010: 379–391.

17. Shi L, Chen H, Sun J. vCUDA: GPU accelerated high performance computing in virtual machines. In: IPDPS’09. ; 2009: 1–11.

18. Gupta V, Gavrilovska A, Schwan K, et al. GViM: GPU-accelerated Virtual Machines. In: HPCVirt’09. ; 2009: 17–24.

19. NVIDIA . CUDA Runtime API 7.0. 2015.

20. NVIDIA . CUDA Driver API 7.0. 2015.

21. Reaño C, Silla F. Tuning remote GPU virtualization for InfiniBand networks. The Journal of Supercomputing 2016; 72(12): 4520–4545.

22. Reaño C, Silla F. A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. In: ; 2015: 488-489.

23. ImbernÃşn B, Prades J, GimÃľnez D, Cecilia JM, Silla F. Enhancing large-scale docking simulation on heterogeneous systems: AnMPI vs rCUDA
study. Future Generation Computer Systems 2018; 79: 26 - 37.

24. Silla F, Prades J, Reaño C. Leveraging rCUDA for Enhancing Low-Power Deployments in the Physics Domain. In: ICPP ’18. ; 2018: 17:1–17:8.

25. Reaño C, Prades J, Silla F. Exploring the Use of Remote GPU Virtualization in Low-Power Systems for Bioinformatics Applications. In: ICPP ’18.
; 2018: 8:1–8:8.

26. Prades J, Reaño C, Silla F, Imbernón B, Pérez-Sánchez H, Cecilia JM. Increasing Molecular Dynamics Simulations Throughput by Virtualizing
Remote GPUs with rCUDA. In: ICPP ’18. ; 2018: 9:1–9:8.

27. Pérez F, Reaño C, Silla F. Providing CUDA Acceleration to KVM Virtual Machines in InfiniBand Clusters with rCUDA. In: Jelasity M, Kalyvianaki
E., eds. Distributed Applications and Interoperable Systems; 2016: 82–95.

28. Prades J, Reaño C, Silla F. CUDA Acceleration for Xen Virtual Machines in Infiniband Clusters with rCUDA. In: PPoPP ’16. ; 2016: 35:1–35:2.

29. NVIDIA . GPU Applications. http://www.nvidia.com/object/gpu-applications.html; 2015.

30. Vouzis PD, Sahinidis NV. GPU-BLAST: Using graphics processors to accelerate protein sequence alignment. Bioinformatics 2010.

31. Brown WM, Kohlmeyer A, Plimpton SJ, Tharrington AN. Implementing molecular dynamics on hybrid high performance computers: Particle-
particle particle-mesh. Computer Physics Communications 2012; 183(3): 449 - 459.

Page 16 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://www.nvidia.com/object/gpu-applications.html

For Peer Review

Sergio Iserte et al 17

32. Liu Y, Schmidt B, Liu W, Maskell DL. CUDA-MEME: Accelerating motif discovery in biological sequences using CUDA-enabled graphics
processing units. Pattern Recognition Letters 2010; 31(14): 2170 - 2177.

33. Pronk S, PÃąll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics
2013; 29(7): 845-854.

34. Klus P, Lam S, Lyberg D, et al. BarraCUDA - a fast short read sequence aligner using graphics processing units. BMC Research Notes 2012; 5(1):
1–7.

35. Kurtz S, Phillippy A, Delcher A, et al. Versatile and open software for comparing large genomes. Genome Biology 2004; 5(2).

36. Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011; 2(3): 27:1–27:27.

37. Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005; 26(16): 1781–1802.

38. NextIO, N2800-ICA — Flexible and manageable I/O expansion and virtualization. http://www.nextio.com/; .

39. Krishnan V. Towards an integrated IO and clustering solution using PCI express. In: CLUSTER’07. ; 2007: 259–266.

40. Merritt AM, Gupta V, Verma A, Gavrilovska A, Schwan K. Shadowfax: Scaling in Heterogeneous Cluster Systems via GPGPU Assemblies. In:
VTDC’11. ; 2011: 3–10.

41. V-GPU: GPU virtualization. http://www.zillians.com/products/vgpu-gpu-virtualization/; .

42. Shadowfax II - scalable implementation of GPGPU assemblies. http://keeneland.gatech.edu/software/keeneland/kidron; .

43. Reaño C, Silla F, Shainer G, Schultz S. Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. In: Middleware Industry ’15. ACM;
2015: 4:1–4:7.

44. Nitzberg B, Schopf JM, Jones JP. PBS Pro: Grid Computing and Scheduling Attributes. In: Kluwer Academic Publishers; 2004: 183–190.

45. Kannan S, Roberts M, Mayes P, Brelsford D, Skovira J.Workload Management with LoadLeveler. IBM, rst ed. . 2001.

46. Tannenbaum T, Wright D, Miller K, Livny M. Beowulf Cluster Computing with Linux. In: MIT Press. 2002 (pp. 307–350).

47. Moab Workload Manager Documentation. http://www.adaptivecomputing.com/resources/docs/; .

48. LSF (Load Sharing Facility) Features and Documentation. http://www.platform.com/workload-management/high-performance-computing; .

49. Distributed Production Control System. http://www.llnl.gov/icc/lc/dpcs_overview.html; .

50. Quadrics Resource Management System. http://www.quadrics.com/website/pdf/rms.pdf; .

51. Beowulf Distributed Process Space. http://brpoc.sourceforge.net; .

52. Torque Resource Manager Documentation. http://www.adaptivecomputing.com/resources/docs/; .

53. Capit N, Da Costa G, Georgiou Y, et al. A batch scheduler with high level components. In: . 2. ; 2005: 776-783 Vol. 2.

54. Bode B, Halstead DM, Kendall R, Lei Z, Jackson D. The Portable Batch Scheduler and theMaui Scheduler on Linux Clusters. In: ALS’00. USENIX
Association; 2000: 27–27.

55. Gentzsch W. Sun Grid Engine: towards creating a compute power grid. In: ; 2001: 35-36.

56. Georgiou Y. Resource and Job Management in High Performance Computing. PhD Thesis, Joseph Fourier University, France . 2010.

57. Slurm Workload Manager. http://slurm.schedmd.com; .

58. Soner S, Ozturan C. Integer Programming Based Heterogeneous CPU-GPU Cluster Scheduler for SLURM Resource Manager. In: HPCC-
ICESS’12. ; 2012: 418-424.

59. Soner S, Ozturan C. Extending Slurm with Support for GPU Ranges. In: ; 2013.

Page 17 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://www.nextio.com/
http://www.zillians.com/products/vgpu-gpu-virtualization/
http://keeneland.gatech.edu/software/keeneland/kidron
http://www.adaptivecomputing.com/resources/docs/
http://www.platform.com/workload-management/high-performance-computing
http://www.llnl.gov/icc/lc/dpcs_overview.html
http://www.quadrics.com/website/pdf/rms.pdf
http://brpoc.sourceforge.net
http://www.adaptivecomputing.com/resources/docs/
http://slurm.schedmd.com

For Peer Review

18 Sergio Iserte et al

60. Sabin G, Sadayappan P. On Enhancing the Reliability of Job Schedulers. In: HAPCW. ; 2005.

61. Balle SM, Palermo DJ. Enhancing an Open Source Resource Manager with Multi-core/Multi-threaded Support. In: JSSPP’07. Springer-Verlag;
2008; Berlin, Heidelberg: 37–50.

How to cite this article: S. Iserte., J. Prades, C. Reaño, and F. Silla (2019), Improving the Management Efficiency of GPUWorkloads in Data Centers
through GPU Virtualization, Concurrency and Computation: Practice and Experience, 2019;00:1–6.

Page 18 of 18

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

