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Abstract

Indirect measurements of taste-related compounds are required when a high number of samples has to be 

analyzed in a short period of time, with a minimum cost. For this purpose, FT-MIR partial least square (PLS) 

regression models for the prediction of total soluble solids, sugars and organic acids have been developed 

using three sample sets including breeding lines and commercial varieties of watermelon. Specific models 

with excellent performance were obtained only for sugars. Nevertheless, a general model supposed a 

compromise between the best and worse models and offered %RMSEP values of 11.3%, 11.1% and 11.7% 

for fructose, glucose and sucrose respectively. The model was applied to the selection of high content 

samples (selection pressure 20% and 30%) obtaining good sensitivity levels and mean percentile of selected 

samples close to the expected values (100% sensitivity). The robustness of FT-MIR models was assessed with 

predictions of external assays, obtaining reasonable performances.

Abbreviations

FT-MIR, Fourier transform mid-infrared; NIR, near-infrared; PLS, partial least square; R2
C, coefficient of 

determination for calibration; R2
CV, coefficient of determination for cross-validation; R2

P coefficient of 

determination for prediction; RMSEC, root mean squared error of calibration; RMSECV, root mean squared 

error of cross-validation; RMSEP, root mean squared error of prediction; %RMSEP, RMSEP contextualized 

with the mean; %RMSEP (Maximum) RMSEP contextualized with the maximum value; RPD, ratio of prediction 

to deviation.

Keywords: Citrullus lanatus (Thunb.) Matsum. & Nakai; organoleptic quality; fructose; glucose; sucrose; 

breeding.

Chemical compounds studied in this article: Fructose (PubChem CID: 5984); Glucose (PubChem CID: 5793); 

Sucrose (PubChem CID: 5988); Citric acid (PubChem CID: 311); Malic acid (PubChem CID: 525); Glutamic acid 

(PubChem CID: 611). 



  

3

Highlights

FT-MIR PLS models were developed for taste-related compounds of watermelon

%RMSEP of 11.3% (fructose), 11.1% (glucose) and 11.7% (sucrose) were obtained 

General models offer a compromise between best and worst models

General models are robust and can be efficiently applied to selection programs
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1. Introduction

The shape, size, color and gloss of a fruit or vegetable represent the first impact on the consumer and thus, 

the decision to purchase them. But flavor, taste and aroma, has the largest impact on acceptability and desire 

to consume it again (Barrett, Beaulieu, & Shewfelt, 2010). Although certain consumer segments are mainly 

driven by price, it seems that perceived quality would be more important than price in determining consumer 

choice. In fact, consumers are more willing to pay for quality when they are confident on the premium taste 

that they are going to obtain. Several examples are available on this sense with model produces, including 

i.a. orange juice (Lange, Issanchou, & Combris, 2000) or apple (Harker, Gunson, & Jaeger, 2003). As a result, 

market demand for premium quality characterizes modern consumer societies and, in order to reinstate 

flavor in fruits and vegetables, it is necessary to turn the improvement of flavor into a main objective in 

breeding programs (Kyriacou & Rouphael, 2018).

In watermelon, Citullus lanatus (Thunb.) Natsum. & Nakai a key factor determining its quality and its 

commercial value is sweetness (Kyriacou, Leskovar, Colla, & Rouphael, 2018). The compounds responsible of 

this trait are mainly the soluble sugars fructose, glucose, and sucrose, with a total sugar amount that ranges 

from 24 to 91.0 mg g-1 fresh weight (fw) in watermelon cultivars, with a high influence of the environment 

and the use of different rootstocks (Yoo, Bang, Lee, Crosby, & Patil, 2012). Fructose is usually the main sugar 

found in ripe fruits with a concentration ranging from 24 to 51 mg g-1 fw, followed by sucrose with mean 

contents of 10 to 42 mg g-1 fw, and finally glucose with contents ranging from 9 to 23 mg g-1 fw (Fredes et al., 

2017; Yoo et al., 2012). Nevertheless, sugar profiles are variable and watermelon genotypes can be divided 

into high fructose and glucose and high sucrose genotypes (Yativ, Harary, & Wolf, 2010; Yoo et al., 2012). 

Crosses between watermelon and wild relatives demonstrated a high genetic variability for sugar profile, and 

it has been suggested that sucrose accumulation is affected by phloem unloading and sugar metabolism, with 

a high negative correlation with insoluble acid invertase activity and a positive correlation with sucrose 

synthase activity (Yativ et al., 2010). 

Sugar profiles also vary during the ripening. The concentration of fructose and glucose decrease during the 

maturation, reaching the lowest level at 50 and 45 days post-anthesis respectively. Sucrose concentration 
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follows an inverse trend, increasing its content and reaching a maximum at 45 days post-anthesis (Soteriou, 

Kyriacou, Siomos, & Gerasopoulos, 2014). 

Traditionally, the sweetness has been indirectly measured as the total soluble solids (TSS) content, because 

a high percentage of soluble solid content are mono and disaccharides (Maynard, 2001). Despite TSS 

providing a rapid indirect measure of sugar accumulation, it does not reveal the relative content of each 

soluble sugar. Considering the unequal contribution to sweetness by each sugar, this gross measurement 

hinders harnessing the genetic potential for sweetness improvement in watermelon. In fact, in other crops, 

such as tomato, sucrose equivalents calculated as the weighted sum of sugar concentration using the relative 

sweetening power of each sugar (1 for sucrose, 1.73 for fructose and 0.74 for glucose) has been more closely 

related to overall acceptability and sweetness perception than TSS (Baldwin et al., 1998). 

Organic acids are also present in watermelon, but to a lesser extent. Among them, malic acid accumulation 

is considerably higher in this species, followed at a distance by citric acid (Çandir, Yetişir, Karaca, & Üstün, 

2013; Fredes et al., 2017). Although acid accumulation in watermelon is usually overlooked due to its insipid 

acidity, its variations may modulate the perception of sweetness (Soteriou et al., 2014). Apart from a 

genotypic effect, total acidity and the accumulation of citric and malic acid is affected by grafting in 

watermelon (Fredes et al., 2017; Soteriou et al., 2014).

A reliable quantification of individual sugar and acid accumulation would be then necessary in order to supply 

high quality markets, either developing breeding programs considering taste improvement, or assessing the 

effect of environment or different agricultural practices, such as grafting. Instrumental determinations 

including high performance liquid chromatography (HPLC) coupled with different detectors and capillary 

electrophoresis can provide such quantifications (Cebolla-Cornejo, Valcárcel, Herrero-Martínez, Roselló, & 

Nuez, 2012; Cunha, Fernandes, & Ferreira, 2002; Ma, Sun, Chen, Zhang, & Zhu, 2014; Xu, Liang, & Zhu, 2015). 

However, the time and cost requirements of these methods are not practical for the development of such 

programs, as a high number of samples must be analyzed in a short period of time, with a minimum cost. 

In this context, the interest of indirect determinations using, for example, infrared spectroscopic methods is 

undeniable. Flores et al. (2008) used near infrared (NIR) spectroscopy as non-invasive method to measure 
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TSS content in melons and watermelons, successfully classifying melons and watermelons into low, medium 

and high sweetness levels. However, the classification into different categories do not reflect the 

concentration of individual compounds. Nevertheless, thick rinds as in the case of watermelon have been 

reported to interfere with the measurement of internal quality using non-destructive NIR methods (Arendse, 

Fawole, Magwaza, & Opara, 2018).

In other crops, Fourier-transform mid-infrared (FT-MIR) spectroscopy showed better performances than NIR 

spectroscopy for the indirect quantification of individual compounds such as fructose, glucose, sucrose, total 

sugar, and citric acid (de Oliveira, de Castilhos, Renard, & Bureau, 2014). This may be justified as MIR spectra 

provide information from frequencies of fundamental molecular vibrations and it is less sensitive than NIR to 

factors influencing light diffusion (de Oliveira et al., 2014). FT-MIR has been successfully applied to the 

quantification of individual sugars in different crops, including i.a. apricot (Bureau et al., 2009), grapes 

(Barnaba, Bellincontro, & Mencarelli, 2014), peach (Bureau et al., 2013), tomatoes (Ścibisz et al., 2011; 

Wilkerson et al., 2013) and passion fruit (de Oliveira et al., 2014). 

Little information regarding indirect quantification methods is available in the case of watermelon. This was, 

in fact, the objective of this work: to assess the performance of partial least square (PLS) regression models 

using FT-MIR spectra to evaluate the content of soluble sugars (fructose, glucose, and sucrose) and organic 

acids (malic and citric acids) in watermelon in order to provide a rapid an accurate discrimination and indirect 

quantification of sugar and acid composition in large number of samples, such as those obtained in breeding 

programs or production controls targeted to provide high quality fruits.

2. Materials and methods

2.1. Plant material and cultivation

Three sample sets were used in the study. The first two sets included samples of breeding lines grown and 

provided by Rijk Zwaan Ibérica S.A. In this case, cultivation was performed in greenhouse in Paraje el Mamí, 

Almeria, Spain (36.851988N;-2421842W) in the spring cycle, with a spacing of 1.4m x 1m and following 

commercial practices in the area. Ripe fruits were harvested at 20-45 days post pollination. The assays were 
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performed during two consecutive years. In the first year (2017) 59 different breeding lines were grown, 

representing the variability available in watermelon for the development of new varieties. These varieties 

represented different fruit sizes: 33 belonged to the 1-3 kg group, 18 to 4-8 kg and 8 of them had fruit weight 

higher than 8 kg. Different skin types were represented including the “Tiger Stripe”, “Sugar Baby”, 

“Charleston Gray” and “Crimson Sweet” types. During the second year (2018), 64 breeding lines were grown, 

including those of 2017 (except one of them) and five new lines. The same skin types were included and the 

distribution considering fruit weight was the following: 37 in the 1-3 kg group, 19 in the 4-8 kg group and 8 

in the >8 kg group.

A third sample set was obtained in 2018. In this case, 60 fruits belonging to the 4-8 kg group were obtained 

from local markets in order to represent commercial materials of different varieties and areas of production.

2.2. Sampling 

From each breeding line, one representative fruit was sampled. Ripe watermelons were collected and a cross-

section of 5 cm was obtained from the equatorial plane of each fruit. The edible part was obtained discarding 

the pericarp and approximately 2mm of flesh. After removing the seeds (if present) the samples were 

blended in a crusher until they were completely homogeneous and then stored at -80⁰C until analysis. 

Before the analyses sample supernatants were obtained by centrifuging the defrosted samples at 13.000 rpm 

during 5 min at 4⁰C to remove any pulp using a microcentrifuge 5415R with fixed-angle rotor F45-24-11 

(Eppendorf, Hamburg, Germany). Resulting supernatants were divided into three equivalent aliquots. The 

first one of them was used for the determination of total soluble solids content (TSS) using an electronic 

refractometer PAL-1 (ATAGO, Tokyo, Japan) with 0.1⁰ Brix precision. The rest of aliquots were used for FT-

MIR analysis and sugars and acids analysis by capillary electrophoresis (CE).

2.3. Analysis of FT-MIR spectra

A portable Cary 630 FTIR spectrometer (Agilent Technologies, Waldbronn, Germany), equipped with a 

temperature-stabilized DTGS detector, and a 5-bounce ATR crystal with ZnSe beam splitter was used to 

record the mid-infrared spectral range of 4000 – 700 cm-1. The effective path length at 1700 cm-1 with this 

ATR is 13.0 µm. Data were acquired operating at a spectral resolution of 4 cm-1 using Microlab FTIR Software 
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B.05.3 (Agilent Technologies, Waldbronn, Germany). To improve the signal-to-noise ratio a total of 64 scans 

of each measure were averaged.  

The spectral acquisition was performed in less than 2 min placing 150 µL of sample directly on the crystal 

(ATR). Spectra were independently measured twice and the crystal was cleaned between samples with 

distilled water and cellulose tissue.  

To perform the models, only data from the fingerprint spectral region from 1500 – 900 cm-1 was included. 

This spectral region is associated with C-O and C-C stretching modes and O-C-H, C-C-H, and C-O-H bending 

vibrational modes (Irudayaraj & Tewari, 2003; Stewart, 2004). Moreover, the selection of this spectral region 

avoids to include the O-H stretching modes from water (Wilkerson et al., 2013).

2.4. Reagents

Analytical grade standards of organic acids (malic acid and citric acid) and sugars (fructose, glucose and 

sucrose), 2,6-pyridine dicarboxylic acid (PDC), hexadimethrine bromide (HDM) and sodium dodecyl sulphate 

(SDS) were purchased from Sigma-Aldrich (Syeinheim, Germany). Sodium hydroxide (NaOH) were from 

Panreac (Castellar del Vallés, Spain). Ultrapure water was obtained using a Milli-Q water system (Millipore, 

Molsheim, France).

2.5. Analysis of sugar an acid content

Prior to the capillary electrophoresis analysis, the supernatants were diluted 1:20 with ultrapure water and 

filtered using a 0.22 µm-Nylon centrifuge tube filter (Costar Spin-X, Corning, NY, USA). The quantification of 

organic acids and sugars was performed using a 7100 CE system equipped with diode array detector and 

thermostated sample compartment (Agilent Technologies, Waldbronn, Germany). The procedure described

 by Cebolla-Cornejo et al. (2012) was followed using uncoated fused silica capillaries of 67 cm total length, 60 

cm effective length, 375 µm od, 50 µm id (Polymicro Technologies, Phoenix, AZ, USA). Prior its first use, 

capillaries were flushed with NaOH 1M during 300 s at 50⁰C, NaOH 0.1M during 300 s, and water during 600 

s. Each working session started with a rinse of the capillary with SDS 58mM during 120 s and running buffer 

during 300 s. The running buffer was prepared using a 20mM PCA solution with 0.1% (w/v) HDM and adjusted 
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to pH 12.1. A hydrodynamic injection at 3400 Pa during 10 s was used. The voltage applied for separation 

was -25 kV at 20⁰C with indirect detection at 214 nm.     

2.6. Data analysis

PLS regression models were obtained for each sample set, as well as a general model with the whole set of 

samples (183). For each model 75% of the samples were used as a calibration group (calibration and cross-

validation). The remaining 25% of samples were included in a validation group to obtain predictions using 

the model. Samples were randomly included in the calibration and prediction groups of the specific models. 

In order to enable a comparison between the specific models and the general model, the last included in the 

calibration and validation groups the same samples of the specific models. 

PLS calibration models correlating FT-MIR spectral absorbance data (X matrix) and the concentration of 

measured compounds (Y vector): TSS, malic acid, citric acid, fructose, glucose, sucrose, total sugars, sucrose 

equivalents, or citric acid equivalents were obtained. Sucrose equivalents were calculated as the weighted 

sum of sugar concentration using the relative sweetening power of each sugar: 1 for sucrose, 1.73 for fructose 

and 0.74 for glucose (Baldwin et al., 1998). Citric acid equivalents were calculated as the weight sum of citric 

and malic acid considering their relative sourness: 1 for citric acid and 1.14 for malic acid (Stevens, Kader, & 

Algazi, 1977). All Partial Least Square (PLS) models were performed using Matlab v 9.4 (Mathworks Inc, 

Natick, MA, USA) and the PLS Toolbox 8.2.1 for Matlab (Eigenvector Research Inc, Wenatchee, WA, USA). 

Prior to modelling, data set from the X matrix was transformed using the multiplicative scatter correction 

(MSC) function, while Y matrices were autoscaled (with mean and standard variation). These pretreatments 

were selected as they improved the performance of the models compared to other alternatives and they had 

been used in previous studies dealing with MIR spectra (Wilkerson et al., 2013). The spectral data were then 

analyzed by PLS using Venetian blinds as cross-validation method. Resulting calibration model performance 

was evaluated in terms of outlier diagnostics, the number of latent variables (LV), coefficient of 

determination of calibration (R2
C), root mean squares error calibration (RMSEC), and root mean squares error 
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of cross-validation (RMSECV). Selection criteria used to choose the most suitable calibration model was 

focused on minimizing the RMSECV and number of LV and maximizing R2 values (Wilkerson et al., 2013).  

Outlier identification was performed using a graphical evaluation of Q residuals and leverage. Any outlier 

point that showed a large Q residual or unusual distribution was removed and the model was recalculated. 

Normalized residuals and leverage parameters were also considered for outlier identification (values <-3 or 

>3) and elimination in response variables.  

Once the final model was constructed, prediction matrices were used to evaluate the expected error when 

the model was applied to predict new samples (validation group). For that purpose, root mean squared errors 

of prediction (RMSEP) and correlation coefficient of prediction (R2
P) were calculated. %RMSEC and %REMSEP 

were also calculated as a percentage of the mean values of each group in order to contextualize the results. 

%RMSEP (maximum) was calculated using the maximum value to provide a reference for selection programs 

considering high content samples.

To evaluate the predictive capacity of the model, residual prediction deviation (RPD) was calculated as the 

ratio between the standard deviation of the prediction group and RMSEP. This ratio is an adaptation of the 

original RPD description which uses SEP instead of RMSEP; the use of RMSEP offers lower RPD value, thus 

representing a more conservative approach. The models are usually considered useful when RPD values are 

higher than 2 (Fearn, 2002). 

3. Results and discussion

3.1. Variation present in the samples used for modelling

The TSS values obtained in the samples of the breeding lines grown in 2017 ranged between 5°Brix and 

12.7°Brix and those of breeding lines of 2018 between 9.5°Brix and 14.1°Brix (Table 1). The commercial 

materials from 2018 ranged from 4.6°Brix to 11.7°Brix. Commercial high-quality watermelons are supposed 

to be included in the range of 10-14°Brix (Wehner, 2008) though the lower limit can be as low as 4-5% in 

specific materials (Yoo et al., 2012). Therefore, the usual commercial range of variation was covered with the 

different sample groups used in the study.
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Similar mean values were obtained in both years of fructose and sucrose contents in the breeding lines (Table 

1). The accumulation of glucose was much lower than the rest of sugars. Although higher contents of fructose 

and glucose were found in the breeding lines during the 2018 season, the difference was especially important 

in the case of glucose (Table 1). Samples from the second year tended to have higher ratios of glucose to 

fructose and glucose to sucrose. Another important difference between both years was that samples from 

2018 tended to have higher citric acid (Table 1).
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Table 1. Statistical parameters of the sample sets used for the calibration and validation of PLS models. 
Contents expressed in mg g-1 of fresh weight, except Total soluble solids (TSS) expressed in °Brix. N: Number 
of samples. RSD: Relative standard deviation.

Sample set Parameters Calibration Validation
N Mean RSD 

(%)
Range N Mean RSD 

(%)
Range

TSS 9.2 19.3 5.0 – 12.7 8.7 19.6 5.0 – 12.2
Fructose 30.78 25.3 18.78 – 52.40 29.46 24.4 15.41 – 42.52

Breeding 
lines 2017

Glucose 13.68 43.3 5.48 – 31.03 10.92 33.6 5.77 – 18.09
Sucrose 31.51 61.0 0.00 – 61.95 25.94 54.3 2.28 – 54.08
Malic acid 1.97 20.5 1.00 – 3.21 1.98 21.7 1.04 – 2.71
Citric acid 0.45 62.0 0.09 – 1.16 0.39 67.2 0.09 – 1.05
Total sugars 75.97 21.6 42.79 – 102.96 66.33 26.1 39.59 – 102.08
Sucrose equivalents 94.88 18.7 57.13 – 124.32 84.99 23.7 53.94 – 121.59
Citric acid equivalents

45

2.69 20.7 1.56 – 4.42

14

2.65 20.9 1.46 – 3.76
TSS 11.7 9.2 9.5 – 14.1 12.0 10.2 8.8 – 14.2Breeding 

lines 2018 Fructose 33.62 22.9 17.77 – 55.44 37.65 23.1 24.89 – 52.46
Glucose 18.57 36.1 7.32 – 37.83 22.14 35.0 9.66 – 35.99
Sucrose 33.31 44.3 6.17 – 69.65 28.01 43.5 9.18 – 51.64
Malic acid 1.76 24.6 0.77 – 3.43 1.73 35.3 0.82 – 2.68
Citric acid 0.93 38.6 0.32 – 1.71 0.97 44.3 0.28 – 2.01
Total sugars 85.50 15.0 58.94 – 116.14 87.80 16.1 58.00 – 114.12
Sucrose equivalents 105.22 14.1 72.72 – 146.77 109.53 16.0 71.57 – 133.40
Citric acid equivalents

48

2.94 20.4 1.97 – 5.28

16

2.94 24.2 1.63 – 4.36
TSS 9.43 13.9 4.6 – 11.7 9.4 9.7 8.2 – 11.4
Fructose 24.50 20.0 11.13 – 32.36 23.34 16.1 19.31 – 32.51

Commercial 
materials 
2018 Glucose 21.14 18.7 8.99 – 31.37 20.76 19.0 14.71 – 28.31

Sucrose 22.38 58.3 0.00 – 53.47 27.12 46.9 9.15 – 53.57
Malic acid 2.07 27.9 1.30 – 3.71 1.92 27.7 1.11 – 2.85
Citric acid 0.69 47.9 0.08 – 1.48 0.75 40.2 0.30 – 1.35
Total sugars 68.02 22.8 20.12 – 96.11 71.22 19.3 49.02 – 90.90
Sucrose equivalents 80.41 21.3 25.91 – 108.51 82.86 18.3 58.90 – 103.83
Citric acid equivalents

45

3.06 24.0 1.83 – 3.06

15

2.94 27.0 1.57 – 3.93
TSS 10.2 17.9 4.6 – 14.1 10.1 19.1 5.0 – 14.2General 

model Fructose 29.72 26.5 11.13 – 55.44 30.33 29.9 15.41 – 52.46
Glucose 17.81 36.0 5.48 – 37.83 18.19 40.4 5.77 – 35.99
Sucrose 29.16 56.5 0.00 – 69.65 27.07 46.9 2.28 – 54.08
Malic acid 1.93 25.4 0.77 – 3.71 1.87 28.5 082 – 2.85
Citric acid 0.70 54.4 0.08 – 1.71 0.72 57.3 0.09 – 2.01
Total sugars 76.69 21.5 20.12 – 116.14 75.59 23.1 39.59 – 114.12
Sucrose equivalents

138

93.76 20.7 25.91 – 146.77

45

93.01 22.9 53.94 – 133.40
Citric acid equivalents 2.90 22.3 1.56 – 5.28 2.85 24.4 1.46 – 4.36

The range of variation for fructose, glucose and glucose contents of the commercial materials was narrower 

and, in general, it was included in the range of variation of the breeding lines (Table 1). Though a lower 

minimum fructose content was registered in the commercial materials. In the case of the acids, commercial 

materials reached higher accumulation of malic acid and lower accumulation of citric acid.

Considering all the samples, that is the general model, the range of fructose accumulation (11.13-55.44 mg 

g-1) exceeded the limits of previously reported variation, between 24.0 and 51.0 mg g-1 (Fredes et al., 2017; 

Yoo et al., 2012). A wider difference between the range of variation in the present study and previous reports 
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was obtained for the ranges of accumulation of glucose (5.48-37.83 mg g-1 vs. 9.0-23.0 mg g-1) and sucrose 

(0.00-69.65 mg g-1 vs. 10.0-42.0 mg g-1). In the case of the acid content, the range of variation represented in 

the general model for citric acid (0.08-1.71 mg g-1) was wider than that observed in previous literature (Çandir 

et al., 2013; Fredes et al., 2017) while a for malic acid minimum and maximum contents (0.77-3.71 mg g-1) 

were lower than previously reported contents (1.63-4.57 mg g-1).

As regards the level of variation, for the three sample sets and the general model, the %RSD for fructose was, 

in general, considerably lower than that for glucose and sucrose, especially in the breeding lines. The highest 

levels of variation were always detected for sucrose. A similar imbalance in the %RSD applied to the organic 

acids, with higher levels of variation detected for citric acid, the one with lower mean contents.

The statistical parameters of the samples of the validation group had similar values to those of the calibration 

group of each sample set.

A correlation analysis was performed among the variables (Supplementary Table 1). As expected, total 

soluble solids were highly correlated with total sugar accumulation. Among the sugars a higher correlation 

was observed between TSS and sucrose. Unexpectedly, a high correlation (0.71) was found between citric 

acid contents and TSS. Consequently, moderate correlations were found between this acid and total sugars. 

Malic acid showed low or non-significant correlations with the rest of variables. Glucose and fructose showed 

a positive moderate correlation (0.51), and both of them a negative correlation with sucrose accumulation. 

This is an expected result. As reviewed by Soteriou et al. (2014), during the initial development of 

watermelons α-galactosidase and acid invertases keep increasing contents of reducing sugars and restrict 

sucrose accumulation, while later sucrose accumulates at the expense of fructose and glucose due to an 

increased activity of sucrose phosphate synthase and sucrose synthase and a reduced activity of soluble acid 

invertase.

3.2. PLS regression models.

The model obtained for the 2017 breeding lines was excellent (Table 2). Coefficients of determination for 

calibration ranged from 0.94 for malic acid to 1.00 for sucrose, with %RMSEC values ranging from 1.5% for 

sucrose to 9.9% for citric acid. RMSECV values obtained in the crossvalidation were on average 2.7 times 
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higher. RMSEP values were in average 3.2 times higher than RMSEC, but still %RMSEP represented 8.5%, 

13.9% and 10.1% of fructose, glucose and sucrose mean contents, and R2
P values ranged from 0.86 for glucose 

to 0.97 for sucrose. The performance of acid prediction was notably worse, with R2
P values for prediction 

lower than 0.32 and %RMSEP values between 17.8% for malic and 54.5% for citric acid. These values led to 

obtain RPD values higher than 2 for sugars and TSS, thus appropriate for screening purposes (Fearn, 2002), 

and lower for acids. %RMSEP values considering the maximum value, thus the probable target of a breeding 

program, were a 40% lower on average.

The performance of the model for breeding lines grown in 2018 was similar (Table 2). R2
C values for 

calibration ranged from 0.91 to 1.00 and %RMSEC values from 1% or fructose to 8.6% for citric acid. Cross 

validation was tougher in this case, and RMSECV values were on average 5.1 times higher than RMSEC.

Regarding predictions, the performance of the model was somewhat lower considering R2
P values for TSS 

and sugars (0.81-0.91), though much better for acids (0.65-0.73). %RMSEP values for TSS and sugars were 

similar to those obtained for the first model, ranging from 4.5% for TSS to 14.3% for sucrose. Again, RPD 

values were higher than 2 for TSS and sugars and slightly lower than 2 for citric and malic acids.

The model for commercial materials offered a similar performance, with better results for TSS and sugars 

than for acids (Table 2). In this case, though the R2
P for fructose was low (0.44), the %RMSEP was similar to 

the previous models. In the case of sugars, %RMSEP ranged from 8.8% for glucose to 11.7% for fructose. RPD 

values were higher than 2 for all the compounds except for fructose (1.4) and malic acid (1.5).

For the three specific models, a PLS models were also obtained for total sugars, sucrose equivalents and citric 

acid equivalents. In the case of total sugars and sucrose equivalents, %RMSEP values obtained were similar 

to the one corresponding to the best individual compound, while in the case of citric acid equivalents 

%RMSEP values were better than for individual compounds. These results are interesting, as using these 

values a selection can be performed with an error level lower than the one that would be obtained combining 

the error of the individual compounds that participate in their calculation.

A general model was calculated to compare the performance of a model with a higher number of data and 

wider levels of variation with the specific models. R2
P values obtained with the general model were similar to 
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those obtained with the best specific model (Table 2). The %RMSEP values were on average a 30% higher 

than the best model. Specifically, the predictions with the general model were worse for fructose and citric 

acid compared to the best model. Alternatively, the performance was better than the worst specific model 

(%RMSEP on average a 12% lower), especially for glucose, sucrose and citric acid. For the general model, RPD 

values were higher than 2.5 for TSS and sugars and lower for citric and malic acid. The RPD values for total 

sugars and sucrose equivalents were also higher than 2. It is possible to say then, that a general model would 

be preferred to specific models, as it represents a compromise between the best and the worst specific 

models and it would have a wider applicability. The performance of this general model was especially good 

for sugars, the main target of breeding programs and the commercialization of watermelon, as %RMSEP 

values for fructose, glucose and sucrose were 11.3%, 11.1% and 11.7% respectively.

In order to try to improve the resulting models, loadings of the PLS model were reviewed (Supplementary 

Fig. 1), and new models were developed with those wavelengths with higher absolute loadings. With a similar 

purpose, reverse interval PLS models were also developed. In both cases, the performance of the models 

obtained were lower and no improvement was achieved with these model variations. Models considering a 

wider spectra were also considered. Wilkerson et al. (2013) in their work with tomato also considered 

including the wavelengths between 1800 cm-1 and 1500 cm-1 for certain models, but the authors already 

alerted about the high absorption of water in this region. The addition of these wavelengths did not improve 

the models. Additionally, it was considered the possibility of removing the pretreatment of the spectra with 

the MSC correction, but this pretreatment increased considerably the performance of the models for organic 

acids. On the other hand, the possible noise of the CE analytical procedure on the performance of the models 

was discarded, as mean %RSD for the determinations for citric and malic acids and fructose, glucose and 

sucrose were respectively 2.4%, 1.6%, 1.2%, 1.3% and 1.0%.

FT-MIR has been applied to the analysis of more than 40 genera of plant species, but most works have dealt 

with authenticating products and identifying adulteration (Bureau, Cozzolino, & Clark, 2019). Nevertheless, 

FT-MIR has been applied satisfactorily to predict individual sugar and acid contents in different species. For 

example, Bureau et al. (2009) developed prediction models for apricot using eight varieties, obtaining R2
P 



  

16

values ranging from 0.74 for fructose to 0.97 for malic acid, with %RMSEP values about 12% for glucose, malic 

acid and citric acid, 16% for sucrose, and 18% for fructose. Barnaba et al. (2014) working with a single grape 

variety “Sangiovese”, obtained R2
P values of 0.93 and 0.92 for glucose and fructose respectively, with 

%RMSEP values of 4.5% and 5.5%, which represented RPD values around 2.5. In this case, the prediction for 

malic acid was notably worse, with an RPD value of 1.15. In peach, Bureau et al. (2013), obtained %RMSEP 

values of 20.2% for sucrose, 13% for glucose, 19% for fructose, 16.4% for malic acid, and 25.7% for citric acid 

(which had a lower content compared to malic acid). In tomato, excellent models have been obtained for a 

wide diversity of varieties. Ścibisz et al. (2011) obtained %RMSEP values for glucose and fructose of 5.1% and 

6.8% respectively. Working with processing tomatoes, Wilkerson et al. (2013) obtained %RMSEP 

(%maximum) values of 6.9% for glucose and 6.0% for fructose. In passion fruit de Oliveira et al. (2014) 

obtained %RMSEP values of 8.7%, 8.3% and 11.7% for glucose, fructose and sucrose respectively. Models 

with lower performance have also been obtained. For example, with samples of barley malt from six 

commercial varieties, Huang, Carragher, & Cozzolino (2016) obtained %SEP values of 19.3% for glucose and 

31.8% for sucrose, with RPD values of 1.7.

Taken together, the performance of the predictions made in the present work in watermelon can be 

considered as excellent, considering previous results in other crops. In the case of the acids, the performance 

decreases, especially in the case of citric acid. But in this case, it should be considered that MIR spectroscopy 

is generally regarded insensitive to compounds present at concentrations lower than 1 mg g-1 (Bureau et al., 

2019), as it is the case for this acid in several of the analyzed samples. In fact, other works in tomato using 

FT-MIR spectra revealed a lower performance in the case of acids, which has been related to their lower 

concentrations (Ścibisz et al., 2011; Ibañez et al., 2019).



  

17

Table 2. Performance of the partial least squares (PLS) regression models predicting taste-related compounds content from ATR FT-MIR spectra. TSS: total 

soluble solids; LV: number of latent variables; R2: coefficient of determination; RMSE: root mean squared error; C: calibration; CV: cross-validation; P: 

prediction; RPD: residual prediction deviation.

Model Parameters LV R2
C

RMSEC
mg g-1

%RMSEC
(mean)

RMSECV
mg g-1 R2

P
RMSEP
mg g-1

%RMSEP 
(mean)

%RMSEP 
(maximum) RPD

TSS 5 0.99 0.2 2.0 0.3 0.98 0.3 3.0 2.1 6.6
Fructose 6 0.97 1.33 4.3 2.68 0.89 2.52 8.5 5.9 2.9
Glucose 5 0.98 0.86 6.3 1.18 0.86 1.51 13.9 8.4 2.4
Sucrose 7 1.00 0.48 1.5 2.02 0.97 2.62 10.1 4.9 5.4
Malic acid 7 0.94 0.10 4.9 0.26 0.29 0.35 17.8 13.0 1.2
Citric acid 7 0.97 0.04 9.9 0.19 0.32 0.21 54.5 20.5 1.2
Total sugars 5 0.96 3.40 4.5 4.53 0.88 6.02 9.1 5.9 2.9
Sucrose equivalents 5 0.95 4.00 4.2 6.10 0.56 7.94 9.4 6.5 2.5

Breeding lines 2017

Citric acid equivalents 8 0.98 0.08 3.1 0.34 0.29 0.46 17.4 12.2 1.2
TSS 7 0.98 0.2 1.3 0.5 0.81 0.5 4.5 3.8 2.3
Fructose 10 1.00 0.35 1.0 3.71 0.87 3.04 8.1 5.8 2.9
Glucose 9 1.00 0.40 2.2 1.47 0.91 2.22 10.1 6.2 3.5
Sucrose 8 1.00 0.98 2.9 3.05 0.90 4.02 14.3 7.8 3.0
Malic acid 7 0.91 0.13 7.5 0.39 0.73 0.33 19.1 12.3 1.9
Citric acid 8 0.95 0.08 8.6 0.15 0.65 0.25 25.7 12.4 1.7
Total sugars 8 0.97 2.16 2.5 7.16 0.72 7.48 8.5 6.6 1.9
Sucrose equivalents 8 0.97 2.64 2.5 9.47 0.75 8.87 8.1 6.7 2.0

Breeding lines 2018

Citric acid equivalents 8 0.94 0.14 4.9 0.43 0.69 0.39 13.2 8.9 1.8
TSS 5 0.96 0.3 2.8 0.5 0.79 0.5 5.0 4.2 1.9
Fructose 4 0.55 3.27 13.3 3.71 0.44 2.73 11.7 8.4 1.4
Glucose 5 0.94 0.98 4.7 1.47 0.82 1.82 8.8 6.5 2.2
Sucrose 4 0.96 2.62 11.7 3.05 0.98 2.53 9.4 4.7 5.0
Malic acid 6 0.85 0.22 10.6 0.39 0.54 0.36 18.6 12.5 1.5
Citric acid 6 0.92 0.09 13.1 0.15 0.83 0.13 17.7 9.9 2.3
Total sugars 4 0.83 6.31 9.3 7.16 0.81 6.16 8.7 6.8 2.2
Sucrose equivalents 4 0.96 8.33 10.4 9.47 0.76 7.46 9.0 7.2 2.0

Commercial materials 
2018

Citric acid equivalents 6 0.88 0.25 8.3 0.43 0.67 0.46 15.7 11.7 1.7
TSS 6 0.98 0.2 2.3 0.3 0.96 0.4 4.0 2.9 4.8
Fructose 6 0.80 3.50 11.8 3.98 0.85 3.44 11.3 6.6 2.6
Glucose 6 0.95 1.44 8.1 1.70 0.92 2.02 11.1 5.6 3.6
Sucrose 6 0.98 2.50 8.6 2.93 0.94 3.78 11.7 5.9 4.0
Malic acid 7 0.71 0.26 13.6 0.36 0.56 0.35 18.8 12.4 1.5
Citric acid 8 0.92 0.11 15.2 0.21 0.66 0.24 33.4 12.0 1.7
Total sugars 5 0.79 7.56 9.9 7.87 0.82 0.75 9.7 6.4 2.4
Sucrose equivalents 5 0.77 8.95 9.6 9.34 0.81 9.38 10.1 7.0 2.3

General model

Citric acid equivalents 7 0.76 0.31 10.8 0.43 0.67 0.40 13.9 9.1 1.8
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3.3. Applicability of PLS models: selection pressure and external assays.

One of the main applications of indirect prediction of individual compounds in watermelon is related with 

the development of breeding programs, in which a high number of samples is to be processed in the shorter 

period of time possible, and with minimum costs. In this case, it would be interesting to know if the models 

are reliable when applied to select the samples with the highest contents, given a certain selection pressure. 

For this purpose, the general model was applied to identify the 20% or 30% of the samples of the validation 

group with the highest values (Table 3). The values of sensitivity (true positive rate) for a selection pressure 

of 30% were higher than 90% for individual sugars, with specificities (true negative rate) higher than 95% 

(Table 3). Sensitivities for acids were higher than 70% and for derived variables higher than 75%. More 

interestingly, the observed mean percentile of selected samples were close to the expected mean percentile 

considering 100% sensitivity. That means that those samples that were wrongly selected presented high 

contents close to the threshold of selection. With a selection pressure of 20% the sensitivities were 

somewhat lower, but probably due to the small number of samples considered with this pressure. It is 

important to note that the sensitivity for sucrose was 100% and mean percentile for fructose and glucose 

were 11.4% and 15.6%, again really close to the expected value for 100% sensitivity (11.1%).

In order to check the robustness of FT-MIR predictions, two new general models were calculated using the 

whole number of samples of one of the sample sets of breeding lines and the set for commercial materials. 

These new models were then applied to predict the contents of the remaining sample set for breeding lines. 

This is a really tough test, as it involves the prediction of a high number of samples of an external assay, and 

it is rarely found in the literature. This test will evaluate if internal calibrations are required to develop specific 

models for each assay, increasing the cost of analysis, or if reliable general models can be applied without 

assay-specific calibrations.
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Table 3. Values of sensitivity and specificity the selection of samples of the validation group for high content 
applying a selection pressure of 20% or 30% with the general PLS model. Mean percentiles (observed and 
expected for 100% sensitivity) of selected plants are also provided.

20% Selection pressure 30% Selection pressure
General 
model

Sensitivity 
(%)

Specificity 
(%)

Observed 
mean 

percentile (%)

Expected 
mean 

percentile (%)

Sensitivity 
(%)

Specificity 
(%)

Observed 
mean 

percentile (%)

Expected 
mean 

percentile (%)
TSS 88.9 97.2 11.9 11.1 92.9 96.8 17.1 16.7
Fructose 88.9 97.2 11.4 11.1 92.9 96.8 18.9 16.7
Glucose 66.7 91.7 15.6 11.1 92.9 96.8 18.1 16.7
Sucrose 100 100 11.1 11.1 92.9 96.8 16.8 16.7
Malic acid 66.7 91.7 17.3 11.1 71.4 87.1 23.5 16.7
Citric acid 66.7 91.7 16.0 11.1 71.4 87.1 22.7 16.7
Total sugars 66.7 91.7 15.3 11.1 85.7 93.5 21.1 16.7
Sucrose 
equivalents 77.8 94.4 16.3 11.1 85.7 93.5 18.6 16.7

Citric acid 
equivalents 66.7 91.7 15.8 11.1 78.6 90.3 20.3 16.7

The models developed offered a lower performance compared to the previous general model (Table 4). This 

result is expected, as a principal component analysis of response variables showed that the range of variation 

of the three sample sets was rather different, both from the point of view of FT-MIR spectra (Fig. 1) and sugar 

and acid contents (Fig. 2), especially in the case of breeding lines grown in 2018.

It seems evident, then, the necessity to use a high number of samples representing the widest variability 

possible to reinforce the robustness of FTIR models. But despite this limitation, the %RMSEP obtained for 

sugars in the prediction of the breeding lines grown in 2018 ranged from 12.6% for sucrose and 16% for 

glucose. In the case of the predictions of sugars for 2017, %RMSEP values ranged from 10.1% for sucrose and 

28.3% for glucose. These figures prove the reliability of the methodology, considering its indirect nature and 

the application to assays not included in the calibration. 
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Table 4. Characteristics of the predictions made for one of the samples sets with breeding lines using the 
remaining set and the set for commercial varieties for calibrating new models. R2

P: coefficient of 
determination of the predictions; RMSEP: root mean squared error of prediction; %RMSEP: RMSEP 
contextualized with mean value of the validation group.

Model Validation Parameter R2
P RMSEP %RMSEP

TSS 0.82 0.5 4.3

Fructose 0.71 43.85 12.7

Glucose 0.87 31.20 16.0

Sucrose 0.93 40.23 12.6

Malic acid 0.48 5.71 32.5

Citric acid 0.23 3.29 35.0

Total sugars 0.45 98.30 11.4

Sucrose equivalents 0.39 123.69 11.6

Breeding lines 2017
and 
commercial varieties
(119 samples)

Breeding lines 2018
(64 samples)

Citric acid equivalents 0.50 6.71 22.8

TSS 0.98 0.4 3.9

Fructose 0.78 68.57 22.5

Glucose 0.92 36.81 28.3

Sucrose 0.98 30.48 10.1

Malic acid 0.33 3.97 20.1

Citric acid 0.57 3.30 75.6

Total sugars 0.89 122.19 16.6

Sucrose equivalents 0.84 195.93 21.2

Breeding lines 2018
and
commercial varieties
(124 samples)

Breeding lines 2017
(59 samples)

Citric acid equivalents 0.47 4.50 16.8

4. Conclusions

FT-MIR based PLS regression models in watermelon can offer precise indirect predictions of gross variables 

such as TSS and of the individual accumulation of specific sugars (fructose, glucose, and sucrose). The error 

in the prediction of acids, is considerably higher, especially for citric acid, found at low concentrations in this 

crop. The performance of the models depends on the specific material included in the calibration. Therefore, 

the use of general models is recommended as they offer a compromise between the performance of the best 

and worst models and can be applied to a wider range of variation. These general models can be satisfactorily 

applied to selection programs, with high sensitivity levels. Even those samples wrongly selected would have 

high contents close to the threshold of selection. General models are robust and can be applied to the 

prediction of external assays not included in the calibration. Nevertheless, in such cases the use of a wide 

range of variation is suggested in the development of general models.
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