
UNIVERSITAT JAUME I

ESCOLA SUPERIOR DE TECNOLOGIA I CIÈNCIES
EXPERIMENTALS

MÁSTER EN INGENIERÍA INDUSTRIAL

Desarrollo de un sistema electrónico para la
captación de imágenes de un solo ṕıxel

mediante métodos acústicos

Trabajo final de máster

Autor :
Marc Mart́ı Sabaté

Director :
Ignacio Peñarrocha Alós

Coodirector :
Daniel Torrent Mart́ı

Castellón, Julio 2019

Abstract

This project explains the implementation in an integrated and autonomous electronic device of an acoustic
imaging system. The device belongs to the so called single pixel devices; that is to say, this device is
able to reconstruct an image with spatial resolution using a single sensor or transducer. The key point
of these techniques is the ability to modulate the source field and then recover the signal sequentially or
by multiplexing in frequency (as it happens in this case). The image is finally reconstructed through a
computational algorithm.

All along this project you will be able to discover the physics equations underneath the problem, the image
reconstruction algorithm and its behavior, and its implementation in a real system and environment,
which is the main part of the project. Considerations and restrictions of applying a mathematical model
to the real world will appear and constraint the solution, forcing to take decisions such as the components
selection.

Simulation results will be given and discussed, validating the reconstruction algorithm. Moreover, exper-
imental measurements will be provided and will lead the discussion to potential mistakes and ways to
improve the performance of the device.

Acknowledgements

I would like to express my gratitude to everyone who has helped in the realization of this project.

Firstly, I acknowledge the contribution of Daniel Torrent Mart́ı. It is his initial idea what has turned into
this project, and I am so grateful to him for giving me the opportunity of developing his idea.

I am also indebted to Ignacio Peñarrocha Alós, my academical supervisor at Universitat Jaume I. His
advice in electronics and his point of view have been necessary to achieve the engineering part of the
project.

Thanks are also due to José Mart́ınez Sotoca and Vicente Javier Traver Roig, who were also involved in
the project from the beginning, for all the information and advice about machine learning algorithms. I
would like to thank in general all the members at GROC, where the project has taken place.

CONTENTS 2019

Contents

I Report 9

1 Objective 10

2 Scope 11

3 Background 12

4 Standards 15

4.1 Standards . 15

4.2 Software . 15

5 Design requirements 19

6 Solution analysis 21

6.1 Hardware selection and design . 21

6.1.1 Starting point: already selected material . 21

6.1.2 Microcontroller’s selection . 22

6.1.3 External memory . 28

6.1.4 LCD Display . 29

6.1.5 Power supply . 29

6.1.6 Noise generation . 31

6.1.7 Analogical signal processing . 34

6.1.8 PCB design . 37

6.2 Software’s design . 39

Mart́ı Sabaté, Marc 2 of 123

CONTENTS 2019

6.2.1 Microcontroller’s ADC configuration . 39

6.2.2 Measuring method . 41

6.2.3 Rearranging coefficients . 45

6.2.4 Reconstruction algorithm . 46

7 Results 49

7.1 System’s hardware . 49

7.2 System’s software . 50

7.3 System’s behavior . 52

8 Conclusion 58

9 Project’s planning 59

10 Order 62

II Appendix 63

A Electronic measurements 64

A.1 Loudspeaker adapting circuit . 64

A.2 Microphone adapting circuit . 66

A.3 MATLAB measurement simulation . 67

B Linear regression test 71

C Artificial Neural Network 75

C.1 Neural networks: a historical approach . 75

C.2 Need of a machine learning solution . 77

C.3 Network’s architecture . 78

C.4 Hyper parameter discussion: choices . 85

C.5 Results . 90

C.6 Conclusion . 91

C.7 Beyond the problem: increasing matrix dimension . 91

Mart́ı Sabaté, Marc 3 of 123

CONTENTS 2019

D Physics model 95

D.1 Introduction: Multiple scattering theory . 95

D.2 Solution for acoustic waves . 96

D.3 Plate’s design . 98

D.4 Exploring the code . 100

E Arduino code 105

E.1 Main code . 105

E.2 Header . 108

E.3 Functions . 110

E.4 Settings . 113

III Specifications 116

11 Specifications 117

11.1 Simulations . 117

11.2 Structured plate production . 117

11.3 Software and versions . 118

11.4 Guidelines for the correct operation of the system . 119

11.5 Material specifications . 119

11.5.1 Solder . 119

11.5.2 Electronic components . 119

IV Budget 120

12 Budget 121

Mart́ı Sabaté, Marc 4 of 123

LIST OF FIGURES 2019

List of Figures

3.1 Medical ultrasonography. At the left, its principle (mode B). At the right, an example of
image. Both pictures have been taken from Asociación Española de Pediatŕıa. 13

3.2 At the left, scanning acoustic microscopy principle. At the right, a sonar imaging system. 14

6.1 Selected microphone, preamplifier and power source. 22

6.2 Piezoelectric loudspeaker. The graph at the right is the magnitude Bode diagram. 22

6.3 Arduino benchmark . 23

6.4 SPI . 28

6.5 MicroSD card adapter for Arduino. 29

6.6 20× 4 LCD display. 29

6.7 Duracell 9V battery with its discharge curve. 31

6.8 16 bit Linear-Feedback Shift Register. 32

6.9 LFSR output spectrum. 32

6.10 LFSR output spectrum considering different amount of bits. 33

6.11 LFSR output spectrum considering just the last bit. 33

6.12 LFSR output spectrum with for different amount of samples. 34

6.13 Driver scheme. 34

6.14 Audio signal processing chain. 35

6.15 Signal condition in every chain step. 36

6.16 Non inverting summing amplifier. 36

6.17 Arduino Mega 2560 shield schematic. The area called Prototyping Area is where the
processing chain is placed. 38

6.18 PCB board without the components. At left, the top side of the board. At right, the
bottom part. Both sides have copper. 39

Mart́ı Sabaté, Marc 5 of 123

LIST OF FIGURES 2019

6.19 Accuracy evolution depending on input size vector. 42

6.20 Accuracy error per pixel using a least squares algorithm for the 10× 10 case. 47

6.21 Accuracy error per pixel using an artificial neural network for the 10× 10 case. 48

7.1 System’s block diagram . 50

7.2 Code’s flow diagram. 51

7.3 Single void spectra. 52

7.4 Mean void spectra. 53

7.5 Mean void spectrum and mean mask spectrum. 54

7.6 Mean normalized spectra. 54

7.7 At left, the structured plate with all its holes uncovered, ready to take the void mea-
surement. At right, the structured plate with a mask applied, ready to take the mask
measurement. In order to see better the mask applied, it has been marked in red. 55

7.8 Squared signal using Kemo L10 as transducer. 56

7.9 Squared signal using other transducer. 56

7.10 Comparison between step responses. 57

9.1 Project Gantt’s diagram . 59

9.2 Gantt’s Task 4 detail. 60

A.1 Shunt resistor set up. 64

A.2 Electronic set up to measure current through the drain. 65

A.3 AD623AN inner diagram. 66

A.4 Algorithm graphic’s explanation. 70

B.1 Accuracy evolution depending on input size vector. 72

B.2 Accuracy evolution depending on input size vector. 73

B.3 Correlation coefficient matrix. 74

C.1 Activation function. 83

C.2 Data set distribution . 87

C.3 Training flowchart . 88

C.4 Accuracy error . 89

Mart́ı Sabaté, Marc 6 of 123

LIST OF FIGURES 2019

C.5 Accuracy error evolution during training. 90

C.6 Masks examples. On the left, an ideal mask representing a “three”. On the right, a real
mask, where the “real” five has been blurred with a 5% uniform noise. 92

C.7 Displaced mask: network’s reconstruction (left) and real image (right). 93

C.8 Resonators shared between different masks. 94

D.1 Boundary conditions . 97

D.2 Plate’s design . 99

Mart́ı Sabaté, Marc 7 of 123

Abbreviations 2019

Abbreviations

ADC: Analog to Digital Converter
CAD: Computer-Aided Design
COB: Chip On Board
DAC: Digital to Analog Converter
DSP: Digital Signal Processing
FEM: Finite Element Method
FFT: Fast Fourier Transform
IDE: Integrated Development Environment
LFSR: Linear Feedback Shift Register
MSE: Mean Squared Error
MAE: Mean Absolute Error
MOSFET: Metal-oxide-semiconductor Field-effect Transistor
OS: Operating System
PCB: Printed Circuit Board
PLA: Polylactic Acid
PRNG: Pseudorandom Number Generator
PWM: Pulse Width Modulation
RAM: Random Access Memory
ReLU: Rectified Linear Unit
SAW: Surface Acoustic Wave
SPI: Serial Peripheral Interface
VAT: Value-Added Tax

The project follows the parts indicated by the norm UNE-EN 157001:2014, but their names have been
translated. Therefore, the relationship between Spanish norm parts and English parts in the project are
the following:

Report: Memoria
Appendices: Annexos
Specifications: Pliego de condiciones
Budget: Presupuesto

Mart́ı Sabaté, Marc 8 of 123

2019

Part I

Report

Mart́ı Sabaté, Marc 9 of 123

CHAPTER 1. OBJECTIVE 2019

Chapter 1

Objective

In these days, sensors are more sophisticated and include more information than they did twenty years
ago. Moreover, even if they are more complex, there is a real need of getting more information with less
resources, so as to cheapen production costs and appeal clients.

This project is framed in this context. Imaging is just a way of sensing with spatial resolution, and acoustic
image already exists in fields such as medicine. The main objective of the project is to implement an
acoustic imaging system based on single-pixel cameras in an embedded system, which will integrate all
the steps; from emitting with a loudspeaker and receiving an acoustical signal with a microphone, to
processing the signal, reconstructing the image and showing the image on a screen.

Instead of using an array of transducers, as done in sonar imaging systems, the key point of this system
is that a two dimensional image is reconstructed using a single microphone, thanks to a structured plate
that modulates the acoustic wave. Thus, this system is conceived to be compact and small, avoiding
the usage of an array of sensors or huge processing units such as a computer. Its reduced size, low cost
(compared with other acoustical imaging systems) and autonomy makes it more attractive than other
imaging systems. Furthermore, as all the information is gathered in an embedded system, it is not difficult
to communicate this unit with other computing systems, as intended nowadays with Industry 4.0.

Mart́ı Sabaté, Marc 10 of 123

CHAPTER 2. SCOPE 2019

Chapter 2

Scope

This project must be considered as a proof of concept of what can be achieved with this technology.
Working in the audible frequency range will mean that the structured plate will define a spatial resolution
of few centimeters. A 24 pixel image with a pixel distance of centimeters is a really low resolution image
and it is not useful for a real application.

Nevertheless, proving that the solution is attainable for a low resolution system is valid to infer that
a similar product is feasible working in ultrasound range and spatial resolution of micrometers or even
nanometers. This scale is much more interesting for researchers. For example, it could work as a detector
of molecule precipitation in a medium. For sure, the emitter and the receiver would be changed in order
to work in ultrasound range, but the rest would be the same.

Not only in research work, but this system can also be interesting for other applications. In fact, most
smartphones use SAW sensors in their screens, which use electronic properties of the components to
detect pressure changes in the surface. The system in this project could be applied the same way as the
SAW sensors, substituting them and also simplifying them. SAM (Scanning Acoustic Microscopy) is a
really well-known technique that is used to detect cracks and defects in small electronic components. The
technique presented here could also be useful in this field, cheapening the expensive microscopes that are
used today.

Mart́ı Sabaté, Marc 11 of 123

CHAPTER 3. BACKGROUND 2019

Chapter 3

Background

Acoustical imaging is not a new topic. Acoustic waves have been used since the beginning of the XXieth
century in order to get information about objects. The most popular application of acoustical imaging
is possibly echography (sonography or medical ultrasonography). Despite this, neither echography is
the only acoustic technique, nor biomedicine is the only application. There are several techniques, such
as SAM (Scanning Acoustic Microscopy) or beamforming, that are applied in microscopy, underwater
imaging, or failure analysis.

As for medical ultrasonography, it consists in a piezoelectric transducer (or array of transducers) that
emits an acoustic signal. The waves travel into the body and come into focus at a desired depth.
Depending on the characteristics of the material (reflectivity, scattering), the wave will suffer different
phenomena. The same transducer acts as a pressure sensor (a piezoelectric transducer is reversible),
recovering information about the scattered wave. Finally, the image is formed by computing the time
it took to the echo to get back to the transducer (“time of flight”), and how strong is this echo. Thus,
knowing the time, the spatial position can be stated, and the amplitude of the echo is the pixel’s intensity.
Echo’s intensity is not the only parameter that is able to be imaged: there are several modes, and each
mode images a different tissue property. Mode A is for amplitude, but it is possible to do brightness image
(mode B), motion (mode M, video can be recovered) using different types of Doppler effect, or receiving
the information in a different frequency that the emitted one (harmonic mode). Concerning spatial
resolution (real distance between pixels), there are some parameters that fix it; the sampling rate and the
frequency fix axial resolution, (if distance between two scatterers is lower than wavelength, the system
will not be able to show two different points in the image). Parameters that affect lateral resolution are
beam’s width, frequency and scan density. Beam’s width is usually a function of the transducer design
(distance between piezoelectric cells). One single measurement allows to get a two dimensional image,
however, several transducers are needed.

Mart́ı Sabaté, Marc 12 of 123

CHAPTER 3. BACKGROUND 2019

(a) (b)

Figure 3.1: Medical ultrasonography. At the left, its principle (mode B). At the right, an example of image.
Both pictures have been taken from Asociación Española de Pediatŕıa.

The acoustic microscope, made up in 1936, is an electronic device that allows to do imaging of small ob-
jects using acoustic waves. The most popular technique with this microscope is SAM (Scanning Acoustic
Microscopy). This technique focuses directly a sound wave from a transducer at a small point on a target
object. Then, sound hitting the object is either scattered, absorbed, reflected or transmitted. Here, a
transducer placed in a given position (whereas in medical ultrasonography it is the same transducer,
here it can be another transducer placed in a different position) gets information about the scattered
wave, recovering the presence of objects or boundaries. Again, “time of flight” gives the distance the
sound has covered between emission and reception. After measuring once, the object is slightly moved,
and the measurement is repeated, scanning the object. Contrast in the image is based either on the
object’s geometry or its material composition. One benefit of this technique is that the sound wave can
be focused at different depths, not only producing surface images of the object, but also images from
the inner part. As a limitation, it takes a long time to process the signal and also to measure, as it is
a raster scan technique. Acoustic microscopy is not only important in the medical field, but also in the
microelectronics industry. It is used to determine the quality of chips and electronic devices. Failure
analysis is one of the most important applications, allowing the companies to save money by detecting
bad products. Resolution in this technique is defined by the mechanical properties of the displacement
system of the object. Only one (or maybe two, depending on the configuration) transducer is needed,
but several measurements must be made in order to get a two dimensional image.

Concerning underwater acoustical imaging, sonar system is a well-known device to obtain images. Even if
it was conceived for military purposes, such as ship or submarine detection, nowadays sonar systems are
also used by researches to map the sea bottom, or identifying fish banks. Similar to the other techniques,
piezoelectric transducers emit an acoustic wave, and they also receive the medium response. Time of
flight is measured to find position in space, and the wave amplitude is related to the pixel’s interference.
There is an important difference between medical imaging and underwater imaging: the frequency range.
Medical imaging needs ultrasound or even higher frequencies, while underwater imaging needs kilohertz
or lower frequencies. Three dimensional images can be obtained by moving the emitter (usually moving
the ship), or by using beamforming techniques. Resolution is fixed by the same parameters as for the
medical ultrasonography (sampling rate and distance between transducers). One single measurement
produces a two dimensional image; however, an array of transducers is needed.

Mart́ı Sabaté, Marc 13 of 123

CHAPTER 3. BACKGROUND 2019

(a) (b)

Figure 3.2: At the left, scanning acoustic microscopy principle. At the right, a sonar imaging system.

The proposed system changes dramatically the way acoustic images have been done up to these days.
“Time of flight” and temporal amplitude are no longer regarded, and spectral content is the only param-
eter worth measuring. A structured plate acts as a sound wave modulator, changing the properties of the
incident wave. Just as the acoustic wave is scattered and reflected inside the body in medical sonography,
the sound wave interacts with the structured plate. Thus, when an object is placed just on top of some
part of the structured plate, the response obtained in the microphone is changed. As each part of the
structured plate modulates in a different way the sound wave, the difference between both signals (with
object and without it) shows up which parts of the structured plate have been covered, getting a binary
image of the surface.

Each pixel can be seen as a detected or not detected object in this position, which is much less information
than in previous explained imaging techniques. However, there is a series of features that makes this
system appealing compared to the others. It is a single-pixel system; this is a unique sensor system that
is able to reconstruct a two dimensional image (both medical sonography and underwater imaging need
an array of transducers to get two dimensional information). It is single-shot; provided that acoustic
devices are broadband, this system profits to get all the spectral information in one measurement (SAM
needs several measurements to cover the same section). Furthermore, the spatial resolution is no longer
fixed by mechanical properties (SAM) or transducers’ distance (underwater imaging), it is now fixed by
the structured plate, which allows to get really interesting spatial resolutions.

Mart́ı Sabaté, Marc 14 of 123

CHAPTER 4. STANDARDS 2019

Chapter 4

Standards

In this chapter, several documents related to the content of the report will be presented, so as to get an
idea of what is involved in the project.

4.1 Standards

This section states the regulations that are followed in the project:

• UNE-EN 157001:2014: General criteria for the drawing-up of the documents which make up a
technical project.

• UNE-EN 60097:1996: Grid systems for printed circuits.

• UNE-EN 60249-1:1997: Base materials for printed circuits. Part 1: test methods.

• UNE-EN 62326-1:2004: Printed boards. Part 1: generic specification.

4.2 Software

Depending on the part of the project, a different programming software has been used. For physical
simulations and data set generation, MATLAB has been chosen. The machine learning algorithm has
been implemented in Python, using Spyder’s environment. The PCB design has been done using Eagle,
from Autodesk company. Finally, the microcontroller programming environment is Arduino IDE.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment. It allows matrix
manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces,
and interfacing with programs written in other languages than M (programming language used by MAT-
LAB).

Even if MATLAB is intended primarily for numerical computing, additional packages like Simulink
add graphical multi-domain simulation and model-based design for dynamic and embedded systems or
GUIDE, which allows to create interfaces between user and machine. Moreover, it has several toolboxes,

Mart́ı Sabaté, Marc 15 of 123

CHAPTER 4. STANDARDS 2019

sets of functions put together following their application. For example, there exists signal processing tool-
box, machine learning toolbox or optimization toolbox. Nowadays, MATLAB is largely used in various
backgrounds of engineering, science and economics.

In the project, as the physical equations of the model have been established, raw MATLAB is enough to
simulate its behavior. Thus, no other toolbox is needed.

Spyder is a scientific environment written in Python, designed by and for scientists, engineers and data
analysts. It offers a combination of advanced editing, analysis, debugging and profiling functionalities.
All code used by Spyder is open-source and completely free. Many toolboxes are available, and it is easy
to get with and start using them. Numpy is the fundamental package for scientific computing with
Python; Matplotlib, which is a Python 2D plotting library; Keras is a high-level neural networks API,
written in Python and capable of running on top of TensorFlow, CNTK or Theano.

In this project, an Artificial Neural Network is going to be implemented, using TensorFlow as the main
package for neural networks. TensorFlow is in fact and end-to-end open source platform for machine
learning. It is not exclusive for Python programming language, it can also be found for JavaScript. As
said before, Keras can be run on top of TensorFlow, allowing to use both libraries with only installing
one of them. Numpy and Matplotlib packages will also be used to implement the algorithm and visualize
the results.

The Arduino Software (IDE) is an open-source C/C++ coding platform that makes it easy to write
code and upload it to the board. It is able to run on Windows, Mac OS X and Linux. The environment
is written in Java. With the help of third party cores, it is even possible to code and upload programs
for other vendor development boards other than Arduino. The Arduino IDE supplies a software library
from the Wiring project, which provides many common input and output procedures. User-written code
requires two basic functions; starting the sketch and the main program loop (setup() and loop()).

EAGLE PCB Design Software, from Autodesk company, is a scriptable electronic design automation
application that allows schematic capture, printed circuit board layout, autorouter and computer-aided
manufacturing features. It stands for Easily Applicable Graphical Layout Editor. In this project, EAGLE
has been used to design the PCB containing the electronics that will be needed to process the signal before
entering the microcontroller.

Mart́ı Sabaté, Marc 16 of 123

BIBLIOGRAPHY 2019

Bibliography

[1] Gras microphone description. https://www.gras.dk/products/measurement-microphone-
sets/constant-current-power-ccp/product/143-46be.

[2] Gras power supply description. http://www.gras.dk/products/product/222-12AL.html.

[3] Gras preamplifier description. https://www.gras.dk/products/product/204-26cb.html.

[4] Kemo l10 piezoelectric. https://www.kemo-electronic.de/en/Car/Speaker/L010-Piezo-
Loudspeaker.php.

[5] Pla premium black wire. https://filament2print.com/es/pla-premium/745-pla-premium-negro.html.

[6] Why and how to cross validate a model? https://towardsdatascience.com/why-and-how-to-cross-
validate-a-model-d6424b45261f. Accessed: 2019-05-25.

[7] Roberto Alejo Eleuterio. Análisis del error en redes neuronales: Corrección de los datos y distribu-
ciones no balanceadas. TDX (Tesis Doctorals en Xarxa), sep 2010.

[8] Léon; Brillouin. Wave propagation in periodic structures; electric filters and crystal lattices. 1946.

[9] B. Widrow et al. Adaptive ”Adaline” neuron using chemical ”memistors”. Technical report, Stanford
Electron. Labs, Stanford, CA, 1960.

[10] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow. 2017.

[11] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Comput., 18(7):1527–1554, July 2006.

[12] Yan Huang, Wei Wang, Liang Wang, and Tieniu Tan. Multi-task deep neural network for multi-label
learning. In 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings,
2013.

[13] Halbert White Kurt hornik, Maxwell Stinchcombe. Multilayer feedforward networks are universal
approximators. Neural Networks, 1989.

[14] J; Henderson D; Howard R; Hubbard W;Jackel L LeCun, Y; B; Denker. Backpropagation Applied
to Handwritten Zip Code Recognition. Neural Computation, 1989.

[15] P. A. Martin. Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, 2006.

[16] Andrew Maxwell, Runzhi Li, Bei Yang, Heng Weng, Aihua Ou, Huixiao Hong, Zhaoxian Zhou, Ping
Gong, and Chaoyang Zhang. Deep learning architectures for multi-label classification of intelligent
health risk prediction. BMC Bioinformatics, 2017.

Mart́ı Sabaté, Marc 17 of 123

BIBLIOGRAPHY 2019

[17] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for multi-label classifica-
tion. In 2005 IEEE International Conference on Granular Computing, 2005.

[18] Michael A. Nielsen. Neural networks and deep learning, 2018.

[19] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, pages 65–386, 1958.

[20] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016.

[21] Stuart Russel and Peter Norvig. Artificial intelligence—a modern approach 3rd Edition. 2012.

[22] Jürgen Schmidhuber. Deep learning in neural networks: An overview. CoRR, abs/1404.7828, 2014.

[23] Daniel Torrent. Acoustic anomalous reflectors based on diffraction grating engineering. Physical
Review B, 2018.

[24] Hanazawa T. Hinton G. Shikano K. Lang K. J. Waibel, A. Phoneme recognition using time-delay
neural networks. Acoustics, Speech and Signal Processing, IEEE Transactions, 1989.

[25] P.J. Werbos. The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors. PhD thesis, 1970.

[26] P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
PhD thesis, 1974.

[27] Min Ling Zhang. Ml-rbf: RBF Neural Networks for Multi-Label Learning. Neural Processing Letters,
2009.

[28] Min Ling Zhang and Zhi Hua Zhou. Multilabel neural networks with applications to functional
genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering, 2006.

Mart́ı Sabaté, Marc 18 of 123

CHAPTER 5. DESIGN REQUIREMENTS 2019

Chapter 5

Design requirements

In this chapter, system design requirements are going to be discussed, in order to present what the system
should be able to do and be able to compare it with the final product performance.

Design requirements can be divided in two different classes: those concerning hardware and those con-
cerning software. The former will affect component selection, such as microcontroller, loudspeaker, mi-
crophone and so on, while the latter affects also the microcontroller and the code inside it.

On the one hand, hardware requirements are:

• System’s size must be as small as possible. All system’s electronics should be placed in a unique
PCB, except for the microphone and the loudspeaker, which must be placed in the center and at a
corner of the structured plate.

• Consumption. In order to get an autonomous system, its power supply should be sort of a
battery. This implies that consumption must be reduced; otherwise, power supply size grows or
even a transformer and rectifier is needed to plug-in the system.

• The structured plate should be a squared plate 20cm long. To get more details about the
metastructure design, read Appendix D.

• System’s cost should be lower than other acoustical imaging systems.

• The system is intended to do audible frequency imaging. Thus, system’s operating frequency
must be in the interval fi ∈ [0, 20] kHz. All components must admit working in this bandwidth.

On the other hand, software requirements are:

• All signal processing must be done in the microcontroller. A computer can not be an element of
the system.

• The system must be able to keep in its memory the trained machine learning algorithm, that is
to say, all the layers with their weights that come from Python’s algorithm.

• Software code should provide noise generation, as well as reading microphone’s signal, signal
processing (Fourier transform), neural network prediction, and serial communication with
a screen.

Mart́ı Sabaté, Marc 19 of 123

CHAPTER 5. DESIGN REQUIREMENTS 2019

• The neural network algorithm needs as input a double precision (32 bits) 997 value vector, repre-
senting spectral coefficients linearly distributed between 0Hz and 20kHz.

Mart́ı Sabaté, Marc 20 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Chapter 6

Solution analysis

In this chapter, different proposals will be discussed. Based on different criteria that will be exposed
to the reader, an appropriate component selection will be done, and other solutions will be discussed in
order to show benefits and drawbacks compared to the chosen one. As it will be seen during the chapter,
there is no unique solution; there is always a trade off between system performances. Depending on the
requirements’ ranking, a solution will be considered the best one.

6.1 Hardware selection and design

6.1.1 Starting point: already selected material

Before starting selecting components for the system, a recapitulation must be done in order to take into
account those elements that have been already selected or that are available. Those being considered,
the other elements should be selected according to them and their specifications.

The microphone is one of these already selected components. In fact, it is a GRAS 46BE 1/4′′ CCP
Free-field Standard Microphone Set [1]. It is a general acoustics diagnostics microphone with a frequency
range going from 4Hz up to 80kHz, a dynamic range from 35dB to 160dB, and a sensitivity of 4mV/Pa.
This microphone has its own preamplifier, which is GRAS 26CB 1/4′′ CCP Standard Preamplifier with
Microdot Connector [3]. The preamplifier has, obviously, a larger frequency range than the microphone,
otherwise it would cut some frequencies received by the microphone. Its frequency range goes from 2.5Hz
up to 200kHz, it produces 1.8µV noise, and a gain of −0.35dB. Finally, both the microphone and the
preamplifier need a power source. This is accomplished by GRAS 12AL 1-Channel CCP Power Module
with A-weighting filter [2]. This power supply acts as a current source, giving 4mA of constant current to
the microphone and the preamplifier. Its voltage is varied to ensure the constant current, and the output
signal is a differential voltage. This output signal has its own offset, and the gain is not well adapted
to enter directly a microcontroller. Therefore, some signal processing will be done in order to fix this
inconvenience.

Mart́ı Sabaté, Marc 21 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.1: Selected microphone, preamplifier and power source.

Another selected component is the loudspeaker that is going to be used. It is a Kemo L10, a piezoelectric
loudspeaker from Kemo Electronic [4]. Its frequency range goes from 2Hz up to 60kHz, and it accepts
up to 16V p− p tension on its terminals.

(a) (b)

Figure 6.2: Piezoelectric loudspeaker. The graph at the right is the magnitude Bode diagram.

As the lowest component frequency is 60kHz, the system should be able to work up to this frequency.
However, one or two electronic circuits will be needed to process signal, and operational amplifier and
transistor’s cutoff frequency must be taken into account. Furthermore, selected microcontroller also
affects in this working range, as the ADC clock defines the highest frequency the microcontroller is able
to get. The idea in the project is to modulate the acoustic field up to 20kHz; then, analogic components
satisfy this condition, and the microcontroller will be chosen considering this constraint.

6.1.2 Microcontroller’s selection

Several parameters must be considered before selecting a microcontroller for a given application. Some
of them are: cost, consumption, input/output need, memory, word size, need for low level libraries

Mart́ı Sabaté, Marc 22 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

(peripheral configuration), programming graphics interface, learning difficulty or need for a board design.
Next, each of this points are going to be discussed, considering application’s need, but also features found
in the market.

Cost

As for the cost, budget is always important when developing a project. Despite the fact that other
components, as the microphone or its power supply, are much more expensive than common market
microcontrollers, this component will be chosen minimizing the cost, but ensuring that the other features
are accomplished. To get an idea of commercial prices, see Table 6.1. It must be said that, as a proof
of concept, a COB will be chosen, instead of only the microcontroller. The reason is that it is simpler
to use and to program.

Figure 6.3: Arduino benchmark

Mart́ı Sabaté, Marc 23 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

D
ev

ic
es

P
la

tf
o
rm

A
rd

u
in

o
P

ro
p

e
ll

e
r

B
e
a
g
le

B
o
a
rd

R
a
sp

b
e
rr

y
P

i
S

o
ft

w
a
re

O
pe

ra
ti

n
g

S
ys

te
m

N
on

e
N

o
n

e
A

n
d

ro
id

,
L

in
u

x
,

W
in

d
ow

s
C

E
,

R
IS

C
O

S
L

in
u

x
,

R
IS

C
O

S

D
ev

.
E

n
v
ir

on
-

m
en

ts
/T

o
ol

k
it

s
A

rd
u

in
o

ID
E

,
E

cl
ip

se
P

ro
p

el
le

r/
S

p
in

E
cl

ip
se

,
A

n
d

ro
id

A
D

K
,

S
cr

a
tc

h
b

ox
O

p
en

E
m

b
ed

d
ed

,
Q

E
M

U
,

S
cr

a
tc

h
b

ox
,

E
cl

ip
se

P
ro

gr
a
m

m
in

g
L

a
n

-
gu

a
ge

W
ir

ig
n

-b
as

ed
(C

+
+

)
S

p
in

/
P

ro
p

el
le

r
A

ss
em

b
ly

P
y
th

o
n

,
C

,
et

c.
P

y
th

o
n

,
C

,
p

o
ss

ib
ly

B
A

-
S

IC
A

rc
h
it

ec
tu

re
8

B
it

3
2

B
it

3
2

B
it

3
2

B
it

H
a
rd

w
a
re

P
ro

ce
ss

o
r

A
T

M
E

G
A

32
8

P
8
X

3
2
A

-M
4
4

T
I

D
M

3
8
3
0

(A
R

M
)

B
C

M
2
8
3
5

(A
R

M
)

S
pe

ed
16
M
H
z

1
2
M
H
z

7
2
0
M
H
z

7
0
0
M
H
z

R
A

M
2

K
b
y
te

3
2

K
b
y
te

2
5
6

M
B

2
5
6

M
B

R
O

M
32

K
b
y
te

3
2

K
b
y
te

2
5
6

M
B

F
la

sh
S

D
I/

O
(v

a
ri

o
u

s
p
ro

to
-

co
ls

)
14

3
2

2
2

8

A
D

C
6

N
o
n

e
in

te
rn

a
ll

y
u

se
d

in
te

rn
a
ll

y
u

se
d

U
S

B
N

on
e

N
o
n

e
1
x
2
.0

2
x
2
.0

A
u

d
io

N
on

e
N

o
n

e
S

te
re

o
In

/
O

u
t

S
te

re
o

o
u

t,
In

w
/
U

S
B

m
ic

V
id

eo
N

on
e

V
G

A
,N

T
S

C
o
r

P
A

L
D

V
I-

D
,

S
-V

id
eo

H
D

M
I,

N
T

S
C

o
r

P
A

L
M

is
c.

M
an

y
sh

ie
ld

s
av

ai
la

b
le

fo
r

ad
d

ed
ca

p
ab

il
it

y
8

p
ro

ce
ss

o
rs

fo
r

p
a
ra

ll
el

ta
sk

in
g

S
D

/
M

M
C

,
R

S
-2

3
2
,

J
T

A
G

,
U

S
B

O
T

G
,

L
C

D
S

D
,

1
0
/
1
0
0

E
h
te

rn
et

,
J
T

A
G

C
o
st

29
.9

5
$

4
9
.9

9
$

1
9
9
.9

5
$

3
5
.0

0
$

Table 6.1: Processor benchmark.

Mart́ı Sabaté, Marc 24 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.3 makes a comparison between Arduino products, while Table 6.1 compares Arduino Uno to
other COB products, such as Raspberry Pi. Beagle Board or Raspberry Pi are not microcontrollers, they
are microprocessors, much more powerful than a microcontroller, but, at the same time, more expensive
and with many tools that will not be needed. For the purpose of the project, no OS is needed, so a
microcontroller is preferred to a microprocessor. Furthermore, it is easier to learn and there is no need
to spend time installing an OS. There are several microcontroller companies, but, as said before, a COB
is preferred, as it is easier to start programming and connections are already prepared.

Word’s width

Signal processing is a key point in the system. Microcontroller must be able to perform a Fourier
transform of the temporal signal, as well as apply the different layers of the artificial neural network
to provide a prediction of the image reconstruction. All neuron weights have been computed in Python
using a float32 resolution, that is to say, in floating point four byte representation. Therefore, the spectra
should be computed with the same resolution, in order to entry the neural network. A word width of 32
bit is then compulsory to avoid losing accuracy. Nevertheless, another option is to work in fixed point
representation until the entry of the neural network, and then cast into float point representation to make
the reconstruction. This option can be necessary in case of a few RAM microcontroller or an analogical
to digital converter that works in fixed point representation. Depending on the chosen microcontroller,
one option or the other will be performed.

Input/Output

Concerning inputs and outputs, there are three main peripherals to control. First of all, the loudspeaker,
in order to produce the incident acoustical wave. Thus, there should be one output pin. However,
depending on the signal that is going to be emitted, a digital output pin or an analogical output pin will
be needed. It is not common to find microcontrollers with analogical outputs; it is more usual to find
PWM outputs, which play a similar role, but there are still differences between them. Digital outputs,
instead, are easy to find, and almost every microcontroller has several of them. There is also a screen to
be connected to the system so as to project the reconstructed image. If it is the case of a screen, a HDMI
or VGA connection is needed. If the element to connect is a LCD screen, then serial communication is
enough.

Finally, there is an analogical signal to read, which corresponds to the signal detected by the microphone.
Then, the microcontroller must have an analogical input with its ADC. If there were no analogical input,
an external ADC could be bought and connected between the microphone and the microcontroller.
However, this would enhance the system’s size, and also the price. Consequently, it is better to find a
microcontroller with analogical inputs.

Consumption

Consumption is also important, considering that one of the project’s goal is making an autonomous
system. If consumption is low enough, a battery could be used as a power supply for the system.
Elsewhere, a converter should be added and the system should be plugged in, reducing its autonomy.
For example, Arduino’s family is supplied with 5V or 3.3V , which is easily feasible with small batteries.
Operational amplifiers are not as kind; depending on the model, they can need symmetric or asymmetric
power supply up to ±15V , which would mean using several batteries in series, or a little transformer with

Mart́ı Sabaté, Marc 25 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

some power electronics to control the voltage level.

Memory

Memory is another important parameter to manage. Microcontrollers are not powerful devices in terms of
memory space. There are two main memories to consider: program memory and RAM. Common values
for microcontroller’s RAM are 2Kbytes or similar. Thus, what it is in memory during the execution must
be managed carefully to avoid memory overflow.

First of all, neuron weights must not be in RAM. They should be saved either on program memory
or in an external SD card. An estimation of Artificial Neural Network size is 8MB. (Python’s file is
bigger, but its network structures are much more complex that what it is needed for just predicting; 8MB
correspond to just the float32 weights). There are no microcontrollers with such program memory space
(common sizes are 256Kbytes or 512Kbytes); an external memory must be used. Arduino has several
shields available to plug directly; one of them being an external SD card memory.

As an input to the neural network, a 1000 value spectrum is needed. The system needs to compute a 1000
value Fourier transform (microcontroller algorithms for Fourier transforms as FFT are not as generalized
as computer ones; input values must be a power of 2). A 1024 float32 vector is big enough to overflow
RAM from cheaper microcontrollers. For example, ATMEL 328P (Arduino Uno’s microcontroller), has
only 2KBytes of RAM, while the discussed vector is about 4Kbytes. Furthermore, more than one vector
is needed, and other auxiliar variables are used during the execution. There are two different solutions:
the first one is to use a microcontroller with enough RAM to contain all the needed information. The
other solution is to work as much as possible in fixed point representation, which is smaller in size, or to
reduce data dimensions, which will decrease accuracy in the image reconstruction. Thus, there is a trade
off between data accuracy, memory space and image reconstruction accuracy, and an analysis
on those parameters is going to be performed. Microcontrollers such as ATMEGA 2560 (Arduino Mega’s
microcontroller) have 8KBytes of RAM, whereas microprocessors, have 512MB or even 1GB, such as
Raspberry Pi. Eventhough, as stated before, a microprocessor is too complex for the application’s goal,
and it is not worthy. The solution is still an efficient memory management. Once the proof of concept is
done, the idea is to produce the system using the specific microcontroller found in the chosen COB in a
small PCB.

Selection

After having a look at the most important parameters to take care of for the selection of the micro-
controller, one of the models to be considered is Arduino Mega 2560 model. The operating voltage of
this microcontroller is 5V , as many Arduino models. It implies that it can be supplied using a simple
battery. It has 256KB of program memory (Flash) and 8KB of RAM, which, as stated before, seems
to be enough to implement the algorithm. It is 102mm long and 53.3mm wide, being bigger than other
models such as Arduino Uno (all this data is found in Figure 6.3). Remember that system’s reduced
size is one of the designs requirements. However, using an Arduino Uno or Mini has some drawbacks,
even if the size is smaller. For example these two models (in fact it is the same microcontroller for both
COBs) have memory problems, given that they only have 2KB of RAM. Therefore, if they were chosen,
working in fixed point variables would be compulsary. Furthermore, Arduino Mega 2560 admits most of
the Arduino Uno shields, including the microSD shield that is needed to add an external memory to the
system.

Concerning clock speed, which will be very important in combination with RAM to get all the information

Mart́ı Sabaté, Marc 26 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

coming from the microphone, Arduino Tian, Arduino M0, Arduino Yun Mini, Arduino M0 Pro and
Arduino Industrial 101 offer a faster clock than Arduino Mega 2560. However, all these models are
retired from market. Concerning prices, Arduino Uno costs around 20e, while Arduino Mega 2560 costs
35e. Others, like Arduino Nano cost also 20e, or Arduino Due, which costs 35e. Arduino Mega 2560 is
a bit more expensive than Arduino Uno, but remember that the microphone and its power source are far
more expensive. Then, the cost difference is no longer a problem, and other memory space is considered
more important to decide which microcontroller suits better the system.

Concerning other types of systems, such as Raspberry PI or Beagle Board, it has been explained that these
systems are much more complex than a microcontroller, and even if they have the required characteristics
to develop the application, they have many tools that are not required, and require more knowledge and
time to learn and start working with them. There are other families of microcontrollers’ boards, such as
Teensy. Their specifications are shown on Table 6.2:

Specification Teensy 2.0 Teensy 2.1 Teensy 3.0 Teensy 3.1
Processor ATMEGA32U4

8 bit AVR 16
MHz

AT90USB1286
8 bit AVR 16
MHz

MK20DX128
32 bit ARM
Cortex-M4 48
MHz

MK20DX256
32 bit ARM
Cortex-M4 72
MHz

Flash Memory
(Bytes)

32256 130048 131072 262144

RAM Memory
(Bytes)

2560 8192 16384 65536

EEPROM
(Bytes)

1024 4096 2048 2048

I/O 25, 5 V 46, 5 V 34, 3.3 V 34, 3.3 V 5 V
Analog In 12 8 14 21
PWM 7 9 10 12
UART,I2C,SPI 1,1,1 1,1,1 3,1,1 3,2,1
Price $16.00 $24.00 $19.00 $19.80

Table 6.2: Teensy board benchmark.

Teensy 3.1 seems to be really appropriate to solve many of the problems in the project. It has eight times
more RAM than Arduino Mega 2560 (64KB vs 8KB), and its clock goes four times faster. It is able
to measure faster and longer in time than Arduino Mega 2560, however, as it will be seen later in the
report (see Section 6.2.2), even with Teensy 3.1 it is not possible to get the desired information in just
one temporal measurement. Thus, there is no real difference n measuring between both microcontrollers.
Teensy 3.1 is also cheaper, and it can be coded using Arduino IDE, the same open source environment
as Arduino. However, there is more availability of shields for Arduino than for Teensy.

Regarding another important feature, which is the measuring speed, the ADC converter of ATMEGA2560
(Arduino Mega 2560 microcontroller) is said to be stabilized between 13 and 260µs (Section 26 in the
ATMEGA2560 data sheet), which means that a value can be read in the analog input each 13µs as
minimum. This establishes a maximum in the measuring rate of 77kHz. This should be enough to
recover information in the 0 − 20kHz bandwidth, but as it will be seen later, going faster gives better
resolution on these frequencies. The ADC converter of MK20DX128 microcontroller (the microcontroller
in Teensy 3.1), is however, faster than that in the ATMEGA2560. It is said to be stabilized between 1
and 50µs (see Section 6.6.1 in the MK20DX128 data sheet, where this parameter is called Crate and it is
measured in Ksps). Teensy 3.1 is then able to read parameters up to 1MHz.

Mart́ı Sabaté, Marc 27 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

After all this discussion, it has been shown that Teensy 3.1 is a more interesting option. Nevertheless, all
the experimental results and the code has been prepared for the Arduino Mega 2560, as it was available at
the moment of the experimental part of the project. Repeating the measurements using Teensy 3.0 instead
should not be a big problem: the programming language and its IDE are the same as for Arduino, and
both LCD and microSD modules are compatibles. As a difference, the PCB that is going to be designed
in the following sections should be redesigned to fit the shape and size of Teensy 3.1 instead of Arduino’s
ones.

6.1.3 External memory

An external memory is necessary to save some parameters and load others in the code. As seen in the
previous section, microcontrollers does not have much program memory. The system should be able to
manage all the weights in the reconstruction algorithm (Artificial Neural Network) and save images. It
has been decided to use a microSD card as external memory, and communicate the microSD card with
the microcontroller using SPI. This kind of data transmission is a communication standard used between
electronic components.

SPI

Master

SCLK

MISO

MOSI

SS

SPI

Master

SCLK

MISO

MOSI

SS

Figure 6.4: SPI

SPI communication, shown in Figure 6.4, includes a clock signal, an input data, an output data and a
pin to chip select, connecting or disconnecting the components, allowing multiplexing. As it is a serial
bus, it reduces the number of wires and integrated size. This also reduces the manufacturing cost. It is
a synchronous communication protocol. Communication is done using four signals:

• SCLK (Clock): signal used to synchronize. For each signal pulse, a bit is sent.

• MOSI (Master Output Slave Input): it is the signal to send data from the Master to the Slave.

• MISO (Master Input Slave Output): it is the signal to send data from the Slave to the Master.

• Chip select. This signal is used to select an Slave, or to tell the Slave to wake up.

The chosen socket to communicate the microSD card and the microcontroller is a Micro TF Card Memory
Shield Module SPI Micro Storage Card Adapter for Arduino, as shown in Figure 6.5. This module has
his own Arduino library, which includes the SPI communication, making easier to work with.

Mart́ı Sabaté, Marc 28 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.5: MicroSD card adapter for Arduino.

The pinout to connect this microSD shield to the Arduino Mega 2560 board is: MOSI is connected to
pin 51, MISO is connected to pin 50, SCLK is connected to to pin 52 and CS is connected to pin 53.

6.1.4 LCD Display

The intended goal of the project includes showing the result in a screen, so as to tell the user the image
that the system is reconstructing. Another serial communication has been chosen, this time with an LCD
display. The chosen model is HD44780U 20×4 Dot Matrix Liquid Cristal Display Controller/Driver from
Hitachi, available at Sparkfun Electronics.

Figure 6.6: 20× 4 LCD display.

This LCD display is powered at 5V ; thus, it is enough to connect to the +5V output pin from Ar-
duino’s. Serial communication between the LCD display and the Arduino board will be done using Wire,
LiquidCrystalI2C and LCD libraries.

6.1.5 Power supply

The system is supposed to be autonomous. Thus, batteries will be prioritized against other power
sources implying a connection to the electrical network. Arduino Mega 2560 can be powered with a

Mart́ı Sabaté, Marc 29 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

battery between 6V and 12V , depending on the consumption of the system. Therefore, a consumption
analysis should be done before selecting the proper power source for the system.

Summing up the project, there are few components that suppose a relevant consumption for the system:
Arduino Mega 2560, microSD card, LCD screen and the microphone amplifier. From The Power Con-
sumption Database on Internet, consumption values for the Arduino Mega 2560 have been obtained: the
average consumption, measured at the USB plug using a 5.15V voltage during 507 minutes is 52.54mA.
Concerning microSD cards, it has been found that standard microSD cards consume between 5 and
30mA, depending on the function or usage. The maximum is going to be considered in order to select
a power source for the worst possible case. In the technical specifications of ATMEGA328P it can be
found that the maximum current per output pin is 40mA. However, as it can be seen in Appendix A,
the current consumed by the loudspeaker is much lower than 40mA (in fact, it is 500nA). The LM324N
module used as an operational amplifier has also a low consumption: 700µA. Finally, the LCD screen is
said to consume between 20 and 40mA, considering again the higher value for the project’s purposes.

The total current consumed by the system is then 123.24mA. Once this data is computed, the power
source can be selected. It has been chosen to use a 9V battery, but there are several types: disposable
(Alkaline, Zinc-carbon or Lithium) and rechargeable (NiCd, NiMH, Lithium polymer, Lithium-ion or
Lithium iron phosphate). The most common type and also the cheapest one is the Alkaline battery.
Its capacity is also the lowest one, but it has to be considered as a possible solution. Alkaline 9V
batteries have a typical capacity of 550mAh, and it is said that they can stand up to a 300mA drain
current. Nevertheless, the battery capacity depends on the rate of discharge of the battery. Thus, as the
current increases, the battery capacity decreases. Assuming that the capacity is still 550mAh, the system
consuming 123mA will provide 4 hours and 28 minutes of service. The battery capacity is of course lower
than 550mAh, but also the consumption is lower, as it has been considered the worst possible case, and
not all the devices are working simultaneously in the system.

The chosen battery is a PC1604, which is a 9V 6LF22 Alkaline-Manganese Dioxide Battery from Du-
racell. This battery has the service curve shown in Figure 6.7. In this curve, the line that has to be
followed is the purple one, given that the system’s consumption is near 100mA. As said before, Arduino
Mega 2560 can be powered between 6V and 12V . Then, it will be considered that the battery is able to
power the system until the voltage level goes under 6V , giving 3 hours and 45 minutes of service, which
seems to be enough to make hundreds of measurements.

Another option is to use rechargeable batteries, which are more expensive, but also have higher capacities
and they can be used more than once. The alkaline battery has been finally selected because it is the
simplest and cheapest way to power the system.

Mart́ı Sabaté, Marc 30 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

(a) (b)

Figure 6.7: Duracell 9V battery with its discharge curve.

6.1.6 Noise generation

Concerning the emitted signal, the goal is to transmit an electric signal to the piezoelectric so as to
produce a white acoustic noise in the 0 − 20kHz spectral band. In signal processing, white noise is
considered when the Fourier transform of a signal shows the same amplitude for all frequencies in the
bandwidth. In other words, the signal is formed by all frequencies equally.

Generating such a signal is not an obvious process; common methods used in DSP use sequences of random
numbers with spectral properties that approximate white noise. The quality of the signal depends on the
used algorithm (PRNG algorithms). Most of the algorithms use an algebraic formula that depends on
certain parameters, some of them fixed in the function, and others that can be chosen by the user (usually
called random seed). The key point of a PRNG is to give a sequence of numbers that do not evidence an
algebraic formula behind. They are state machines, because the following result in a sequence depends
on the previous value. As can be easily deduced, there is a moment when the sequence starts again
and values start repeating; the aim of these algorithms is to elongate as much as possible the sequence
of numbers before repeating again their values. Some PRNG algorithms are LCG (Linear Congruential
Generator), Marsenne Twister, PCG or Yarrow.

Despite the fact that other algorithms present better statistical properties, or are harder to predict, the
only aspect that matters for the application is the spectral information they produce. Thus, even if it is
one of the trivial PRNG algorithms, a LFSR algorithm has been chosen. LFSR algorithms are based on
an initial N bit register. These bits are initialized with a given value (random seed), and then, a Boolean
operation between some bits is produced, in order to generate a new bit. After that, this new bit enters
the register by shifting all the bits one position. The new bit enters as the most weighted bit, while the
less weighted bit is deleted. This process can be seen in Figure 6.8:

Mart́ı Sabaté, Marc 31 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.8: 16 bit Linear-Feedback Shift Register.

In the example, bits 11, 13, 14 and 16 are compared using XOR gates and the output from this Boolean
operation is the new bit. In the figure:

bit = b11 ⊕ b13 ⊕ b14 ⊕ b16 = 1⊕ 0⊕ 0⊕ 1 = 0 (6.1)

A 0 value is obtained. This method produces a sequence of 216 − 1 = 65535 different values, that is to
say, it is the sequence’s period (the period depends on the random seed used, but the maximum it can
be achieved is 65535). This period and the microcontroller’s clock frequency will define the repetition
rate of the sequence. For example, imagine a clock frequency of 16MHz and suppose that emitting
a number is only one clock cycle (it is not true, it depends on the lines of code used), then, each

1
16·106 · 65535 = 0.0041s, the same value will be emitted. This means that, in case of emitting PRNG
more than 0.0041s, the spectrum will have a peak in 1

0.0041s = 244Hz, disturbing white noise distribution.

The PRNG algorithm has been chosen, but its frequency properties has not been shown:

Figure 6.9: LFSR output spectrum.

As it can be seen in Figure 6.9, the LFSR register has a bias towards lower frequencies. 8003 numbers
have been generated using a 16 bit register as before. If instead of representing the spectrum of the whole
register, only few bits are considered, a different result is obtained.

Mart́ı Sabaté, Marc 32 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.10: LFSR output spectrum considering different amount of bits.

The spectral properties do not go better. Instead, oscillations in the spectrum have appeared. Neverthe-
less, if only the last bit in the register is considered, all frequencies have the same amplitude: white noise
distribution has been achieved.

Figure 6.11: LFSR output spectrum considering just the last bit.

This spectrum also depends on the number of pseudo-random numbers generated. As shown in Figure
6.12, the less numbers are generated, the less flattened is the spectrum.

Mart́ı Sabaté, Marc 33 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

(a) (b)

Figure 6.12: LFSR output spectrum with for different amount of samples.

Furthermore, emitting the whole LFSR register would imply using an analogical output with a 16 bit
DAC, which is really difficult to find in a microcontroller. Instead, using the properties of the last register
bit, only a digital output is needed, as all the information is coded in two states. As for the repetition
rate, the same problem as for the whole register appears: in case of emitting more than 65535 bit, a
frequency peak should appear in the spectrum.

6.1.7 Analogical signal processing

Previously, a white noise generation algorithm has been established, and software inside the microcon-
troller has been prepared. However, many microcontrollers are supplied at 3.3V or 5V , whereas the
chosen loudspeaker works fine for 16V p − p voltages. This basically means that a driver is needed to
supply enough power to the loudspeaker if a loud sound wants to be produced. In Figure 6.13 an
electronic scheme is presented:

Figure 6.13: Driver scheme.

This is the most common driver used to supply a loudspeaker and command it using a microcontroller. For

Mart́ı Sabaté, Marc 34 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

more details, like resistor and MOSFET selection or a brief explanation, readers can refer to Appendix
A. This electronic circuit has been considered as it is the easiest way to supply the maximum voltage
to the loudspeaker. However, it also implies the use of a more complex battery. In the same Appendix,
it has been explained that the loudspeaker can be fed directly with the Arduino’s digital output. Then,
even if the power is not the maximum available for the loudspeaker, there is no need to use any driver.
In conclusion, it has been decided that supplying directly from the Arduino is a better solution than
designing a driver with its own battery.

Loudspeaker is not the only peripheral that needs analogical signal processing to adapt to the needs of
the components. In fact, the input signal, coming from the microphone, is not at all adapted to the
microcontroller’s analogical input. Remember that the output signal from the microphone goes through
its power supply (GRAS 12AL), and a signal with an amplitude 0.2V p − p and an offset is obtained.
This offset is not a constant, given that it is due to the control the power supply does to the microphone.
Microcontroller’s input range goes from 0 to 5V with a 10 bit ADC. If the signal is connected directly,
the signal will be coded using only 41 values, which means 4% of the input range. This is obviously
unacceptable; audio signal must be processed before going to the microcontroller.

Figure 6.14: Audio signal processing chain.

In Figure 6.14, the block diagram between the microphone and the microcontroller is shown. First,
as the output signal of the microphone a differential output (that is to say, it has two terminals), one
of those will be considered as the ground, and it will be connected to the microcontroller’s ground (in
Figure 6.14, it is represented by the lower horizontal line). Applied signal processing can be divided in
two different blocks; the first one is a high-pass filter, which aim is to eliminate the offset the original
signal has, and then an amplifier, whose role is to set the signal in the range of the microcontroller’s
input range.

The high-pass filter has to stop continuous signal, but in any case it filters out signals between 5kHz
and 15kHz, as it is the modulated frequency band. Hence, it has been chosen to place the filter’s cutoff
frequency (f0) between 10Hz and 100Hz. Remember that cutoff frequency is the frequency that is
attenuated by a −3dB factor. For more design details, refer to Appendix A. Figure 6.15 shows how
the Arduino’s input range would be used at each step on the processing chain. The final step (after the
filter and the amplifier) has the same range for the signal and for the Arduino’s input. Then, the maximal
resolution for the signal is achieved. In this Appendix, two different amplifiers have been discussed and
computed, to finally decide which one is better from the point of view of the project. The final electronic
circuit is shown in the following diagram:

Mart́ı Sabaté, Marc 35 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

0

5

0 1023

5

FILTER

0

5

0 1023

5

AMPLIFIER + OFFSET

0

5

0 1023

5

Figure 6.15: Signal condition in every chain step.

Figure 6.16: Non inverting summing amplifier.

Mart́ı Sabaté, Marc 36 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Even if the other amplifier was a really popular and well-known option (the instrumental amplifier or
three operational amplifier is widely used in industry), it implies using symmetric (or at least negative)
voltage to supply the operational amplifier. Then, the system’s power supply gets complicated, and a
single battery cannot be used. By using this amplifier (Figure 6.16), the offset voltage is added before
passing through the amplifier, thus allowing the voltage supply to be asymmetric. Furthermore, the offset
voltage has been fixed to 3.3V , which is a value that can be easily provided by Arduino. For more details
on the values of the components, please refer to Appendix A.

6.1.8 PCB design

Once the electronic components have been selected, it is possible to design a PCB that integrates all the
electronic devices and which size and connections are compatible with those from Arduino Mega 2560. In
this way, an Arduino Mega 2560 shield has been conceived, to easily branch Arduino’s connections with
those from the shield, and to let other devices (microSD shield and LCD screen) connect simultaneously.

An Eagle template called Practical Arduino Proto Shield Mega has been downloaded. It can be found on
Github, property of Jonathan Oxer and Marc Alexander. This template has the same size as a shield for
Arduino Mega 2560 and has all the connections between Arduino Mega 2560 input/output pins prepared.
In the middle zone, there is a space that can be used to prototype some circuits. Thus, this area has
been used to implement the processing chain that has been discussed in the previous section. In Figure
6.17, the schematic can be seen. There, the central area has is the zone were the processing chain has
been connected.

Mart́ı Sabaté, Marc 37 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.17: Arduino Mega 2560 shield schematic. The area called Prototyping Area is where the processing
chain is placed.

After doing all the connections, and considering that the chosen template already used two different
copper layers (top and bottom), the result is a two-layer PCB, shown in Figure 6.18. This figure has
been obtained using webGerber, an online tool that gives a 3D view of Gerber files.

Mart́ı Sabaté, Marc 38 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

(a) (b)

Figure 6.18: PCB board without the components. At left, the top side of the board. At right, the bottom part.
Both sides have copper.

6.2 Software’s design

6.2.1 Microcontroller’s ADC configuration

Once the signal is ready to enter the microcontroller, the ADC must be regarded. Some important
features are how many bits does it use (voltage resolution) and at which frequency does it read.

Arduino’s ADC usually have 10 bit resolution (in other words, they can differentiate 210 = 1024 voltage
levels between 0 and 5V). Concerning the sampling rate, it is an internal clock speed multiple. Arduino
UNO’s internal clock works at 16MHz (the same happens for Arduino MEGA 2560), and there is
an internal value called prescaler that divides this frequency. In Arduino, it is fixed by default to
128. Moreover, each register refresh (or read) needs 13 clock cycles. Then, input signal is sampled at

fs = 16·106

128·13 = 9615Hz.

This sampling rate is largely not enough: following Nyquist criterion, the highest frequency that can
be reconstructed given a sampling rate is: fmax = fs/2 = 4807Hz. Remember that the acoustic signal
is modulated by the structure and the object between 5kHz and 15kHz. Sampling frequency must be
able to get up to 20kHz information. Microcontroller’s internal clock can not be changed, but as seen
before, there are two factors that divide this rate: the prescaler and the reading cycles. The latter is not
accessible and can not be changed, but the former is a configuration parameter. By going to low level
programming and changing the prescaler, the acquisition sampling rate is able to increase. Nevertheless,
there exists an important drawback. Experience from Arduino users has shown that as the acquisition
sampling rate goes up, the accuracy of low weight bits in the register decreases. In fact, when this
rate overcomes a certain limit, only the biggest 8 bits stay reliable, and then the signal is coded in 255
values only. This is an important trade off between voltage resolution and temporal resolution that will
constraint the system.

Despite the fact that hardware reading has been solved, there is still an inconvenient that tights the
sampling rate. The coded program in the microcontroller is supposed to emit and read both signals
simultaneously during a certain time window. The emitting and receiving routine has been coded using an
interruption; this way, periodic calls to the routine are ensured. The following code sets microcontroller’s
interruption configuration:

Mart́ı Sabaté, Marc 39 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

1 // s e t t imer2 i n t e r r u p t
TCCR2A = 0 ; // s e t e n t i r e TCCR2A r e g i s t e r to 0

3 TCCR2B = 0 ; // same f o r TCCR2B
TCNT2 = 0 ; // i n i t i a l i z e counter va lue to 0

5

7 // turn on CTC mode
TCCR2A |= (1 << WGM21) ;

9 // Set CS21 b i t f o r 8 p r e s c a l e r
TCCR2B |= (1 << CS21) ;

11 // enable t imer compare i n t e r r u p t
// TIMSK2 |= (1 << 0CIE2A) ;

13 TIMSK2 &= B11111101 ; // Avoid i n t e r r u p t i o n s

Arduino code/conf.cpp excerpt

This excerpt of code is executed during Arduino’s setup() function, and must be combined with AT-
MEGA2560 datasheet to be understood. First of all, the three first lines delete all previous content in
timers configuration registers. Next, bit WGM21 in TCCR2A register is set. This corresponds to bit 1
in this register, and remember that the other bits are still at 0 value. Then, CTC mode (Clear Timer on
Compare Match) is set. Different modes are available by changing this bit and WGM20 and WGM22, as
seen in Table 20-8 of the datasheet:

Mode WGM2 WGM1 WGM0 Timer/Counter Mode
of operation

TOP Update or
OCRx at

TOV Flag
Set on

0 0 0 0 Normal 0xFF Immediate MAX
1 0 0 1 PWM, Phase Correct 0xFF TOP BOTTOM
2 0 1 0 CTC OCRA Immediate MAX
3 0 1 1 Fast PWM 0xFF BOTTOM MAX
4 1 0 0 Reserved - - -
5 1 0 1 PWM, Phase Correct OCRA TOP BOTTOM
6 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA BOTTOM TOP

Table 6.3: Waveform Generation Mode Bit Description.

CTC mode has been chosen as the desired interruption code. In this mode, the OCR0A register is used
to manipulate the counter resolution. The counter is cleared to zero when the counter value (TCNT0)
matches the OCR0A. This mode allows greater control of the Compare Match output frequency. Thus,
modifying both the prescaler and the OCR01 register, interruption call frequency can be controlled and,
therefore, sampling frequency can be controlled.

After this, CS21 bit in TCCR2B register is set. This bit, together with CS20 and CS22 define the
prescaler, as can be seen in Table 20-9:

Mart́ı Sabaté, Marc 40 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

CS22 CS21 CS20 Description
0 0 0 No clock source

(Timer/Counter
stopped)

0 0 1 clkT2S/ (No
prescaling)

0 1 0 clkT2S/8 (From
prescaler)

0 0 0 clkT2S/32 (From
prescaler)

0 1 1 clkT2S/64 (From
prescaler)

Table 6.4: Clock Select Bit Description.

Finally, there is an instruction for avoiding interruptions. This instruction appears here because inter-
ruptions will be activated in the desired moment in the loop() function.

Next, measuring method will be presented, and changes in the Neural Network Algorithm will be discussed
in order to adapt microcontroller’s needs.

6.2.2 Measuring method

Remember from Chapter 5 that the Artificial Neural Network’s input is a 997 double precision vector
representing spectral coefficients between 0Hz and 20kHz. In Arduino, double precision and float have
the same bit length (32 bits or 4 bytes), meaning that a single 997 value vector is 3.89kBytes. Microcon-
troller’s Fourier transform usually need two input vectors (Real value vector and Imaginary value vector):
then, needed RAM doubles size. As seen in Section 6.1.2, microcontroller’s RAM is not specially big,
and two vectors this size almost fullfill Arduino MEGA2560 RAM.

Furthermore, Fourier Transform algorithm is also important. arduinoFFT library has been used, imply-
ing two important things: the former, arduinoFFT is an in-place Fast Fourier Transform algorithm; this
means that the spectrum is computed and saved in the input vector, overwriting the temporal signal.
Hence, the number of spectral coefficients obtained in the algorithm is the same as the temporal samples
passed as input (it does not apply zero-padding techniques). The latter is that the applied FFT algo-
rithm is a Radix-2 algorithm, meaning that it only accepts input vectors whose length is a power of 2.
Considering this two remarks, the measurement vector might be 1024 value long, or 512. The first one
implies more RAM used, and probable memory problems during computation. The second one seems to
be more adequate. However, it also means that the Artificial Neural Network has to be solved using only
512 values as entry.

Accuracy error on the reconstructed image depending on the number of spectral coefficients passed as
input has been characterized in order to obtain a trade off function between input size (which, as seen
before, is related to RAM memory) and reconstruction accuracy. For more details on this analysis, refer
to Appendix C.

Mart́ı Sabaté, Marc 41 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.19: Accuracy evolution depending on input size vector.

Figure 6.19 shows how the accuracy error diminishes while the input vector size of the Artificial Neural
Network grows. The three different colour lines represent the three data subsets (as explained in Ap-
pendix C). From this graph it can be outlined that there is no major difference between using 500
frequencies and 1000 frequencies in terms of Accuracy error. Descending to 256 frequencies implies an
important increase of this metric. It must be said that this simulation has been done using a 100 holes
problem, instead of the 24 holes problem solved here. The idea is to get the behavior of the system, and
it has been considered that the behavior for these two features is the same for both problems. This is why
in the figure above an accuracy error of 5% is achieved, while as it will be discussed later, the accuracy
error decreases to less than 1%.

There is still another problem to solve: imagine that the microcontroller’s ADC is able to get a sample
with a sampling frequency of 200kHz. Applying Nyquist criterion, the highest frequency it is able to
solve is 100kHz, which is higher than 20kHz. As the frequency vector obtained is as long as the temporal
vector, only 512 different frequencies will be obtained. Moreover, the spectrum is centred at 0 frequency
and symmetric (this is a property derived from real signal Fourier transform). Then, only 256 coefficients
are valid. The spectral resolution (distance between measured frequencies) is ∆f = fs

Nf
= 200000

512 =

390.625Hz. Finally, computed spectral coefficients in the [0− 20] kHz band are

Ncoef =
fmax
∆f

=
20000

390.625
= 51.2. (6.2)

Obviously, 51 coefficients are not enough to be used as neural network’s input. If the total number of
samples is kept fixed (as seen, there is few freedom in this parameter) and the sampling rate is decreased,
the number of spectral coefficients in the desired bandwidth increases. In spite of this result, which could
easily make you think that decreasing sampling rate gives the solution to the measuring problem, there
is another feature to take into account: temporal samples measured in a 20kHz cycle. This metric is
simply stated as

resfi =
fs
fi

=
200000

20000
= 10. (6.3)

Mart́ı Sabaté, Marc 42 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Remember that a minimum of 2 samples is needed to determine a frequency. As long as sampling
decreases, so does the resolution at 20kHz, becoming a less reliable measurement. Up to this point, there
is another trade off between frequency resolution and number of coefficients obtained.

The adopted solution is to measure several times changing the sampling frequency, Fourier transforming
the data and saving those spectral coefficient in the desired bandwidth. As seen before, sampling frequency
is controlled by the prescaler value and OCR0A register. Prescaler also affects the voltage resolution (as
it decreases, lower ADC bits become less reliable); it has been fixed at 8 value, losing the two lower bits
in the ADC register. OCR0A register also has its limits: it is upper-limited to 255 ticks (it is a 2 byte
register), and it is low-limited by the duration of the inner code in the interruption. This seems logic; if
the code inside the interruption routine is longer that the time between two interruption calls, the second
interruption will be executed before finishing the code of the first call. The code inside the interruption
is:

1 ISR (TIMER2 COMPA vect) {
b i t = ((l f s r >> 0) ˆ (l f s r >> 2) ˆ (l f s r >> 3) ˆ (l f s r >> 5)) ;

3 i f (bitRead (l f s r , 1 5)==1)
{

5 PORTH |= B00010000 ;
}

7 e l s e
{

9 PORTH &= B00000000 ;
}

11 i f (n<N) {
vec [n] = ADCH;

13 n++;
}

15 l f s r = (l f s r >> 1) | (b i t << 15) ; // l f s r a c t u a l i z a t i o n
}

Arduino code/isr.cpp excerpt

This code excerpt shows intructions for computing the LFSR output bit, the output signal (if/else
structure), the reading (ADCH register), the LFSR update and finally the interruption counter update.
This code is executed using 20 clock cycles, which means that OCR0A register is low-limited by this
value. There is also the if(n < N) structure, which works as a protection to avoid vec’s array overflow.

Microcontroller’s available sampling frequencies have been measured experimentally, and results can be
seen in Table 6.5:

OCR0A Elapsed time [µs] (512 calls) Sampling frequency [kHz]
22 6060 84.5
24 6412 79.9
25 6668 76.8
26 6912 74.1
27 7160 71.5
28 7420 69.0
29 7676 66.7
30 7920 64.6

Table 6.5: Experimental sampling frequency.

Using these sampling rates, a MATLAB simulation has been done in order to get how many sampling

Mart́ı Sabaté, Marc 43 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

frequencies are needed to achieve 512 coefficients. For more details concerning this simulation, please
refer to Appendix A Section A.3. The conclusion is that four measurements are enough to get all
the spectral coefficients. The chosen sampling frequencies are the forth, fifth, sixth and seventh in Table
6.5. The reason of not choosing neither the first nor the second sampling rate is that, as seen in the
microcontroller selection, ATMEGA2560’s ADC can not stabilize values faster than 77kHz.

How the measurement is managed and the sampling rate is changed is presented in the following excerpt:

u i n t 1 6 t match [] = {22 ,24 ,25 ,26} ; // ORC2A Values
2

void loop () {
4

i f (n==0 && not (p r o c e s s i n g) && f i <4)
6 {

p r o c e s s i n g = true ;
8 OCR2A = match [f i] ; // = (16 ∗ 10ˆ6) /(200000 ∗ 8) − 1 (must be <256)

TCNT2 = 0 ; // i n i t i a l i z e counter va lue to 0
10 TIMSK2 |= (1 << OCIE2A) ; // I n i t i a l i z e i n t e r r u p t i o n s

}
12 i f (n>=N && p r o c e s s i n g && f i <4)

{
14 TIMSK2 &= B11111101 ; // Stop i n t e r r u p t i o n s

p r o c e s s i n g = f a l s e ;
16 f i ++; // next sampling f requency

n = 0 ; // f i r s t temporal sample
18

// Four i e r Transform and Save C o e f f i c i e n t s
20 // . . .

}
22 // Other f u n c t i o n s that can be executed in p a r a l l e l

// . . .
24 }

Arduino code/loop.cpp excerpt

The first if structure in the loop() function enables interruptions after changing the OCR2A register
and taking the counter to 0 (TCNT2 register). The second if structure avoids interruptions during
Fourier transform and saving time, as well as updates the values that will be needed for the following
measurement. fi variable seems to get to 4 and then this code is never executed again. Actually, what
it is intended to do is to reset fi once the image is reconstructed, in order to start the measurements for
a new image, and get images periodically.

The Fourier transform is then computed. The chosen algorithm here is found in the ArduinoFFT library.
It is a modulo 2 fast Fourier transform (FFT) algorithm. It is not the only solution that has been
considered.

void arduinoFFT : : Compute (double ∗vReal , double ∗vImag , u i n t 1 6 t samples , u i n t 8 t d i r)

Arduino code/arduinofft.cpp excerpt

This is the method used to compute the Fourier transform. It uses two arrays of double as input (vReal
and vImag), which means that, considering N = 512 sample values, both arrays are 4kBytes, implying
that this method can not be used with some microcontrollers such as Arduino Uno. In case of using
Arduino Uno, it has been considered another Fourier transform algorithm; instead of applying a floating
point FFT, it computes a fixed point FFT. It is an algorithm that can be found in the fix fft library.

Mart́ı Sabaté, Marc 44 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

1 i n t f i x f f t (char f r [] , char f i [] , i n t m, i n t i n v e r s e)

Arduino code/fixfft.cpp excerpt

Here, in place of using two arrays of double, this function uses two arrays of char, which are 4 times less
memory consuming. As it has been said in previous sections, these algorithms are in-place algorithms,
and base 2. An in-place algorithm is a code that overwrites the input vector with the output information.
It is a useful way to compute something without spending more memory than necessary. Nevertheless,
it implies that the input information disappears. Base 2 algorithms are those who can only accept as
input an array whose length is a power of 2. Even if the second algorithm consumes much less memory
than the first one, it is also really constraining, as char only has 255 different states, and double has
4, 295 million states. Furthermore, the fixed point algorithm implies several castings to accommodate
the arrays to go through the methods (the input array at the reconstruction algorithm needs to be a
double array). Moreover, speed is also important. As has been explained in this section, four different
measurements will be taking place in order to get 512 spectral coefficients. Between these measurements,
Fourier transform will be computed and the coefficients will be saved. Then, the entire measuring time is
not only the time to buffer the temporal measurements, but also the Fourier transform and the saving in
the external microSD card. Time between measurements should be as short as possible, to avoid changes
in the environment that could affect the measurement, such as temperature or humidity.

6.2.3 Rearranging coefficients

It has been explained in the previous section that four measurements are needed in order to obtain 512
different spectral coefficients. This is achieved by changing the sampling rate at each measurement.
However, even if only the spectral coefficients that correspond to frequencies in the 0−20kHz bandwidth
are saved in the external microSD card, they are no sorted to enter the reconstruction algorithm.

1 myFile = SD. open (”INDICES .TXT”) ;
whi l e (myFile) {

3 i i = 0 ;
whi l e (i i <512)

5 {
s t r aux = myFile . r e adSt r i ngUnt i l (’ \n ’) ;

7 I n d i c e s [i i] = s t r aux . t o In t () ;
i i ++;

9 }
myFile . c l o s e () ;

11 }

13 myFile = SD. open (”MEASURE.TXT”) ;
whi l e (myFile) {

15 i i =0;
whi l e (i i <512)

17 {
s t r aux = myFile . r e adSt r i ngUnt i l (’ , ’) ;

19 Re [I n d i c e s [i i]] = s t r aux . toF loat () ;
i i ++;

21 }
myFile . c l o s e () ;

23 }

Arduino code/sorting.cpp excerpt

Mart́ı Sabaté, Marc 45 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

This code excerpt is used to sort the coefficients to enter the reconstruction algorithm. All four measure-
ments are saved in the same txt file, and there is also another txt file with the order of the coefficients.
For more details on how this sorting is computed, please refer to Appendix A Section A.3. Com-
munication with the external microSD card is done using the SD Arduino library, which uses serial
communication between the board and the shield where the external memory is inserted. The SD Ar-
duino library does not allow to open two different txt files at the same time. This is why this process
must be done sequentially; first, sorting coefficients are charged in memory, and then the measurements
are sorted based on these sorting coefficients.

After rearranging the array, one last step must be done before start reconstructing the image. The input
array is not only the spectral information, but it is normalized by the void measurement. This void
measurement is written in the external microSD card. Therefore, a new reading must be done and each
spectral coefficient must be divided by its corresponding void coefficient.

The whole code can be seen in Appendix E. You will notice that the excerpts shown in this chapter
are not exactly as the final code is. Excerpts have been modified to show the relevant lines of codes for
the explanation in progress.

6.2.4 Reconstruction algorithm

Finally, the Arduino code gets to the prediction step or image reconstruction step. Here, two different ap-
proaches have been contrasted. On the one hand, a common least squares algorithm has been tested. On
the other hand, a more sophisticated approach using machine learning algorithms has been implemented.
For more information about the artificial neural network implemented, please refer to Appendix C.
Moreover, an insight on the least squares algorithm and its relevance can be seen in Appendix B. Here,
only the most important results and conclusions on which algorithm is going to be used will be discussed.

Both appendices show that both algorithms are capable of solving the inverse problem, even the linear
regression shows a better performance on reconstructed images. In fact, the least mean squares algorithm
plus a binary threshold on 0.5 shows a 0% accuracy error on reconstructed images, that is to say, it is
able to reconstruct all images on the data sets.

The Artificial Neural Network does not offer such good performance. Using a two layer network (input
layer plus output layer) as explained in the appendix, and training 100000 epochs on the data set gives
the following result:

Data set Accuracy error (%) Perfect rec. AENPC (%)
Train 0.23 36122/38180 4.27
Test 0.23 12054/12726 4.26
Validation 0.23 8497/8983 4.33

Table 6.6: 5x5 pixel image reconstruction results. AENPC stands for Accuracy Error for Non Perfect Cases,
which is the Accuracy Error without taking into account those cases that have been completely well reconstructed.

The accuracy error is really small, but it is not 0 as for the other algorithm. This could make you
think that it is a better idea to solve the problem using the first algorithm, which is much more easy to
understand and faster to develop. Nevertheless, remember that the 5× 5 plate is not the final product,
but it is a proof of concept. The idea is to produce structured plate’s where the number of hole’s is
bigger (more pixels in the image), and the distance between them and their size is smaller. Exploring
the behavior of the reconstruction algorithm over a more complex problem (for example a 10× 10 plate)

Mart́ı Sabaté, Marc 46 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

has shown different performances. In this case, the accuracy error for the least squares algorithm is not
0. Figure 6.20 shows the accuracy error per pixel:

Figure 6.20: Accuracy error per pixel using a least squares algorithm for the 10× 10 case.

These results are not bad, the probability of reconstructing the image is still high, but this time this
algorithm does not assure that the result is going to be the right one. Concerning the Artificial Neural
Network, the same network as for the 5× 5 case has been used, just adapting the shapes and sizes of the
layers (the output layer must have the same number of neurons as the number of pixels in the image).
The results are as follows:

Mart́ı Sabaté, Marc 47 of 123

CHAPTER 6. SOLUTION ANALYSIS 2019

Figure 6.21: Accuracy error per pixel using an artificial neural network for the 10× 10 case.

This performance seems better than the least squares algorithm. This is the reason why it has been
decided to apply the machine learning algorithm instead of using a linear regression.

It must be outlined that the Artificial Neural Network model must be modified and adapted each time the
number of holes in the plate is changed. The sizes and shapes depend on the plate’s features. Therefore,
a 10× 10 problem can not be solved using an algorithm designed for a 5× 5 problem.

Mart́ı Sabaté, Marc 48 of 123

CHAPTER 7. RESULTS 2019

Chapter 7

Results

7.1 System’s hardware

This section summarizes the hardware selection that has been discussed during the previous chapter. The
different selected components are:

• Microcontroller: Arduino Mega 2560

• Microphone: GRAS 46BE 1/4′′ CCPFree-field Standard Microphone Set

• Loudspeaker: Kemo L10

• External memory: Micro TF Card MemoryShield Module SPI Micro Storage Card Adapter

• LCD display: HD44780U 20× 4 Dot Matrix Liquid Cristal Display Controller/Driver

The components listed here are shown in Figure 7.1. Moreover, there are other components that have
been selected to make the former ones work together:

• Microphone preamplifier: GRAS 26CB 1/4′′ CCP Standard Preamplifier withMicrodot Connector

• Microphone power source: GRAS 12AL 1-Channel CCP Power Modulewith A-weighting filter

• Microphone processing chain: high-pass filter and amplifier

• System’s power source: PC1604, a 9V 6LF22 Alkaline-Manganese Dioxide Battery from Duracell

Mart́ı Sabaté, Marc 49 of 123

CHAPTER 7. RESULTS 2019

Arduino Mega 2560

LCD Display

microSD shield

Loudspeaker

Structured plate

Microphone

Figure 7.1: System’s block diagram

7.2 System’s software

Concerning the code developed for the system, some excerpts have been shown and explain in the previous
chapter, and the whole code can be consulted in Appendix E. Here, a code flow diagram is shown in
Figure 7.2 to explain the behavior of the code.

Mart́ı Sabaté, Marc 50 of 123

CHAPTER 7. RESULTS 2019

Variable initialization

ADC Con-
figuration

Signal emission
and reception

FFT + Saving
+ (fi + +)

fi >= 4?

Sorting

Change
ADC

Config.

Normalization

Image recon-
struction

Save and Display
Initial
ADC

Config.

setup()

loop()

Figure 7.2: Code’s flow diagram.

Mart́ı Sabaté, Marc 51 of 123

CHAPTER 7. RESULTS 2019

The above diagram shows the sequence of functions that take place inside the microcontroller. At the
begining there are two processes in gray, corresponding to the setup() function. Then, the rest of the code
belongs to the loop() function. However, there is also a difference between the green processes and the
yellow one. The green processes belong to the measurement loop, that is repeated four times per image
reconstructed. They are the processes in the code where elapsed time is more important, as it conditions
measurement repeatability. The processes in yellow also belongs to the loop() function, but they do not
need to be extremely fast, as their goal is to reconstruct and show the image with the obtained data.

7.3 System’s behavior

Before start measuring and predicting images, there is still one important step to do; as explained before,
measurements are normalized before passing through the reconstruction algorithm. This normalization
implies the measurement of a void spectrum, in other words, measuring the structured plate frequency
response when there is no hole covered.

Figure 7.3: Single void spectra.

Figure 7.3 shows two different void spectra measured under the same conditions. At first sight they
are much alike, even though there is a lot of noise in the measurement. However, the relative error
is computed between these two measurements and a 9.67% error is found. Considering that this void
spectrum is going to divide the mask measurement, a 10% variation is not good at all. Thereby, it has
been decided to reduce experimental noise by taking several measurements and average them. It must
be said that the average has been done in the spectral domain; otherwise, high frequency information
would be lost (remember that an average is a low-pass filter). Two hundred measurements have been
taken under the same conditions, and two different groups have been done, computing two independent
mean spectra. The comparison between these two mean spectra is shown in Figure 7.4:

Mart́ı Sabaté, Marc 52 of 123

CHAPTER 7. RESULTS 2019

Figure 7.4: Mean void spectra.

One could think that there is not so much difference from the first figure. Despite the fact that the
low frequencies are smoother than before, noise is still present in both spectra. Even though, when the
relative error is computed, the real difference appears: this time there is only a 1.36% error between
both means. The average has achieved its goal, and now the spectra are much more alike than before.
This experience has been repeated for the case of covering some holes (applying a mask). It consists on
a rectangular mask that can cover four different holes. The relative error in this case is 1.40%, which is
the same order of magnitude as for the void spectra.

Now, the following step is to prove that the microphone detects a difference when holes are covered. Next
figure allows a comparison between two mean spectra: one computed from void measurements, and the
other one computed from mask measurements. The figure shows that both spectra are similar; there is
still a lot of noise in the measurements and the shape of the curve is alike. However, there are some zones
where differences can be noticed (marked in red).

Mart́ı Sabaté, Marc 53 of 123

CHAPTER 7. RESULTS 2019

Figure 7.5: Mean void spectrum and mean mask spectrum.

The same relative error has been computed between those two signals, obtaining a 111.18% error. Com-
pared to the error obtained between two mean void spectra, it seems clear that the microphone detects
a difference when a mask is applied to the structured plate. Finally, Figure 7.6 shows what would be
the input to the image reconstruction algorithm; that is to say, the ratio between the mask measurement
and the void measurement. In the left picture, one hundred void measurements and one hundred mask
measurements have been used, whereas in the right picture, another one hundred void measurements and
one hundred mask measurements have been used. It is important to outline that data from left picture
and right picture are totally independent, and therefore, the figure is useful to draw some conclusions.
Both figures present peaks at the same frequencies, except for the peak marked in red. Moreover, the
order of magnitude of the signal is the same as synthetic signals used as training data.

Figure 7.6: Mean normalized spectra.

Mart́ı Sabaté, Marc 54 of 123

CHAPTER 7. RESULTS 2019

(a) (b)

Figure 7.7: At left, the structured plate with all its holes uncovered, ready to take the void measurement. At
right, the structured plate with a mask applied, ready to take the mask measurement. In order to see better the
mask applied, it has been marked in red.

The relative error between both signals is 1.33%, that is to say, the same order as for the mean void
measurements and the mean mask measurements. Figure 7.7 shows the mask (image) that has been
applied and measured.

Despite the fact that the normalized spectrum seems similar to synthetic training data, the Artificial
Neural Network has been applied to this signal to try to reconstruct the image, and the prediction was
not good at all.

Given these prediction results, some measurements have been done in order to check if the microphone
and the loudspeaker are working fine. First of all, a 5kHz sinusoidal signal has been created with a signal
generator and emitted using the piezoelectric loudspeaker. Then, the signal has been received using two
different microphones (the first one is the GRAS used in the project and the other one is a Bruel and
Kjaer). The power source is also different: the GRAS microphone has been connected to the GRAS
power source, while the Bruel has been connected to a Bruel power source (this one admits more than
channel). The reconstructed signal has been visualized in the oscilloscope. It has been found that under
the same conditions, the GRAS signal shows an amplitude of Vpp = 138mV and the Bruel signal has an
amplitude of Vpp = 704mV . This difference is even more striking because the sensitivity of the GRAS
microphone is 4mV/Pa and the sensitivity of the Bruel microphone is 2.74mV/Pa.

Next test has been the same as before but this time the GRAS power source has been replaced, and both
microphones have been powered using the Bruel power source. This time, GRAS signal amplitude is
Vpp = 1.72V and Bruel signal amplitude is Vpp = 0.872V . Thus, the conclusion of these two tests is that
the Bruel power supply amplifies the signal more than the GRAS power supply, but both microphones
work fine for this signal.

But the emitted signal in the real system is not a sinusoidal signal, but it is a really fast squared signal.
Then, the following signal has been emitted and received:

Mart́ı Sabaté, Marc 55 of 123

CHAPTER 7. RESULTS 2019

(a) (b)

Figure 7.8: Squared signal using Kemo L10 as transducer.

Signal shown in Figure 7.8 shows the response of the transducer to an step, that is to say, the step
response of the piezoelectric. This response has a frequency of 5kHz and a time duration of 1ms. Knowing
that the emitted signal oscillates faster than 1ms, the signal in the microphone will be blurred by the
impulse response of the piezoelectric.

Finally, the same test has been performed using another loudspeaker, and the result is the following:

(a) (b)

Figure 7.9: Squared signal using other transducer.

As seen in Figure 7.9, the step response of this transducer has less oscillations than the previous one.
In order to compare both loudspeakers, take a look at Figure 7.10:

Mart́ı Sabaté, Marc 56 of 123

CHAPTER 7. RESULTS 2019

(a) (b)

Figure 7.10: Comparison between step responses.

It be outlined that the left one is shorter in time but has more oscillations, whereas the right one is longer
but has less oscillations.

Mart́ı Sabaté, Marc 57 of 123

CHAPTER 8. CONCLUSION 2019

Chapter 8

Conclusion

The implementation of a single, autonomous, integrated electronic device to reconstruct acoustic images
with a single microphone has been done. A microcontroller has been programmed and all the peripherals
have been included. Moreover, a theoretical model has been designed and it has been proved using
synthetic (or simulated) data and a machine learning algorithm that a solution to the problem exists.

About the implementation and the experimental results, they are not good enough. The prediction does
not present reliable results and, as shown in Section 7, the step response of the piezoelectric transducer
used as a loudspeaker might not be appropriate to go as fast as it is intended in the project. Therefore, the
loudspeaker should be replaced by one having a wider bandwidth (a shorter impulse response). Electronic
restrictions to the problem may be more constraining than it was supposed at the beginning of the project.
Moreover, experimental results have been done using an Arduino Mega 2560, while in Section 6.1.2 a
long discussion on which device should fit better the system has been done, and Teensy 3.1 has been
considered even a better option than Arduino Mega 2560.

Electronics might not be the only thing to fix in order to reconstruct the image. From the recovered
signals, it seems that there is a lot of noise in the system. A noise source study might be done in the
future to filter them out. Furthermore, it could be possible to find a mismatch between theoretical model
and real one. In Appendix D several assumptions have been made, and also some approximations
that may be important in the case of the real system. The way this mismatch could be checked is by
simulating the behavior of the system using a FEM software such as COMSOL Multiphysics to verify
that the theoretical model matches the simulated one.

Once the measurements give good experimental results with the system, the proof of concept will be done,
and the system is supposed to work both for a higher number of pixels and for a smaller scale. Thus,
a new system will be designed, keeping the same algorithms and architecture, but this time focusing on
ultrasound transducers, to go far beyond from audible frequencies, and to reduce pixel size to micrometers
or even nanometers. It means that ultrasound emitters and receivers will be selected and some changes
in the system stated here will be done. This is the real goal of this technology: to reconstruct acoustic
image at nanoscale.

Mart́ı Sabaté, Marc 58 of 123

CHAPTER 9. PROJECT’S PLANNING 2019

Chapter 9

Project’s planning

This chapter shows how the planning of the project has been done and how it has ended. In fact, the
work discussed and explained in the report corresponds to the Task 4 of the Gantt diagram shown below.
As said before, the implementation of a real and autonomous imaging system belongs to a more wide
project, where the physics model (Appendix D) and the reconstruction algorithm (Appendices B and
C). In the diagram, Task 1 is the bibliographic research and study of both the physics model and the
reconstruction algorithm. Task 2 is the statement and simulation of the physics model in MATLAB, as
well as the production of the data set that will be used to train and check the reconstruction algorithm.
Third step, or Task 3 is the development of the Artificial Neural Network model and its validation. Task
4 is the implementation of the physical system, the aim of this report. Finally, Task 5 is the writting of
the report.

Month
September October November December January February

Task 1

Task 2

Task 3
Checkpoint

Task 4

Month

March April May June July

Task 3

Task 4
Experimental measurements.

Task 5
Deadline

Figure 9.1: Project Gantt’s diagram

Taking a look more in detail to the implementation part, that is to say, Task 4, it can be divided in the
following subtasks:

Mart́ı Sabaté, Marc 59 of 123

CHAPTER 9. PROJECT’S PLANNING 2019

Month
February March April May June

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

Task 4.1

Task 4.2

Task 4.3
Components

Task 4.4

Task 4.5
Bug fix

Figure 9.2: Gantt’s Task 4 detail.

Task 4.1 is the component selection, where all the material needed to implement the system is selected
and purchased. Task 4.2 is code development. This is the longest subtask, as it is really linked to the
other tasks and will be modified in consequence. Task 4.3 is electronic circuit design. This includes both
the conception and the implementation of the electronics. Thus, this subtask has experimental work.
Task 4.4 is the plate’s design and fabrication. Finally, Task 4.5 are all the experimental tests that are
needed to check the performance of the code and its interaction with the hardware, before starting the
experimental measurements that will give the results. Concerning the milestones, the first one is the
estimate arrival of the selected components, and the second one is the date where all bugs in the code
will be fixed.

The available resources in the project have been stated along the report, but are going to be summarized
here, adding extra information about its availability.

Human resources are crucial for any kind of project. This project, as part of a university department
research program, has few people working on them. Two groups were initially involved; GROC (Grup
de Recerca d’Òptica de Castelló) UJI and INIT (Institut de Noves Tecnologies de la Imatge). Daniel
Torrent Mart́ı has been the GROC member involved in the physics part of the project, while José Mart́ınez
Sotoca and Vicente Javier Traver Roig have been involved in the reconstruction algorithm. They have
been present in all the meetings the project has had, as well as Marc Mart́ı Sabaté. Vicente Javier Traver
has been on stay in Southampton the second semester of the academical year. In February, another
person has been included in the project, supervising the implementation task. This person is Ignacio
Peñarrocha Alós, academical supervisor of the project. Marc’s availability in the project has not been the
same in all the project. Until February, Marc has been working part time in the project. From February
to June, he has been working full-time, and the last two months he has been working part time again.

Non human resources in the project have different natures. First of all, this project has been funded
from INIT with 1000e. Two different computers have been used, one from the beginning of the project
and alien5 since February (for technical details please refer to Specification Part in Chapter 11). As
for the software, MATLAB licences were available, and Spyder3 and Arduino IDE where installed in
the computers (both softwares are open access). Moreover, the components discussed in Section 6.1.1
where already available at the beginning of the project.

After having finished the project, a few comments can be told about the initial planning and the devel-
opment of the project. Concerning Task 4, which is the main core of the project, Task 4.1 has suffered
some delays. The selection of the microSD shield has been delayed since there were doubts about which
microcontroller would fit better in the project. Also, there has been a delay in Task 4.4 because the first
structured plate was deformed due to sun exposure. Returning to the hole project, Task 3, that is to

Mart́ı Sabaté, Marc 60 of 123

CHAPTER 9. PROJECT’S PLANNING 2019

say, the reconstruction algorithm, has also suffered delays. Even though, the scope of the project has not
been affected or changed.

Mart́ı Sabaté, Marc 61 of 123

CHAPTER 10. ORDER 2019

Chapter 10

Order

The order of priority of the documents in the project is established by the norm UNE-EN 157001:2014,
that is to say:

1. Specifications.

2. Budget.

3. Report.

4. Appendices.

Mart́ı Sabaté, Marc 62 of 123

2019

Part II

Appendix

Mart́ı Sabaté, Marc 63 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

Appendix A

Electronic measurements

A.1 Loudspeaker adapting circuit

Before using a driver electronic circuit, loudspeaker supply features must be analyzed. Loudspeaker
technical data gives an estimate for the maximal voltage it is able to accept: 16V p−p. However, there is
neither information about current consumed by the piezoelectric nor information about its impedance.

Next figure shows the electronic circuit that has been used to get information about current and impedance:

Figure A.1: Shunt resistor set up.

Several resistors have been tested until a difference in voltage in the voltmeter has been noticed. Finally, a
Rshunt = 47kΩ resistor has been used. This is completely unusual; usually, shunt resistors are really small
resistors, but as it will be seen in a moment, loudspeaker’s impedance is huge, and then the current is so
small that using a Rshunt = 1Ω does not allow to get any measurement in the voltmeter (the voltmeter is
not able to measure under 0.001V). Using this shunt resistor, the obtained voltage is VRshunt = 0.023V ,
meaning that the current going through the circuit is I = 489nA. Now, the loudspeaker impedance can
be easily estimated, and the computed impedance is Zloud = 10.23MΩ. Finally, the current that would
go through the circuit in case of replacing the shunt resistor by a wire is Imax = 491nA, which is a current
that Arduino’s digital output can provide.

Even if loudspeaker could be commanded directly using Arduino’s digital output, when there is no selected
output for the pin, the state of the output is called high impedance, and there is an uncertainty that can
make the output oscillate and then undesired noise would be created. In order to avoid this phenomena,

Mart́ı Sabaté, Marc 64 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

an electronic driver can be used.

Figure 6.13 from Section 6.1.7 in the report shows the simplest electronic circuit to perform a driver for
the loudspeaker. The MOSFET’s model is IRF520. Uout is the output voltage from the microcontroller,
which varies between 0V and 5V . This voltage will command the MOSFET transistor by changing
VGS voltage. Here, the MOSFET acts as a switch; its state will be either saturation, or cutoff. During
saturation state, VDS is almost 0, then, the loudspeaker has 15V between its terminals. During cutoff,
there is no current going through the loudspeaker, and the voltage is 0. In order to command the
MOSFET transistor, VGS must be higher than VGSth during saturation, and lower in the other case. As
the MOSFET’s source is directly connected to ground, VGS = VG. The command could be easily done by
connecting the microcontroller’s output directly to the MOSFET’s gate, as 5V is high enough to activate
the transistor. However, as said before, the “high impedance” state must be considered. Then, when
Arduino’s output pin does not have a value, MOSFET’s gate is connected via R1 to ground, forcing the
voltage to be 0. R1 resistor is big enough to ensure that the current is lower than the Arduino’s pin limit
(20mA). As gate’s input current can be neglected:

Imax =
Vout
R1

(A.1)

By placing a 1MΩ resistor, current is ensured to be under the limit. Loudspeaker’s voltage during
MOSFET’s saturation is not exactly 15V ; there is always a little tension fall between Drain and Source
in the MOSFET. In order to get an idea of the magnitude of this tension, the technical documentation
gives some values, but it can also be checked experimentally, replacing the loudspeaker by a resistor and
measuring the current that goes through it, as shown in Figure A.2.

Figure A.2: Electronic set up to measure current through the drain.

Using a R2 = 2.2kΩ resistor, a 6.7mA drain current has been found, meaning a voltage of 14.74V at
loudspeaker terminals, and VDSsat = 0.26V . Furthermore, using a voltage source instead of Arduino’s
output at Uout, VGSth can be determined. It has been found that VGSth = 3.6V .

The main drawback in this circuit is the fact that a +15V asymmetric power supply is needed, which
is three times the voltage needed for the microcontroller. This implies using a more complex power
source, even needing a transformer and some power electronics. As said in the report, this idea has been
discarded, according to the requirements of size, autonomy and price.

Mart́ı Sabaté, Marc 65 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

A.2 Microphone adapting circuit

Figure 6.14 in the report has shown that a processing chain is needed to adapt microphone’s signal.
The first step is the high-pass filter. As the content that is wanted to be eliminated is the continuous
offset, it is enough to use a first order filter 1, using a resistor and a capacitor. The cutoff frequency
(−3dB) is placed between 10Hz and 100Hz. Filter’s expression is:

Vout = Vin ·
jωRfCf

1 + jωRfCf
(A.2)

And f0 is defined as f0 = 1
RfCf

. Choosing a 100nF capacitor, resistor must be in the interval [16−160]kΩ.

Considering two series resistors 15kΩ and 2.2kΩ, the cutoff frequency is 92.53Hz.

Figure A.3: AD623AN inner diagram.

Next, the instrumental amplifier used is AD623AN. It is the widely used amplifier made up with three
operational amplifiers, as shown in Figure A.3. Its gain is defined as G = 1 + 100000

RG
, begin RG

the resistor that fixes the gain, and it’s up for the user to chose its value. Knowing that the input’s
amplitude is 0.1V and that the signal is going to be placed at an offset of 2.5V , the output amplitude of
the signal should be 2.5V to profit all the microcontroller’s input range. This means an amplifier gain of
G = 2.5

0.1 = 250, being then the resistor RG = 401.6Ω. The chosen resistor will be the immediately higher
resistor in the market, in order to get a gain a bit lower (to avoid saturation in the microcontroller’s
ADC). This resistor is RG = 470Ω. The filter’s output signal will be placed as the non inverting input
of the instrumental amplifier, and the ground will be the inverting input. As the input impedance of
the instrumental amplifier is directly the input impedance of an operational amplifier (thus, a really high

1Moreover, it is a passive filter, which gives less problems to implement than an active filter. An active filter ought to
have a power source.

Mart́ı Sabaté, Marc 66 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

impedance, usually higher than 1MΩ), it does not disturb the previous filter, and the previous expression
(equation (A.2)) is still valid.

This model of instrumental amplifier allows symmetric power supply with voltage values between ±6V . It
also accepts asymmetric power supply up to 12V . Asymmetric power supply has been chosen.The output
signal will be limited to the supply voltage. In order to protect the microcontroller against overvoltage,
the supply voltage will be limited to 5V . Also, a 10kΩ potentiometer will be placed in the Offset input
to change the mean value of the signal and place it in the middle of the input’s range. The potentiometer
will be connected to +5V and 0V to give a voltage in between those values. Theoretical expressions give
a voltage to pass as input to the offset input; however it is easier and more useful to place a potentiometer
and to look for the value experimentally.

Nevertheless, the input signal at point 2 in Figure A.3 is positive and negative. If the power supply
is asymmetric, the negative part of the input signal will not be processed, and thus, an important part
of the information will be lost. The system is intended to be powered by a single battery, to make the
system autonomous and small as possible. Therefore, this electronic circuit is not the best solution for
the system.

Another solution is presented in the diagram in Section 6.1.7, Figure 6.16 of the report. This time,
the input signal is biased by an offset before passing through the operational amplifier, thus this amplifier
is able to have asymmetric power supply without cutting the input signal. The circuit’s function is

VOut = (1 +
RF
RX

) · (1

R1 +R2
) · (R1 · VOff +R2 · Vin). (A.3)

Knowing that Vin has an amplitude of 0.2V and no offset, the output signal must have an amplitude of
2.5V and a 2.5V offset and fixing the offset voltage at 3.3V (it has been fixed this way because Arduino
is able to provide this voltage) the following system of equations can be established:

2.5 = (1 +
RF
RX

) · (1

R1 +R2
) · (R2 · 0.2) (A.4)

2.5 = (1 +
RF
RX

) · (1

R1 +R2
) · (R1 · 3.3) (A.5)

From this system of equations and using commercial resistor values, it has been found that using RF =
12kΩ, RX = 1kΩ, R1 = 51Ω and R2 = 820Ω gives a good performance: a 2.45 gain and a 2.51V offset.
Then, this electronic circuit fits the requirements of the system: it achieves a signal covering the whole
Arduino input range and it allows an asymmetric power supply (5V and 0). This asymmetric power
supply, again, protects the microcontroller against overvoltage, as the output signal cannot be higher
than 5V . As operational amplifier, a single supply operational amplifier must be used. LM741 does not
allow single supply, it has to be symmetric power supply. The chosen model is LM324, even if it has
four amplifiers inside, and only one is needed for the project’s purpose, it allows single supply (5V and
0V).

A.3 MATLAB measurement simulation

As seen in Section 6.2.2 of the report, one single measurement is not enough to obtain the desired
frequency vector. Therefore, the following simulation has been done:

Mart́ı Sabaté, Marc 67 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

1 M = 0 ;
i = 0 ;

3 freq acum = [] ;
moment=1;

5 f s l i s t = [84488 , 79850 , 76785 , 74079 , 71508 , 69003 , 66701 , 6 4 6 4 6] ;
whi l e M<512

7
f s = f s l i s t (i +1) ;

9 N = 512 ;
f r e q = −(f s) / 2 : (f s /N) : (f s) /2−(f s /N) ;

11 f r e q = f r e q (f req >=0) ;
f r e q c o e f = f r e q ;

13 f r e q c o e f (f r e q c o e f >20000)= NaN;
f r e q c o e f = (1 : l ength (f r e q c o e f)) . ∗ (˜ i snan (f r e q c o e f)) ;

15 f r e q c o e f = f r e q c o e f (f r e q c o e f >0) ;
f r e q = f r e q (f req <=20000) ;

17
measure . f s { i +1} = f s ;

19 freq acum = [freq acum , f r e q] ;
K = [] ;

21 f o r i i =1: l ength (freq acum)

23 f o r j j= i i +1: l ength (freq acum)

25 i f f req acum (i i)==freq acum (j j)
freq acum (j j) = NaN;

27 K = [K, (j j − M)] ;
end

29 end
end

31
f o r i i =1: l ength (K)

33 f r e q c o e f = f r e q c o e f (˜ (f r e q c o e f==K(i i))) ;
end

35
measure . f c o e f { i +1} = f r e q c o e f ;

37 measure . f r e q { i +1} = f r e q (f r e q c o e f) ;
freq acum=s o r t (freq acum (˜ i snan (freq acum))) ;

39 measure . Ncoef (i +1) = length (freq acum) − M;
M = length (freq acum) ;

41 i = i + 1 ;
end

43
measure . Nfs = i ;

45 measure .M = M;

47 f o r j j =1: l ength (measure . f r e q)
f i g u r e (9) , p l o t (measure . f r e q { j j } , ones (1 , l ength (measure . f r e q { j j })) , ’ o ’) , hold on ;

49 end

51 vec aux = 1 : l ength (freq acum) ;
f o r i i = 1 : measure . Nfs

53 measure . ind acum{ i i } = [] ;
f o r j j = 1 : l ength (measure . f r e q { i i })

55
measure . ind acum{ i i } = [measure . ind acum{ i i } , sum ((freq acum == measure . f r e q { i i }(

j j)) . ∗vec aux)] ;
57 end

end

Matlab code/exp measure.m excerpt

Mart́ı Sabaté, Marc 68 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

In this MATLAB excerpt, experimental sampling frequencies are sorted in descending order in an array.
Then, for each sampling frequency, the frequency vector that would be obtained after FFT algorithm is
computed, and those frequencies inside the desired bandwidth are kept, while the others are discarded.
Then, frequencies are accumulated in a buffer, and repeated ones are deleted. At the end of the iteration,
the number of elements in the buffer is computed and if it is lower than 512, the next sampling frequency
is taken an another measurement is done. This code can be understood easily by looking Figure A.4.

Not only frequencies are saved to count the amount of spectral coefficients achieved. A whole structure
is saved; it contains for each sampling frequency, the amount of coefficients saved, the frequencies, the
frequency indices of saved coefficients, and even the indices of those coefficients in the final whole frequency
vector. All these parameters will be necessary in order to manage the arrays in the microcontroller and
save values in the SD card, as discussed in Section 6.2.3 in the report.

Results from this simulations are the following: four sampling rates are needed (76.8, 74.1, 71.5 and
69.0kHz). For the first sampling rate, 121 coefficients are obtained; 126, 130 and 135 for the others. The
total amount is 512 coefficients.

Mart́ı Sabaté, Marc 69 of 123

APPENDIX A. ELECTRONIC MEASUREMENTS 2019

Samples 1 2 ... i i+ 1 i+ 2 Nf

Frequency [kHz] −50 −40 −30 −20 −10 0 10 20 30 40

Negative frequencies Over 20kHz

Ncoef = 3 Coef = [i, i+ 1, i+ 2] M = 3

Samples i i+ 1 i+ 2

Buffer

Frequency [kHz] 0 10 20

Samples 1 2 ... i i+ 1 i+ 2 i+ 3 i+ 4

Frequency [kHz] −25 −20 −15 −10 −5 0 5 10 15 20

Negative frequencies

Ncoef = 5 Coef = [i, i+ 1, i+ 2, i+ 3, i+ 4] M = 3 + 5

Samples i i+ 1 i+ 2

Buffer

i i+ 1 i+ 2 i+ 3 i+ 4

Frequency [kHz] 0 10 20 0 5 10 15 20

2 = 52

iter 1

fs = 100kHz

iter 2

fs = 50kHz

Figure A.4: Algorithm graphic’s explanation.

Mart́ı Sabaté, Marc 70 of 123

APPENDIX B. LINEAR REGRESSION TEST 2019

Appendix B

Linear regression test

In this Appendix, the least squares algorithm as a reconstruction algorithm is going to be considered.
First of all, consider one single measurement as the linear combination of its frequency components, such
that

y1 = θ1 · f1 + θ2 · f2 + · · ·+ θk · fk + a. (B.1)

In this expression, y1 means the first output of the plate, which can be either 1 or 0. fi parameters are
the spectral coefficients experimentally measured, and θi are the coefficients that link the input and the
output. As these last coefficients are unknown, the aim is to solve them and to map spectral information
with hole’s presence. Now, suppose that instead of having one single observation, a N list of them is
available, being N a higher number than the parameters to solve, k. Then, the equation above can be
written as

y1

1

y2
1

y3
1
...
yN1

︸ ︷︷ ︸

Y

=

1 f1

1 f1
1 . . . f1

k

1 f2
1 f2

2 . . . f2
k

1 f3
1 f3

2 . . . f3
k

...
...

...
...

...
1 fN1 fN2 . . . fNk

︸ ︷︷ ︸

X

θ1

θ2

θ3

...
θk+1

 ,
︸ ︷︷ ︸

Θ

(B.2)

being Θ the array of parameters to solve, X the input and Y the output. Up to this moment, only one
single hole has been considered, but this system can be extended to the other holes. Thus, the final
expression is

y1

1 y1
2 y1

3 . . . y1
h

y2
1 y2

2 y2
3 . . . y2

h

y3
1 y3

2 y3
3 . . . y3

h
...

...
...

...
...

yN1 yN2 yN3 . . . yNh

︸ ︷︷ ︸

Y

=

1 f1

1 f1
1 . . . f1

k

1 f2
1 f2

2 . . . f2
k

1 f3
1 f3

2 . . . f3
k

...
...

...
...

...
1 fN1 fN2 . . . fNk

︸ ︷︷ ︸

X

θ1

1 θ2
1 θ3

1 . . . θh1
θ1

2 θ2
2 θ3

2 . . . θh2
θ1

3 θ2
3 θ3

3 . . . θh3
...

...
...

...
...

θ1
k+1 θ2

k θ3
k . . . θhk

 .
︸ ︷︷ ︸

Θ

(B.3)

Mart́ı Sabaté, Marc 71 of 123

APPENDIX B. LINEAR REGRESSION TEST 2019

Each column in Θ’s matrix represents the parameters to estimate the output of each pixel of the image.
As N is bigger than k, this matrix system is an overdetermined system of equations. The system is
going to be solved using a least squares algorithm by means of the Moore-Penrose pseudoinverse matrix.
Therefore, Θ can be found as Θ = (XTX)−1 ·XT · Y .

Using a 60000 observation data set with both input and output, 20000 observations have been used to
solve and identify the parameters by means of the least squares algorithm, and the rest are used for
validating the algorithm and computing an error. MAE error has been computed for each pixel, and it
is shown in Figure B.1.

Figure B.1: Accuracy evolution depending on input size vector.

The results show that the least squares algorithm finds out a good result for the model. However, there
are some pixels where the error is several times higher than for other pixels. Even if these results seem
quite good, it has been decided to add a non linearity to improve the performance. As it is known, output
values yji are either 1 or 0. Nevertheless, the result of the linear regression is not a Boolean value, but a
real one. By comparing each prediction to a threshold, the output can be converted into 0 and 1 values.
A 0.5 threshold value for each pixel has been chosen. As a result, the error per pixel curve shown above
becomes and straight line centered at zero, meaning that this time, the real output is always found.

A more deep insight analysis has been done on the data’s nature. First of all, several simulations have
been executed. A data cube has been obtained, where one dimension represents identification data size
(N), the second one is the pixel evaluated (output yi), the third one is the frequency (fi), and the
magnitudes are θi. Visualizating these data for a single pixel, an image as follows is obtained:

Mart́ı Sabaté, Marc 72 of 123

APPENDIX B. LINEAR REGRESSION TEST 2019

Figure B.2: Accuracy evolution depending on input size vector.

As it can be seen in Figure B.2, weights’ magnitude is barely independent to the number of observations
used for identifying the system. There are several parameters whose value is around 0 with independence
of how big is the identification set. Moreover, the accuracy error is almost the same for every identification
set size. Also, there is a very relevant conclusion that can be outlined from this figure. In fact, there are
some frequencies whose coefficients are always 0; then, they are irrelevant for the system’s identification.
These frequencies have been searched in order to compare with the irrelevant frequencies for the other
holes. A surprising result has been found: the irrelevant frequencies are the same for the identification
of every hole, that is to say, these frequencies do not help solving the problem. Consequently, if the least
squares algorithm is computed again eliminating the information concerning these frequencies, the same
result should be retrieved. And, indeed, the same result is found.

Finally, the covariance matrix of the measurement matrix (X) is computed. It has been found that there
is a high peak value in this matrix that shades the rest of the coefficients, making difficult to visually
analyze it. Therefore, the correlation matrix has been computed. Remember that the correlation matrix
is just a normalization of the covariance matrix, given by

Rx,y =
Sx · Sy
Sx,y

, (B.4)

where Si is the variance of the i-th variable, and Si,j is the covariance between i-th and j-th variable.

Mart́ı Sabaté, Marc 73 of 123

APPENDIX B. LINEAR REGRESSION TEST 2019

Figure B.3 shows the absolute value of the correlation matrix. Correlation coefficients show the rela-
tionship between two different variables: they are near 1 when there is a direct relationship, nearby −1
when there is an inverse relationship, and 0 when there is no relationship. By showing the absolute value
of those coefficients, the image focuses on whether there is a relationship between variables or not.

Figure B.3: Correlation coefficient matrix.

In Figure B.3 there is the typical diagonal of 1 values, as every variable is directly correlated to itself.
Out of this diagonal, however, there is no clear behavior of the frequencies. At low frequencies, it can
be found that there is a group that behaves similar respect to the other frequencies. This means that
information in this band can be reduced to a single frequency in the interval without losing information.
Nevertheless, this approximations are little, and there is no clear band behavior in the data.

The linear regression algorithm starts to fail when the number of pixels starts to increase, that is to say,
the complexity of the system increases. As shown in Section 6.2.4 of the report, the error per pixel
using the linear repression plus the 0.5 threshold has increased. Remember that for the 5× 5 plate, the
accuracy error per pixel was 0%; now, it is in average higher than 10%.

Mart́ı Sabaté, Marc 74 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Appendix C

Artificial Neural Network

C.1 Neural networks: a historical approach

Deep Learning has suffered a meteoric rise over the last several years, characterized by drastic improve-
ments over reigning approaches towards the hardest problems in Artificial Intelligence, massive invest-
ments from companies such as Google, and an exponential growth in research publications. However,
before Deep Learning, there were several techniques in the topic of Machine Learning that lead to the
actual state.

First of all, as Machine Learning is the framework where Artificial Neural Networks and afterwards
Deep Learning were developed, it must be understood. Machine Learning is the field of study that gives
computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959). [10] Russell
and Norvig, in [21], define machine learning as a necessary part of Artificial Intelligence, the process by
which the system learns to adapt to new circumstances and to detect and extrapolate patterns.

The most important idea involving Machine Learning is the generalization principle: it is not only
important to learn the answer to data passed as training to the system, but it is also crucial to predict
outputs from data never seen before. Thus, it is common to find data split into a training set and a test
set of data. The main drawback of training algorithms is overfitting, which can be understood as the
opposite of the generalization principle; the system can resolve training data with good accuracy, but it
is not able to reach this performance for unseen data.

The first idea specifically related to Machine Learning methods appeared in 1957, published by Frank
Rosenblatt as the Perceptron [19]. He conceived it as a simplified mathematical model of how the
neurons in the brain operate; basically, it takes a set of binary inputs (nearby neurons), multiplies each
input by a continuous valued weight (synapse strength), and thresholds the sum of these weighted inputs
to output either a 1 or a 0 (simulating the fire of a neuron). Before this definition, Mcculoch and Pitts had
shown that this mathematical model could model the basic logic functions (OR, AND and NOT). The
breakthrough given by Rosenblatt was a way to make such artificial neurons learn, inspired by Hebb’s
work. Hebb introduced the idea that knowledge and learning occurred in the brain by the formation
and change of synapses between neurons. Given a training set of input-output examples the Perceptron
should learn a function by increasing the weights if the output is lower than the expected one, or inversely,
decreasing the weights when the output is higher than it should be.

This procedure produces the following result: the weighted sum is just as a linear regression, followed

Mart́ı Sabaté, Marc 75 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

by a non-linear activation represented by the thresholding. When the output has a finite set of values it
is fine to apply the threshold. Then, the problem can be seen not as a generation of continuous-valued
output, but as a classification of a correct label. It is not possible for a single Perceptron to classify
data with many categories. To achieve this goal, many Perceptrons are arranged in a layer, such that
all receive the same input, and each of them is in charge of a different output of the function. Artificial
Neural Networks are in fact formed by layers of Perceptrons. Up to this moment, only one layer existed.

Nevertheless, Artificial Neural Networks can be conceived with neurons that differ from the Perceptron.
In 1960, Widrow and Hoff explored the option of use the weighted sum directly as the output, eliminating
the thresholding function (ADALINE neuron) [9] . They found that the learning mechanism could be
based on minimizing the error between the weighted sum and the output. The derivative of this error
can be used to drive the error down and find the optimal weight values.

Despite of the increasing interest in this techniques to solve AI problems, the Perceptron had its limits.
For example, it could not learn the boolean XOR function because this function is not linearly separable.
These limitations frozen the research in this topic for several years.

The main idea of Artificial Neural Networks was to combine bunches of neurons to solve problems. Instead
of using one simple output layer as the previous works, applying several hidden layers, as their output
can work as an input for the following layer. The key point of using hidden layers is that they are able
to find features within the data. Therefore, it was necessary to use these kind of architectures to solve
problems such as face recognition. However, Rosenblatt’s learning algorithm did not work for multiple
layers.

The answer to this problem was stated in the early 60’s, implemented as it is known today in 1970 by
Linnainmaa [25]. The idea of the backpropagation algorithm is to propagate the error from the output
layer to the hidden layers by means of the chain rule. Thus, the non-linear activation function of the
hidden layers must be differentiable. Using this backpropagation algorithm, an optimization technique
can be used to find the optimal weights to minimize the error.

As a consequence of the backpropagation algorithm and its application to multilayer neural networks, the
topic became popular again. In 1989 another key point was published: “Multilayer feedforward networks
are universal approximators” [13]. It was proofed that multilayer neural networks were able to implement
any function. Also in 1989, Yann LeCun et al. demonstrated a real-world application of backpropagation
in “Backpropagation Applied to Handwritten Zip Code Recognition” [14]. In this work, they stated the
first example of convolutional layer, which would end up by defining Convolutional Neural Networks.

Up to this moment, all Artificial Neural Networks were trained using input-output pairs. This kind of
training is known as supervised learning. In the 90’s, the firsts ideas of unsupervised learning
methods appeared; applied for example to encoders, clustering, Self Organizing Maps or Adaptative
Resonance Theory. In the same decade, the third branch of machine learning was also studied with
Artificial Neural Networks: reinforcement learning, which can be easily explained as learning to make
good decisions. Whereas supervised learning tells what it should learn to output, reinforcement learning
provides “rewards” as a by-product of making good decisions over time. Artificial Neural Networks
started to be applied in many different fields, such as Electrical Engineering as adaptive filters or for
identification and control of dynamical systems, or in robotics for autonomous land vehicles.

In 1989, Waibel introduced time-delay neural networks in order to solve speech recognition problems [24].
These networks were very similar to normal neural networks, except that each neuron processed only a
subset of the input and had several sets of weights for different delays of the input data. Nevertheless, this
kind of neural networks were surpassed by another approach in speech recognition problems: recurrent
neural networks. The main feature of this architecture is the fact that the output of a layer is not only the

Mart́ı Sabaté, Marc 76 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

input of the following layer, but also the input of the precedent layer or even the same layer. Therefore,
the problem of giving the network memory as to past inputs was solved. In this case, the backpropagation
algorithm had to be fixed to work with this architecture; backpropagation through time. However, even
this neural network did not succeed in training speech recognition with accuracy.

By the end of the decade, it was found that backpropagation algorithm did not work well for networks
with a lot of layers, and the results were not as good as for a network with fewer layers. The reason is
that backpropagation relies on finding the error at the output layer and successively splitting up blame
for it for prior layers. When the number of layers is high, this algorithm ends up with either huge or
tiny numbers and the resulting neural network does not work very well (“vanishing of exploding gradient
problem”) [22].

A few years later, in 2006, Hinton published what it is considered as the first Deep Learning paper [11].
In this article, they found a fast algorithm that could train artificial neural networks with several layers
by initializing their ways in a clever way rather than randomly. Other advancements that were made
in the following years included the discovery of dropout as a way of training neural networks avoiding
overfitting, and the study of non-linear activation functions performance. It was found that ReLU
function is the best function in order to train the network without having the “vanishing gradient”
problem.

Nowadays, big technological companies have engaged lots of resources in Deep Learning; fast processors,
GPU parallel computation, huge data sets, and smart architecture and algorithms mix together to give
the world better performance in problems that 20 years before were not affordable.

C.2 Need of a machine learning solution

In Appendix D, the physical equations of the problem are explained for the direct problem. However,
the situation that is needed to be solved is the inverse problem. The main idea is to establish which holes
in the structure are present or not in a given moment, understanding by presence the fact that there
is an object over there that cancels the interaction with the acoustic field. In [23], it has been stated
the procedure to get the spectral coefficients of the acoustic wave for a given composition of holes in the
plate. However, these equations can not be inverted.

Covering a hole changes not only the spectral coefficients (Rα) and the lengths of the holes (Lα), but also
intermediate variables that can not be easily measured. Some examples of these intermediate variables
are the interaction term (χαβ), the hole’s filling fraction (fα) or the frequency coefficients for a single hole
(Bα). They are terms that vary depending on the covered holes in the structure. If all this information
was available for each different image covering the plate, the inverse problem would not be difficult to
solve. Despite this, recovering this information would mean a much more complex measurement system,
and more measuring time per image, reducing recovery speed.

Machine learning algorithms, and more specifically Artificial Neural Networks, are tools that allow to
find the solution of the problem without concerning about these variations in intermediate variables. By
giving the network examples of spectral coefficients and the solution of covered holes, the network is
supposed to get the nature of the problem and to reproduce it. Also in [23], a way of solving the problem
the inverse problem has been developed: given some specific frequency coefficients, the distribution and
length of the holes can be retrieved. Nevertheless, this method is still different of what is expected for
the structure in this work. This inverse method works fine for plates with simple scattering structures
(up to 4 or 5 different holes, periodic structures and cancelling modes (some Rα = 0)).

Mart́ı Sabaté, Marc 77 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

C.3 Network’s architecture

There are two main approaches inside supervised learning to solve problems by means of an artificial
neural network: regression and classification. The former tries to find out which mathematical function
follows the model, that is to say, it estimates a value using the input information. The latter focuses on
literally finding the classes to which the data belongs. At first glance, one could think that the problem
described in the previous chapter is a regression problem; physical equations are just mathematical
functions that describe the behavior of a real situation.

An acoustic pulse is emitted by a loudspeaker; the sound wave travels the space and interacts with the
modulated structure and the object, creating a new wave that is received on the microphone. However,
this situation does not try to map any physical property of the object; just the presence or not of an
object in a given position. Thus, the spatial distribution of the object on the structured is mathematically
modelled by a Boolean matrix.

This consideration changes the way the problem is seen. It can be considered that for a given acoustic
spectrum, the result is just a classification of either “pixels” are present or not. Therefore, the approach
used in this work is a classification network.

Common classification networks consider that classes are exclusive (that is to say, only one output class
is activated). They use activation functions that enhance this property, for example softmax activation
function. In the case of modelling the problem as a simple classification problem, each combination of
present pixels must be considered a different class. In other words, the presence of pixels 3 and 5 is seen
by the neural network differently from the presence of pixel 3 and the presence of pixel 5. Consequently,
for a N vs N pixels image, the number of classes is

Nclasses = 2N
2

− 1. (C.1)

The −1 term appears considering that the case of all pixels present (all holes uncovered) does not make
any sense (it would mean that there is no object on the plate). For a 5 vs 5 image, there are 33 million
classes, and for a 10 vs 10 image, this number grows up to 1.26·1030. This amount of classes is unaffordable
for a classic classification problem. Then, the idea is to reduce the number of classes to N2; that is to
say, to the number of pixels.

Consequently, this will mean that for a given spectrum, more than one class is active at the same time.
This situation is known in neural networks vocabulary as a multi-label learning problem. There are
two main approaches in this situation: an intuitive approach is to decompose it into multiple independent
binary classification problems (one per category). However, this kind of method does not consider the
correlations between the different labels of each instance and the expressive power of such a system can
be weak. These methods transform a multi-label learning problem into a multiple single-label assignment
as a binary classification problem. For example, an algorithm of this kind is the MT-DNN architecture
(Multi-Task Deep Neural Network) [12] The second approach considers these relationships between labels.
Several signal processing techniques have been designed, not only by means of neural networks, but
also using other techniques, such as text categorization algorithms, decision trees and kernel methods
([17], [27]). The method chosen here is a neural network algorithm known as BP-MLL (Backpropagation
for Multi-Label Learning). [28]

It is derived form the backpropagation algorithm (which can be first stated in [26], P.Werbos PhD
thesis). Backpropagation algorithm is the most common training algorithm for fully-forward connected
neural networks. Is is based on a gradient descent technique that minimizes a function (usually MSE). [7]

Mart́ı Sabaté, Marc 78 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Backpropagation algorithm

At the heart of backpropagation is an expression for the partial derivative ∂C/∂w of the cost function C
with respect to any weight w (or bias b) in the network [18]. This expression shows how quickly the cost
changes when weights and biases are changed.

But before going deep insight backpropagation expressions, the algorithm used to compute the output
must be shown (forward propagation). Weight notation is the following: wljk will be used to denote the

weight for the connection from the kth neuron in the (l − 1)th layer to the jth neuron in the lth layer.

As for network’s biases and activations, the notation is: blj is used for the bias of the jth neuron in the

lth layer, whereas clj is used for the activation of the jth neuron in the lth layer. The activation clj of the

jth neuron in the lth layer is related to the activations in the (l − 1)th layer by

clj = f(
∑
k

wljkc
l−1
k + blj), (C.2)

where the sum is over all neurons k in the (l−1)th layer. Then, if matrix notation is introduced, there is a
weight matrix wl for each layer, l. Similarly, there is a bias vector, bl and an activation vector cl. Finally,
f function can be vectorized. The notation f(v) denotes an elementwise application of a function. Then,
the equation above can be rewritten as

cl = f(wlcl−1 + bl). (C.3)

This expression shows how activation vectors are obtained: the weight matrix is applied to the activa-
tions, then bias vector is added, and finally the f function is applied. An intermediate variable is then
introduced: zl = wlcl−1 + bl. It is called the weighted input to the neurons in layer l. Thus, the previous
equation can be written as cl = f(zl).

The aim of backpropagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b of the cost function
C with respect to any weight w or bias b in the network. An example of cost function is the quadratic
cost function

C =
1

2n

∑
x

||y(x)− cL(x)||2, (C.4)

being n the total number of training examples, y is the desired output, L denotes the number of layers
in the network, and cL is the vector of activations output from the network when x is the input.

Two main assumptions concerning the cost function must be done. The first assumption is that the
cost function can be written as an average over cost functions for individual training examples. The
reason is that backpropagation computes partial derivative for single training example and then average
over training examples. The second assumption is that the cost function can be written as a function
of the outputs from the neural network, that is to say, C = C(cL). The quadratic cost expressed above
accomplishes both requirements.

Now, the main backpropagation equations can be deduced. Backpropagation is about understanding how
changing the weights and biases in a network changes the cost function. This means computing ∂C/∂wljk
and ∂C/∂blj . To compute those, another intermediate quantity is introduced, δlj , the error in the jth

neuron in the lth layer. The error is defined as

Mart́ı Sabaté, Marc 79 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

δlj =
∂C

∂zlj
. (C.5)

The first backpropagation equation is an equation for the error in the output layer (δL), given by

δLj =
∂C

∂cLj
f

′
(zLj). (C.6)

In this equation, the partial derivative term measures how fast the cost is changing as a function of the
jth output activation. The second term (f), measures how fast the activation function f is changing at
zLj . Equation (C.6) is not in matrix-based form. It can be written in a matrix-based form as

δL = ∇cC � f
′
(zL), (C.7)

where � stands for the Hadamard product.The second equation is an equation for the error δl in terms
of the error in the next layer (δl+1). The expression is

δl = ((wl+1)T δl+1)� f
′
(zl). (C.8)

Here, (wl+1)T is the transpose of the weight matrix for the (l + 1)th layer. Applying the transpose
weight matrix is intuitively the same as moving the error backward through the network. Taking the
Hadamard product (�) with the activation function moves the error through the activation function in
layer l. Combining (C.8) and (C.6), the error can be computed for any layer in the network.

Third equation is an equation for the rate of change of the cost with respect to any bias in the network,
given by

∂C

∂blj
= δlj . (C.9)

Finally, fourth equation is an equation for the rate of change of the cost with respect to any weight in
the network, stated as

∂C

∂wljk
= cl−1

k δlj . (C.10)

This expression shows how to compute the partial derivatives ∂C/∂wljk in terms of the quantities δl and

cl−1. A consequence of this equation is that weights output from low-activation neurons (cl−1
k is small)

learn slowly.

From (C.6) equation, it can be outlined that a weight in the final layer will learn slowly if the output
neuron is either low activation or high activation. The four fundamental equations work for any activation
function, not just the standard sigmoid function. All four fundamental equations are consequences of the
chain rule from multivariable calculus.

Equation (C.6) can be obtained via

Mart́ı Sabaté, Marc 80 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

δLj =
∂C

∂zLj
=
∑
k

∂C

∂cLk

∂cLk
∂zLj

. (C.11)

The sum is over all neurons k in the output layer. As the output activation cLk depends only on the
weighted input zLj when k = j, the term ∂cLk /∂z

L
j vanishes when k 6= j, leading

δLj =
∂C

∂cLj

∂cLj
∂zLj

. (C.12)

Recalling that cLj = f(zLj),

δLj =
∂C

∂cLj
f

′
(zLj). (C.13)

Which is exactly equation (C.6). Proving equation (C.8) needs to rewrite δlj = ∂C/∂zlj in terms of

δl+1
k = ∂C/∂zl+1

k ,

δlj =
∂C

∂zlj
=
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=
∑
k

∂zl+1
k

∂zlj
δl+1
k , (C.14)

given that zl+1
k =

∑
j w

l+1
kj f(zlj) + bl+1

k , the first term in the above equation is

∂zl+1
k

∂zlj
= wl+1

kj f
′
(zlj). (C.15)

Finally, substituting this development, equation (C.8) is obtained.

Equations (C.9) and (C.10) are also obtained by means of the chain rule. These four equations are
combined with an optimization technique so as to modify the weights and biases reducing the cost
function.

Gradient Descent Optimization

On top of these backpropagation algorithm there is an optimization technique, whose goal is to find
weights and biases so that the output from the network approximates y(x) for all training inputs x.
This is done by minimizing the cost function defined before. A given cost function C(v) is going to be
minimized; a two variable example is taken for illustrating the algorithm, such as

C(v) = C(v1, v2). (C.16)

Defining the gradient as the vector of partial derivatives, it is obtained

∇C = (
∂C

∂v1
,
∂C

∂v2
)T . (C.17)

A change in the variable vector ∆v implies a change in the cost function

Mart́ı Sabaté, Marc 81 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

∆C ≈ ∇C ·∆v. (C.18)

By setting ∆v = −η∇C, the above equation becomes ∆C ≈ −η∇C · ∇C = −η||∇C||2. Because
||∇C||2 ≥ 0, this guarantees that ∆C ≤ 0, in other words, C will always decrease. Even if a two variable
example has been used, gradient descent works fine for multivariate functions.

Algorithm’s summary

These four fundamental backpropagation equations plus the gradient descent technique can be written
in the form on a sequenced algorithm:

1. Input x: Set the corresponding activation al for the input layer.

2. Random low value weight initialization.

3. Random choice of input feature.

4. Feedforward: For each layer compute zl = wlcl−1 + bl and cl = f(zl).

5. Output error δL: compute the vector δL = ∇cC � f
′
(zL).

6. Backpropagate the error: For each layer compute δl = ((wl+1)T δl+1)� f ′
(zl).

7. Output: The gradient of the cost function is given by ∂C
∂wljk

= cl−1
k δlj and ∂C

∂blj
= δlj .

8. Modify layer weights using ∆v = −η∇C.

9. Get back to second item and repeat.

Algorithm modification

In backpropagation algorithm, learning rate (η) is a critical feature for network’s development. It deter-
mines the weight modification magnitude. If it is too small, convergence speed is too slow and probability
of getting stacked in a local minimum increases. However, if the learning rate is too big, it can lead to
instability (oscillations) inside loss function. There are several techniques to decrease this oscillations,
such as changing of optimizer (not using simple gradient descent) or adding a momentum term in the
weight modification step.

The chosen optimizer here is Adagrad, which adapts the learning rate to the parameters, performing
smaller updates for parameters associated with frequently occurring features, and larger updates for
parameters associated with infrequent features. It is well-suited for dealing with sparse data 1. Adagrad
uses a different learning rate for every parameter at every time step. [20] A learning rate of 0.002 has
been chosen, as it has shown good performance experimentally. The upgrading equation for the Adagrad
optimizer is

∆vt+1,i = vt,i −
η√

Gt,ii + ε
· ∇C, (C.19)

1A variable with sparse data is one in which a relatively high percentage of the variable’s cells are zero. Moreover, a
variable is also called sparse when it can be expressed in some base where its representation is sparse.

Mart́ı Sabaté, Marc 82 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

where Gt ∈ IRdxd is a diagonal matrix where each diagonal element i, i is the sum of the squares of
the gradients. The main weakness of this technique is the accumulated term in the denominator of the
upgrading parameter formula: learning rate eventually becomes infinitesimally small, at which point the
algorithm is no longer able to acquire additional knowledge.

The activation function used between each layer of the neural net is a hyperbolic tangent function.
This function is not the most commonly used for Deep Learning architectures (ReLU is the most popular,
as it avoids “vanishing gradients”), but its properties allow to use the backpropagation algorithm.

Figure C.1: Activation function.

Figure C.1 shows the representation of the activation function and its derivative. The latter is non
zero except for big input values. This property is relevant for the backpropagation algorithm; most of
the optimizers are based on the derivative of the error function (fifth item in backpropagation algorithm
description). Big error inputs affect less than inputs with small errors, correcting weights in a better way.

Changes applied by Zhang [28] to implement multilabel learning are presented now. The common error
functions used in most networks have been replaced by a new function which tries to capture the charac-
teristics of multi-label learning (labels belonging to an instance should be ranked higher than those not
belonging to). The error function considered here is defined by

E =

m∑
i=1

Ei =

m∑
i=1

1

|Yi| · |Y i|
·

∑
(k,l)∈YixY i

exp(−(cik + cil)), (C.20)

where Yi is the label set associated to the training instance xi, and cij is the j-th output unit of the i-th

training example, Y i is the complementary set of Yi, | · | measures the cardinality of a set and f(x) is the
activation function, which is set to be the hyperbolic tangent function,

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (C.21)

Mart́ı Sabaté, Marc 83 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Finally, the term cik − cil in equation (C.20) measures the difference between the outputs of the network
on one label belonging to xi(k ∈ Yi) and one label not belonging to it (l ∈ Y i). As this difference
increases, the performance of the loss function is better. In addition, a negation of this difference (the
output from a non-belonging label is higher than the output from a belonging label) is severely penalized
by the exponential term.

The summation term in equation (C.20) takes into account the accumulated difference between outputs of
any pair of labels (one belonging to xi and the other one not belonging to it), and finally it is normalized
by the total number of possible pairs (equation (C.20) denominator). As a consequence, correlations
between different labels of xi should get larger network outputs than those in Y i (set of non-belonging
labels of xi). Minimization of this equation leads to output larger values for labels belonging to the
training instance and smaller values for those not belonging to it. The error function is related to ranking
loss, which evaluates the average fraction of label pairs that are reversely ordered for the instances (how
many labels not belonging to xi have higher outputs than labels belonging to xi). Mathematically, it can
be expressed as

rlossS(f) =
1

p

p∑
i=1

|Di|
|Yi| · |Y i|

, (C.22)

being Di = {(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ YixY i}.

This new loss function is applied as the error function in the backpropagation algorithm. Here is the
main difference respect to classical backpropagation equation development. Instead of using classic error
functions, such as MSE or MAE, equation (C.20) is going to be used to derivate weight updating equations.
After a mathematical development that can be consulted in [28] (equations from [11] to [16]), final
parameter upgrading expression is

∆wl = −η ∂E
∂wl

= −η ∂E
∂zl

∂zl

∂wl
= ηδl

[
∂(cl−1wl)

∂wl

]
= ηδlcl−1. (C.23)

The BP-MLL architecture also has a particularity in its final step: there is a linear least squares method
applied in order to retrieve the thresholds that will be compared to the output of the net. Thus, this final
step makes the final output a Boolean array. The explanation of the LMS method can be found at [28].

This LMS algorithm is used only in prediction for an unseen instance. The instance enters the network,
and some outputs cj are used for label ranking. The associated label set is determined then by means of
these thresholds (there is a different threshold value for each label).

There is a difference between the solution stated by Zhang in his article and the applied solution in this
work. This difference is subtle and the algorithm should work as well as Zhang’s option. Labels in this
project are classified as 1 whenever the hole is present and 0 when the hole is covered, instead of ±1 as in
Zhang’s paper. There is no reason to obtain different results, as the condition of ranked labels is the same
considering 0 values or −1. Another difference between Zhang’s article and the algorithm applied here
appears when training: Zhang’s equation’s have been deduced for online training, while the algorithm
used here is trained using mini-batch training. As you can see, differences are little and they do not
compromise the stability of the algorithm.

To sum up, the main characteristics of the net’s architecture are:

• Fully-forward connected layers.

Mart́ı Sabaté, Marc 84 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

• Backprogapation algorithm (in this case, Adagrad optimizer will be used, but it is not the only
solution).

• Hyperbolic tangent activation function.

• Loss function allowing appropriate label ranking.

• Least Mean Squares algorithm to compute the final thresholds.

C.4 Hyper parameter discussion: choices

Before trying to reconstruct high resolution acoustic images, a smaller example will be presented, giving
a proof that the situation has a solution. The example is based on a 5 vs 5 holed plate, with all its
holes situated equispaced on two dimensions. The loudspeaker is supposed to be on one side, orientated
towards the plate with an angle of 45o with the plate plane. Moreover, the microphone is supposed to be
in the center of the plane, and at the same height (z = 0).

The neural net used in this case is that described before: a BP-MLL neural net. In the following figure
there is an scheme of the architecture of the net:

Mart́ı Sabaté, Marc 85 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Input
layer

Output
layer

F
inputs

N2

outputs

Input 1

Input 2

Input 3

Input F

Output 1

Output 2

Output N2

The input layer obviously has the same size as the spectrum used as input. The output layer is the
following one, which converts from the input vector to the multi-label classification with the same size
as holes exist in the plate. In this first situation, F is equal to 997 frequencies and N2 is equal to 24
holes/pixels.

A 60000 cases data set has been used, distributing them in three different parts: train, test and validation.
Empirical knowledge recommends dividing these three parts in proportions such as Train: 70%, Test:
20%, Validation: 10%. Each one of them is used in different parts of the training procedure, as it can be
seen in the following picture:

Mart́ı Sabaté, Marc 86 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Training

70%

Test

20%

Validation

10%

Figure C.2: Data set distribution

Mart́ı Sabaté, Marc 87 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Create Model

Evaluate data

Backpropagate
the error

Save adjustment
in memory

Batch finished?

Adjust model and
erase memory

Next
training

data

Epoch finished?

Evaluate test data

Next
training

data

Increasing error?

Adjusted model

Next
epoch

yes

no

yes

no

yes

no

Figure C.3: Training flowchart

Mart́ı Sabaté, Marc 88 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Training procedure has been established as follows: training data set is split into batches of size 1000
(this kind of training is known as mini-batch training). Neural weights are upgraded after all training
cases in a batch have been propagated through the layers; each training sample has its own error value,
and the mean error on the whole batch is used as the upgrading parameter. At each epoch, all training
batches go through the neural net and upgrade its weights. Then, another epoch begins. It must be
said that between epochs the training data set is rearranged and splitted again, in order to avoid certain
behaviors due to data’s entry order. Training does not finish when a given number of epochs has been
accomplished; after each epoch, an error is measured using test data set (the network has never seen this
data before). This error corresponds to the BP-MLL error function described before. Once the error
function decreases slower than 1% in 5 consecutive epochs, the training procedure is stopped, and the
network’s model is saved with the weight values corresponding to the minimum error epoch. In Figure
C.2 it can be seen how the global data set is splitted to train the network, and in Figure C.3, each box
is coloured with the colour code established in the pie chart, showing which data set is used at each step.

Once the net is trained, all three data sets are introduced in the network, and some results are predicted.
As real images are known, they can be compared to predictions. The comparison is made using what is
called as accuracy error. The idea can be seen in Figure C.4:

Figure C.4: Accuracy error

Accuracy is explained in [16] as a function of wright and wrong cases. Defining TP as true positive, or
all cases were prediction is positive and real answer is also positive, TN as true negative, or all cases were
prediction is negative and real answer is also negative, FP as false positive, or all cases were prediction
is positive and real answer is negative, and FN as false negative, or all cases were prediction is negative
and real answer is positive, accuracy can be obtained as:

Accuracy =
TP + TN

TP + FP + TN + FN
(C.24)

Therefore, accuracy error as stated before is just 1−Accuracy.

Mart́ı Sabaté, Marc 89 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

C.5 Results

First of all, it has been proofed that as BP-MLL loss function decreases, the image accuracy error
decreases too. In order to show it, the following simulation has been done: the network has been trained
a fixed number of epochs (2000) and, for several epochs, the network has been saved as the trained one
and accuracy error has been computed. As this procedure is time consuming, accuracy error has been
computed every 50 epochs, thus having 40 accuracy errors in the end. Results are shown here:

Figure C.5: Accuracy error evolution during training.

In Figure C.5, two different loss functions have been compared. Training has been applied using BP-
MLL loss function, but MSE has also been obtained for each batch and epoch. As it can be inferred by
looking both graphs, while BP-MLL loss function seems to improve image reconstruction accuracy, MSE
shows a different behavior; first it decreases dramatically, and then starts increasing, getting stacked at
some value. Consequently, BP-MLL loss function has been found to be the function which best models
the problem. These results are obtained using 250000 cases data set of a 100 holes problem, a bigger
problem than the actual one. Nevertheless, it has been assumed that the system’s behavior is the same
for both situations.

Results concerning the 24 holes situation are shown in the following table:

Data set Accuracy error (%) Perfect rec. AENPC (%)
Train 0.23 36122/38180 4.27
Test 0.23 12054/12726 4.26
Validation 0.23 8497/8983 4.33

Table C.1: 5x5 pixel image reconstruction results. AENPC stands for Accuracy Error for Non Perfect Cases,
which is the Accuracy Error without taking into account those cases that have been completely well reconstructed.

From Table C.1 and Figure C.5, it can be deduced that training has taken place properly, as the
measured error function decreases during all the training procedure and the accuracy error of each
data set is mostly the same. One of the main problems of training a neural network is overtraining or
overfitting: it means that the model performs well on training data, but it does not generalize well for
unseen cases. [10] This situation would be present in the error evolution if it had stopped decreasing at
a point and then it had begun to increase slightly, or if there had been a big difference between data sets
accuracy errors.

This results shown in Table C.1 have been computed using cross validation technique. In this case,

Mart́ı Sabaté, Marc 90 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

the error value in the table is the mean value for four different training. Cross validation is one of the
techniques used to test the effectiveness of a machine learning model. It is also a re-sampling procedure
used to evaluate a model if the available data is limited. The cross-validation approach used here is based
on the K-fold cross validation. It ensures that every observation from the original data set appears at
least once in the training set. Basically, what has been done is to train several times the net, splitting the
data sets (training, test and validation) rotating the observations. One given observation will have been
in the training set, in the test set and in the validation set at the end of all training. The goal of this
technique is to test the model’s ability to predict new data not used before, preventing problems such as
overfitting or selection bias [6].

C.6 Conclusion

Simulations in the precedent section have shown that image reconstruction can be done by means of the
proposed artificial neural network. An accuracy error of 0.23% in a 24 pixel image means that in average,
there is no pixel of the image wrong reconstructed. Cases where the image is not well reconstructed show
an error of 4.3%, which means only one wrong pixel. Considering this situation, it can be assumed that
the shape of the object will not be severely distorted, and thus, the problem can be considered to be
solved.

However, it exists the possibility of decreasing this accuracy error: by fine-tuning the hyperparameters
of the artificial neural network, or generating a bigger data set, as the data set used represents less than
1% of the possible cases. Naturally, there is a drawback in increasing the data set size, and it will be one
of the main constraints when the whole system will be embedded in the microcontroller; memory space.

C.7 Beyond the problem: increasing matrix dimension

Treating the reconstruction of a 10x10 pixel image is different from solving the 5x5 image. In the precedent
section, a 60000 cases data set has been created, out of 225 − 1 = 33554431 cases, thus representing a
0.20% of the possibilities. In this second situation, a 230000 cases data set has been created, out of
2100 − 1 = 1.2677 · 1030 cases. This time, the data set represents a 1.8143 · 10−26% of the possibilities.
Here, the limitation appears from the computation time; generating this data set has cost more than a
week, even working with processor parallelization. Getting up to 1 million cases would spent a month,
and solving the problem for all possible cases takes longer than a year. Therefore, just with a 10x10
image, it can be seen that the machine learning approach is necessary to solve the problem.

Using the same model as for the 5x5 pixel image, the accuracy error obtained for the three data sets is
around 20%, which is four times the error obtained for the 5x5 pixel situation. This result means that, in
average, 1 over 5 pixels is wrong, and then, considering the 100 pixels image, there are 20 pixels wrong.
This amount of wrong pixels can easily blur the shape of the object, so another method or technique
must be found.

Data set Accuracy error (%) Perfect reconstruction AENPC (%)
Train 19.28 0/69964 19.23
Test 19.37 0/19981 19.37
Validation 19.23 0/9990 19.23

Table C.2: 10x10 pixel number image reconstruction results

Mart́ı Sabaté, Marc 91 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Up to the moment, masks used were random patterns: for each hole, a random number between 0 and 1
was generated and compared to 0.5, generating a true or false with 50% probability. Then, masks where
random with 50% of hole’s covered in average. Generating this kind of masks has proofed been useful,
as they show great variability. However, this situation is not what it is found in reality. Objects usually
have a well-defined shape, and it is one of the main important features. What has been proposed next
is to change the data set used and to train with masks that simulates digits (instead of random masks
as before), defining a new dictionary. This way, masks nature is changed, reducing the space of solutions
and making the problem easier for the network. Some examples of these masks can be seen in Figure
C.6.

Figure C.6: Masks examples. On the left, an ideal mask representing a “three”. On the right, a real mask, where
the “real” five has been blurred with a 5% uniform noise.

Network’s architecture has not been changed. Training and testing with these masks and spectra produces
the following results:

Data set Accuracy error (%) Perfect reconstruction AENPC (%)
Train 0.50 61030/69964 3.92
Test 0.49 17451/19981 3.88
Validation 0.48 8750/9990 3.84

Table C.3: 10x10 pixel number image reconstruction results

From Table C.3 it can be outlined that the neural network works fine. It is able to reconstruct more
than 85% of the numbers without any wrong pixel. Problem’s complexity has been reduced, and then
the network is able to solve the problem giving good accuracy.

Possible solutions have been increased by adding displaced digits. The idea here is to validate whether
the network is able to recognize the shape even if the position is not the same or not. These displaced
masks have not been added to the training set; they are added only to the test set. Thus, the network is
still trained using centered digits, and it is asked to solve displaced digits.

These displaced masks have also been blurred using the 5% uniform noise. Testing the trained model
with these masks has shown that the net is not capable of generalize displacements on the masks. The
results were not good, as it can be seen in Figure C.7.

Mart́ı Sabaté, Marc 92 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Figure C.7: Displaced mask: network’s reconstruction (left) and real image (right).

Figure C.7 clearly shows that the neural network can not identify the displaced pattern, as all the
training patterns were centered. A plausible hypothesis is that the network is trying to find the centered
pattern with more active pixels in common with the displaced pattern. In order to get to this conclusion,
it must be understood what does this displacement mean to the physical properties of the acoustic wave.

A certain pattern or mask covers certain holes and lets others uncovered. Each hole has its own resonance
frequency. Moreover, each hole is surrounded by other holes with other resonance frequencies. It means
that even if two different holes have close resonance frequencies, the system will not receive the same
spectrum if either one is active or the other, as the surroundings are different, and the interference
between sound coming from two holes will never be the same in two different spatial points. Therefore,
whenever a mask or pattern is moved, those holes which where covered before are now uncovered, and
the other way round.

The resonance frequencies acting in the centered mask are completely different from the ones that act
for the displaced mask. Thus, both spectra are not forcefully related. In the figure below (Figure C.8),
the explanation of this phenomena is shown:

Mart́ı Sabaté, Marc 93 of 123

APPENDIX C. ARTIFICIAL NEURAL NETWORK 2019

Figure C.8: Resonators shared between different masks.

Both “four” masks share little pixels. In addition, the pixels that appear neither on one nor the other
are few. Covered hole’s are as important as non covered hole’s, that is to say, the relevant part of the
figures above is the sum of the orange and the green part. Then, the “displaced four” mask and the “one”
mask share more pixels than the other couple, and also the orange area is bigger. It can be said that the
spectrum from the “displaced” mask will be more alike to the “one” mask rather to the “centered four”
mask.

It has been shown the need to include displaced digits in the training data set so as to recover this kind
of patterns. Then, after including them into the train, test and validation data set, the results are as
follows:

Data set Accuracy error (%) Perfect reconstruction AENPC (%)
Train 1.57 38489/52210 5.97
Test 1.37 15323/20583 5.35
Validation 1.34 7718/10293 5.34

Table C.4: Results including displaced patterns in train data set

There is a trade-off between including this kind of masks and getting better accuracy results: including
them means an increase in the accuracy error. However, the network is now able to solve both kinds
of pattern (centered and displaced). Notice that the number of train cases has decreased (as some new
cases has been added to the data set, it should have increased). This choice has been done in order to
balance the data set; if the percentage of displaced masks is largely smaller than the centered ones, the
network will certainly have problems to solve the former ones.

Mart́ı Sabaté, Marc 94 of 123

APPENDIX D. PHYSICS MODEL 2019

Appendix D

Physics model

An acoustic image is going to be reconstructed using a loudspeaker, a microphone and a structured plate.
Given several spectral coefficients, covered holes’ positions in the structure are retrieved. Therefore, a
robust physical model is needed.

In this Appendix, the physical model is going to be stated, as well as the background theory that supports
it. The equations will solve the direct problem (that is to say, getting the spectral coefficients given a
certain geometrical hole distribution), which is not the aim of this work. However, this direct solution
is necessary to produce the simulations that will be in fact the observations used to train the artificial
neural network by supervised learning. Furthermore, understanding the physics of the problem will
provide deeper knowledge about the situation that is being explored and will help with future decision
as choosing the network’s architecture and hyperparameters.

First of all, multiple scattering theory (MST) will be introduced. Then, the real situation will be stated.
Afterwards, physical equations to solve the problem will be presented and discussed, relating their prop-
erties with the real design properties of the plate. It will be seen that the model constraints real design
parameters as well as real instruments constraint the simulations. Finally, MATLAB’s code used to
obtained learning cases will be discussed.

D.1 Introduction: Multiple scattering theory

Multiple scattering is not a new topic. It has been studied since the beginning of XXth century by many
scientists as Lord Rayleigh, Heaviside, van de Hulst or Bohren. However, it is still a hard mathematical
problem and several situations have no solution. Multiple scattering tries to define the interaction of
fields with two or more obstacles [15]. For example, if there are several obstacles, the field scattered from
one obstacle will induce further scattered fields from all the other obstacles, which will induce further
scattered fields from all the other obstacles, and so on.

This phenomenon can be considered in various ways. Several studies have solved it by considering every
obstacle completely independent from the others, that is to say, the scattered field by an obstacle is not
affected by other obstacles. This hypothesis is valid only when the distance between obstacles is large
enough. Nevertheless, there exists situation’s where it can not be applied; for example, in atmospheric
physics.

Mart́ı Sabaté, Marc 95 of 123

APPENDIX D. PHYSICS MODEL 2019

Multiple scattering theory is a versatile and fast simulation method, especially suitable for the analytical
manipulation of the equations to obtain physical information that would be impossible with purely
numerical methods. It is based on the expansion of the total field scattered by a cluster of N particles as
a linear combination of the scattered field by each particle individually, and the solution of the problem
consists in finding the coefficients of this linear combination. This is typically obtained after inversion
of a N × N square matrix for point-like particles, but the size of the matrix can be larger if finite-size
effects are taken into account.

The challenge in multiple scattering is to properly model the response of the scatterer (pillar, hole or
sphere). The numerical simulation of phononic crystal plates is still limited to the Finite Element Method
(FEM), which essentially provides of numerical experiments but does not allow to efficiently working on
the underlying physics of the scattering of waves.

The fundamental hypothesis of this theory is that, given a cluster of point-like scatterers, the total field
can be expressed as

ψ(r) = ψ0(r) +
∑
β

BβG(r −Rβ), (D.1)

being ψ0 the incident field, r is the point where the field is computed, Rβ are the points of the scatterers,
G(r) the Green’s function and the coefficients Bβ are obtained from∑

β

(t−1
α δαβ −G(Rα −Rβ))Bβ = ψ0(Rβ), (D.2)

which is a N × N system of equations. δαβ is Dirac’s function, which is 1 only when α = β. The
quantity tα is the scattering strength of each point-like scatterer and it is the only quantity that contains
information about its physical properties. Using these equations, scatterers can be selected according
their spatial distribution and their tα coefficients. Then, Bα coefficients can be computed to finally obtain
the field ψ(r).

These two equations will be developed in the following section to give an insight on the physical phe-
nomenon surrounding the structure.

D.2 Solution for acoustic waves

When an acoustic wave interacts with a periodic array of obstacles, it suffers from multiple scattering
phenomenon. The holes in the N2 hole cluster have length Lα, located at positions rα. The incident wave
is of unitary amplitude and its wave number is k = K + q0ẑ. A set of diffracted modes with reflection
coefficients RG will be excited, defining a pressure field

P =
∑
G

(δG0e
iqGz +RGe

−iqGz)eiKG·r (D.3)

and a normal velocity field

vn =
iqG
kbZb

∑
G

(δG0e
iqGz −RGe−iqGz)eiKG·r, (D.4)

Mart́ı Sabaté, Marc 96 of 123

APPENDIX D. PHYSICS MODEL 2019

with |K+G|2+q2
G = w2/c2b and with G being the set of all reciprocal lattice vectors [8]. These expressions

are valid for the field outside the structure. The pressure field inside a hole, however, can be stated as

P = eiK·RαBα
coskb(z − Lα)

sinkbLα
, (D.5)

and the normal velocity field is given by

vn = −e
iK·Rα

Zb
Bα

sinkb(z − Lα)

sinkbLα
. (D.6)

Using a mode matching technique, both pairs of equations ((D.3), (D.4) and (D.5), (D.6)) are combined
to give a solution to the acoustic field via the equations

∑
G

HαGe
iG·Rα(δG0 + RG) = BαcotkbLα (D.7)

δG0 −RG = −i kb
qG

∑
β

fβHβGe
−iG·RβBβ . (D.8)

Mode matching is also known as eigenmode expansion (EME) or bidirectional eigenmode propagation
method (BEP method). It is a computational electrodynamics modelling technique, based on a eigen-
mode expansion, which is a linear frequency-domain method. It relies on the decomposition of the
electromagnetic fields into a basis set of local eigenmodes that exists in the cross section of the device.
Also, there are two boundary equations that help matching both fields. These two conditions can be seen
in Figure D.1:

PressureNormal speed

Psurf

Pα
Pβ

Unit cell

Figure D.1: Boundary conditions

the coupling factor is given by HαG = 1
Ωh

∫ ∫
Ωh
eiKG·(r−Rα)dΩ and the hole’s filling fraction has been

defined as fα = Ωα
Ω , with Ω and Ωα being the areas of the unit cell and the hole α, respectively. The

above system of equations allows to solve Bα coefficients from

Mart́ı Sabaté, Marc 97 of 123

APPENDIX D. PHYSICS MODEL 2019

∑
β

[δαβcotkbLα − iχαβ]Bβ = 2Hα0, (D.9)

where the interaction term χαβ is defined as

χαβ =
∑
G

kb
qG
HαGHβGfβe

−iG·Rαβ . (D.10)

Then, knowing the geometry of the plate, Bα coefficients can be computed, and thus, reflection coefficients
RG can be computed, and the wave equation can be solved.

These equations allow to obtain reflected coefficients depending on the evaluated frequency. Then, the
wave equation can be solved for any frequency. This idea will be used to obtain spectral information for
a given geometric composition, supposing hole’s covered and uncovered. Therefore, a geometric structure
will be designed in order to get the information in a certain bandwidth, and spectra will be obtained
using this structure and some binary masks (cancelling holes/resonators).

D.3 Plate’s design

Once understood the theory surrounding a metastructure, next step is to design the geometry necessary
to generate the desired problem. Requirements will be translated into mathematical equations first; then,
the main parameters of the structure will be computed.

Analytic equations and computer simulations have always the advantage of not having real constraints.
However, whenever real measurements are needed, some considerations need to be done. Real systems
are characterized by parameters that are not always taken into account when the theoretical problem is
solved. Therefore, in order to translate the equations into the real world, real limits must be considered.

The main issue with real measurements that will be released is related with electronic devices. Using
Matlab, any wavelength can be simulated; nevertheless, real devices have their bandwidth limited. As it
has been seen in the report, the available bandwidth goes from a few hertz to 22kHz, that is to say, the
audible bandwidth.

Multiple scattering theory also constrains the system in the following way. Each hole in the system has a
main resonant frequency (or wavelength). Additionally, the scattering effect in one hole causes an effect
in the nearby holes. To ensure that this interference is taking place, analysis wavelength must be longer
than the distance between two consecutive holes, and shorter than several times the structure’s length.

Hole’s resonance frequency is in between 5kHz and 15kHz, so as to be able to solve them with the
microphone. Their wavelengths are: λ = c/f = (2.27 − 6.80)cm. Then, distance between holes should
not be higher than 2.27cm.

To sum up, requirements can be set as:

• Minimal frequency:
fmin > 100Hz (D.11)

• Maximal frequency:
fmax < 22kHz (D.12)

Mart́ı Sabaté, Marc 98 of 123

APPENDIX D. PHYSICS MODEL 2019

• Multiple scattering minimal length:
d < 2.27cm (D.13)

It has been chosen to use the following geometric configuration: a certain squared plate of size 3L× 3L
with 25 holes distributed as shown in Figure D.2,

Central hole is not a resonator to be considered. It is supposed to be covered by the microphone, as the
measurement point is there. Holes’ depth has been chosen randomly, in a way that their resonance stays
inside a given frequency interval (5kHz − 15kHz) (the microphone used allows to measure up to this
frequency without losing power). Each hole mainly resonates at a frequency related with its depth given

fr =
c

4 · Li
. (D.14)

Figure D.2: Plate’s design

Therefore, considering c = 340m/s and frequency limits (5kHz−15kHz), holes’ depth ought to be inside
the interval

Li ∈ {0.57− 1.70}cm. (D.15)

Distance between hole’s has been chosen to be the mean between hole’s lengths

d =
Lmin + Lmax

2
= 1.14cm. (D.16)

Mart́ı Sabaté, Marc 99 of 123

APPENDIX D. PHYSICS MODEL 2019

Chosen d is smaller than the multiple scattering requirement.

There is a reason why a space of length L is left at each of the directions of the structure. Physical
equations discussed before are valid for lattices, in other words, structures that are repeated several times
in space. However, the structure in the project is finite. Instead of modelling the boundary effects that
would appear considering a finite plate, the repeating cell in the structure has been enlarged with no hole
space. Thus, there is ideally a 2 ·L space between two different hole structures. Multiple scattering theory
depends on the distance between scatterers; it can be considered in this case that surrounding cells do
not affect in terms of multiple scattering theory. Furthermore, as there is no sharp border next to the
holes, there is no border effect to take into account. Despite this, the counterpart is that plate’s surface is
9 times bigger than the real measurement surface. This condition constraints the size requirement stated
in Section 5 of the report.

As can be seen in Figure D.2, L is stated as L = 15 · d, being d the net parameter. Whereas depths are
completely independent for each hole, radium is the same for all of them. Radium can take values inside
the interval Ri ∈ (0− d/2); a value of Ri = 0.3 · d has been chosen as it is considered experimentally to
give good results. Small radii would diminish interaction between scatters, and big radii would make the
whole structure a unique scatterer.

It is necessary for multiple scattering theory that the incident wavelength travels more than one scatterer
in a single cycle. Considering the frequency of fmax = 15kHz, its wavelength is λmin = c/fmax = 2.27cm.
As λmin/d = 1.99 > 1, a single cycle of this wave covers two holes. Using fmin = 5kHz, whose wavelength
is λmax = c/fmin = 6.80cm. Then, λmax/d = 5.97 > 1, this wave covers more than five holes in a cycle.

Finally, dimensions have been defined. Holes’ lengths are stated as in Table D.1:

6.17 15.59 13.70 10.41 16.06
10.88 14.65 11.82 8.52 6.64
9.94 12.29 0 8.05 9.47
14.17 7.11 12.76 9.00 13.23
17.00 16.53 11.35 5.70 7.58

Table D.1: Holes’ lengths (in mm).

Hole’s radium is 3.42mm, except for the central hole, being 3.75mm. Total plate length is L = 171mm,
which is 15 times d. In the following section, a MATLAB code is presented translating the discussed
physical equations in order to get a spectrum from a given geometrical distribution.

D.4 Exploring the code

Once the physical problem has been explained and understood, a MATLAB code simulating spectra
coefficients in a given place for a given plate structure is shown:

% SCREEN SQUARE.M
2 %%

reda =1;
4 redb =1;

phi=pi /2 ;
6 Gmax=50;

8 rhob =1;

Mart́ı Sabaté, Marc 100 of 123

APPENDIX D. PHYSICS MODEL 2019

cb=1;
10 %%

L0=reda ; % Hole ’ s d i s t ance
12 R0=0.3∗ reda ; % Hole ’ s radium

N=5; % Holes per row
14

Lscr=3∗N∗ reda ; % Plate ’ s l ength
16

[ralpha , Ralpha , Lalpha]= s q u a r e c l u s t e r (N, R0 , L0) ; % Plate ’ s c r e a t i o n
18

Nh=length (Ralpha) ; % Number o f ho l e s
20

rhoalpha (1 :Nh)=rhob ; % Hole ’ s dens i ty
22 calpha (1 :Nh)=cb ; % Hole ’ s sound speed

24 sigmaL=0.3∗ reda ;

26 Lalpha = round (l i n s p a c e (0 . 00 57 , 0 . 0 17 0 ,Nh) . / 0 . 0 1 1 4 , 4) ; % ho l e s depth
Lalpha = Lalpha (randperm (Nh)) ;

28
Ralpha=Ralpha . / Lscr ; % Normal izat ion

30 Lalpha=Lalpha . / Lscr ; % Normal izat ion
ra lpha=ralpha . / Lscr ; % Normal izat ion

32
%%%

34
uk =[1 ,0 ,1]/ s q r t (2) ; % Propagation vec to r

36
z0 =0; % z component o f measurement po int

38 Ns=1;

40 load (’ f r e q u e n c i e s . mat ’) ; % Frequency eva lua t i on vec to r
nu = freq acum /340∗15∗ 0 . 0 1 1 4 ; % Frequency norma l i za t i on

42 omega=2∗ pi ∗nu ;

44 Nh=24;
Lalpha = Lalpha ([1 : 1 2 , 1 4 : 2 5]) ; % Cance l l i ng c e n t r a l ho l e

46 Ralpha = Ralpha ([1 : 1 2 , 1 4 : 2 5]) ; % Cance l l i ng c e n t r a l ho l e
ra lpha = ralpha ([1 : 1 2 , 1 4 : 2 5] , :) ; % Cance l l i ng c e n t r a l ho l e

48 rhoalpha = rhoalpha ([1 : 1 2 , 1 4 : 2 5]) ; % Cance l l i ng c e n t r a l ho l e
calpha = calpha ([1 : 1 2 , 1 4 : 2 5]) ; % Cance l l i ng c e n t r a l ho l e

50
%%

52
% Void measurement (a l l ho l e s pre sent)

54
f o r nn=1: l ength (omega)

56 [RG(nn , :) ,RGqG(nn , :) ,PhiR , Balpha ,G, chiab , alphaG]= R per f o ra t ed p la t e backed (reda , redb ,
phi ,Gmax, rhob , cb ,Nh, Ralpha , Lalpha , ralpha , rhoalpha , calpha , omega (nn) , uk) ;

58 [r , p s i 0 (nn , : , :)]= f i e l d d i s t r i b u t i o n (reda , redb , phi , omega (nn) . / cb , z0 ,RG(nn , :) ,G, Ns) ; %
Re f l e c t ed f i e l d computation

end
60

%%
62

Ntests =60000; % Number o f ob s e rva t i on s to compute
64

saveEvery = 1000 ;
66 f i l e X=’X. mat ’ ;

f i l e Y=’Y. mat ’ ;
68 f i l e Z=’ Workspace . mat ’ ;

Mart́ı Sabaté, Marc 101 of 123

APPENDIX D. PHYSICS MODEL 2019

70 f o r mm=1: Ntests

72 mask=randi ([0 1] , 1 ,Nh) ; % Random chosen ob j e c t to cover the p l a t e
Lp=Lalpha (mask>0) ;

74 Rp=Ralpha (mask>0) ;
rap=ralpha (mask>0 , :) ;

76 Np=length (Rp) ;

78 par f o r nn=1: l ength (omega)
[RG(nn , :) ,RGqG(nn , :) ,PhiR , Balpha ,G, chiab , alphaG]= R per f o ra t ed p la t e backed (reda ,

redb , phi ,Gmax, rhob , cb ,Np,Rp, Lp , rap , rhoalpha (1 :Np) , ca lpha (1 :Np) , omega (nn) , uk) ;
80

[r , p s i (mm, nn)]= f i e l d d i s t r i b u t i o n (reda , redb , phi , omega (nn) . / cb , z0 ,RG(nn , :) ,G, Ns) ;
% Re f l e c t ed f i e l d computation

82 end

84 OB(mm, :)=mask ;
p s i (mm, :) = abs (p s i (mm, :)) . / abs (t ranspose (p s i 0)) ; % Normal izat ion r e s p e c t to Void
measurement

86
i f rem(mm, saveEvery)==0

88 f p r i n t f (’ sav ing at i n s t ance %d\n ’ ,mm)
save (’−v7 ’ , f i l eX , ’OB’) ;

90 save (’−v7 ’ , f i l eY , ’ p s i ’) ;
save (’−v7 ’ , f i l e Z) ;

92 end
end

94
save (’−v7 ’ , f i l eX , ’OB’) ;

96 save (’−v7 ’ , f i l eY , ’ p s i ’) ;
save (’−v7 ’ , f i l e Z) ;

Listing D.1: screensquare.m

This MATLAB code is the main code used to simulate and predict reflected frequency coefficients given
a geometrical composition. As it can be seen, there are some subfunctions that are called in the code.
The first one is square cluster, which is a function that creates the lattice and holes’ locations in an
squared distribution. After this, holes’ depths are set. Both numbers, 0.0057 and 0.0170 correspond to
normalized dimension of resonators at 5kHz and 15kHz. Then, holes depths are rearranged permuting
them randomly, and then they are normalized respect to the plate’s length (that is to say, cell’s size).

After stating all necessary constants and dimensions, the void measurement is done (void measurement is
considered when all holes are present in the plate, meaning that there is no object covering them). Two
subfunctions are called during this computation. The first one is R perforated plate backed, which can be
seen in the following code excerpt.

f unc t i on [RG,RGqG, PhiR , Balpha ,KG, chiab , alphaG]= R per f o ra t ed p la t e backed (reda , redb , phi ,
Gmax, rhob , cb ,Nh, Ralpha , Lalpha , ralpha , rhoalpha , calpha , omega , uk)

2
uvector s=d i r e c t l a t t i c e (reda , redb , phi) ; % Direc t l a t t i c e d i r e c t o r v e c t o r s computation

4
[G,V, h0]= r e c i p r o c a l l a t t i c e (uvectors ,Gmax) ; % Rec ip roca l l a t t i c e d i r e c t o r v e c t o r s

computation
6 G(: , 3) = [] ;

8 Ac=V;

10 chiab = ze ro s (l ength (omega) , Nh, Nh) ;
Mab = ze ro s (l ength (omega) , Nh, Nh) ;

12

Mart́ı Sabaté, Marc 102 of 123

APPENDIX D. PHYSICS MODEL 2019

f o r nn=1: l ength (omega) % Para cada una de l a s f r e c u e n c i a s
14

kb=omega (nn) /cb∗uk ;
16 KG(: , 1)=G(: , 1)+kb (1) ; % Re f l e c t ed wave vec to r = Rec ip roca l d i r e c t o r vec to r + Inc iden t

wave vec to r
KG(: , 2)=G(: , 2)+kb (2) ; % Re f l e c t ed wave vec to r = Rec ip roca l d i r e c t o r vec to r + Inc iden t

wave vec to r
18

f o r alpha =1:Nh % For each ho le
20 Gralpha=KG(: , 1) ∗ ra lpha (alpha , 1)+KG(: , 2) ∗ ra lpha (alpha , 2) ;

GRalpha=s q r t (KG(: , 1) .ˆ2+KG(: , 2) . ˆ 2) ∗Ralpha (alpha) ; %
22 alphaG (alpha , :) =2∗exp (1 i ∗Gralpha) . ∗ b e s s e l j (1 , GRalpha+eps) . / (eps+GRalpha) ; %

HalphaG c o e f f i c i e n t
end

24
Id=eye (Nh,Nh) ;

26 IdG=eye (s i z e (KG, 1) , s i z e (KG, 1)) ;

28 Ybeta=1 i ∗omega (nn) . / (rhoalpha . ∗ calpha) ;
f b e ta=pi ∗Ralpha .ˆ2/Ac ;

30 MG=s q r t (diag (KG∗KG’)) ’ ;
qG=s q r t (omega (nn) ˆ2/ cbˆ2−MG. ˆ 2) ;

32 YGb=1 i ∗qG. / rhob ;

34 f o r alpha =1:Nh
f o r beta =1:Nh

36 t c h i=alphaG (alpha , :) . ∗ conj (alphaG (beta , :)) . ∗ f b e ta (beta) . ∗Ybeta (beta) . / (eps+
YGb) ; % Mult ip l e s c a t t e r i n g i n t e r a c t i o n between c a v i t i e s

chiab (nn , alpha , beta)=sum(t c h i) ; % Mult ip l e s c a t t e r i n g i n t e r a c t i o n between
c a v i t i e s

38 Mab(nn , alpha , beta)=Id (alpha , beta) ∗ cot (omega (nn) ∗Lalpha (alpha) / calpha (alpha))
−1 i ∗ chiab (nn , alpha , beta) ; % Art i c l e ’ s equat ion (7)

end
40 end

42 IM=squeeze (Mab(nn , : , :)) ;

44 Balpha (nn , :)=IM\(2 ∗alphaG (: , h0)) ; % Balpha c o e f f i c i e n t computation

46 RG(nn , :)=IdG (: , h0)+1 i ∗alphaG ’ ∗ ((Balpha (nn , :) . ’) . ∗ f b e ta (:) . ∗Ybeta (:)) . /YGb. ’ ; %
R e f l e c t i o n c o e f f i c i e n t computation . Ar t i c l e ’ s equat ion (6)

48 RGqG(nn , :)=r e a l (qG) . ∗abs (RG(nn , :)) . ˆ 2 . /qG(h0) ; % D i f f r a c t i o n energy (Ig)

50 end

52 PhiR=sum(RGqG, 2) ;

Matlab code/R perforated plate backed.m excerpt

This code is the most important one in all the simulation. This function computes the Bα coefficients
and the reflection coefficients (Rα) using the equations discussed in Section D.2. This function also
calls to two different functions: direct lattice and reciprocal lattice. These two functions compute the
director vectors of both the direct lattice and the reciprocal lattice. The direct lattice is defined by the
geometrical positions of the scatterers, defining the cell. The reciprocal lattice represents the Fourier
transform of the direct lattice. It plays a fundamental role in most analytic studies of periodic structures,
such as theory of diffraction. In the case of this project, reflected wave vectors are a combination of
incident wave vectors and reciprocal lattice vectors. Line 38 in the code corresponds to Equation D.9.
This equation helps finding Bα coefficients in line 44, and finally Equation D.8 in line 46 computes the
reflection coefficients.

Mart́ı Sabaté, Marc 103 of 123

APPENDIX D. PHYSICS MODEL 2019

The second subfunction called to compute the field is field distribution. This function computes the
acoustic field in a given point for a given wavelength/frequency.

1 f unc t i on [r , p s i]= f i e l d d i s t r i b u t i o n (reda , redb , phi , kb , z ,RG,G, npo ints)

3 MG=s q r t (diag (G∗G’)) ’ ;

5 t=l i n s p a c e (−0 .5 ,0 .5 , npo ints) ;
s=l i n s p a c e (−0 .5 ,0 .5 , npo ints) ;

7 uvector s=d i r e c t l a t t i c e (reda , redb , phi) ;

9 f o r LL=1: npo ints
f o r MM=1: npo ints

11
r (LL ,MM, :)=t (LL) ∗ uvector s (1) . a+s (MM) ∗ uvector s (2) . a ; % Vector going from

coord inate ’ s o r i g i n to the po int where the f i e l d i s computed
13 x=r (LL ,MM, 1) ;

y=r (LL ,MM, 2) ;
15 qG=s q r t (kbˆ2−MG. ˆ 2) ;

t p s i=RG(:) . ’ . ∗exp(−1 i ∗qG∗z) . ∗exp (1 i ∗G(: , 1) ’ ∗x) . ∗exp (1 i ∗G(: , 2) ’ ∗y) ; % Re f l e c t ed
f i e l d at each ho le

17 p s i (LL ,MM)=sum(t p s i) . / (reda ∗ redb∗ s i n (phi)) ; % Pressure f i e l d computed at the
eva lua t i on po int

19 end
end

21

23
p s i=p s i +1;

Matlab code/field distribution.m excerpt

After having computed the acoustic field in the evaluation point for the void measurement, screen square’s
code does a loop structure where a random mask is created and applied to the structured, vanishing some
holes (vanishing is equal to covering in this context), as can be seen in lines 71 to 77 of the first code.
Then, the acoustic field is computed for the geometrical distribution left, and this process is repeated
until all the observations are computed.

Mart́ı Sabaté, Marc 104 of 123

APPENDIX E. ARDUINO CODE 2019

Appendix E

Arduino code

E.1 Main code

inc lude ” a rdu ino de f . h”
2

//−−−
4 // Global Var i ab l e s

//−−−
6

// Arrays
8 double Im [5 1 2] ; // Imaginary part o f the s i g n a l

double Re [5 1 2] ; // Real part o f the s i g n a l
10 i n t I n d i c e s [5 1 2] ; // Array with the r ea r rang ing c o e f f i c i e n t s

double c [2 4] ; // Output array o f the a lgor i thm
12 bool Output [2 4] ; // Boolean p r e d i c t i o n (image)

14 // Proce s s ing v a r i a b l e s
byte media=0; // Mean value used to normal ize data

16
// ISR v a r i a b l e s

18 v o l a t i l e i n t n ; // Samples counter
v o l a t i l e byte vec [N] ; // array o f r e a l va lue s measured by the microphone

20 v o l a t i l e u i n t 1 6 t b i t ; // Must be 16−b i t to a l low bit <<15 l a t e r in the code .
Aux i l i a r v a r i a b l e

v o l a t i l e u i n t 1 6 t l f s r ; // 16−b i t r e g i s t e r to generate PRNG
22

// Flags
24 bool p r o c e s s i n g ; // Flag that i n d i c a t e s i f the ISR i s a c t i v e

i n t f i ; // Flag that determines which step i s
26 bool MODOVOID = true ; // Flag to change to Void Measurement mode

28 // Objects
arduinoFFT FFT = arduinoFFT () ; // Create FFT ob j e c t

30 F i l e myFile ; // Create F i l e ob j e c t
L iqu idCrysta l I2C l cd (I2C ADDR, 2 , 1 , 0 , 4 , 5 , 6 , 7) ; // Create LCD ob j e c t

32

34
//−−−

36 // Main Routines

Mart́ı Sabaté, Marc 105 of 123

APPENDIX E. ARDUINO CODE 2019

//−−−
38

void setup () {
40

S e r i a l . begin (BAUDRATE) ; // I n i t i a l i z e S e r i a l Communication (once the program
i s f i n i s h e d , i t won ’ t be nece s sa ry)

42 pinMode (loud ,OUTPUT) ; // Es tab l i sh Loudspeaker ’ s pin as output pin
pinMode (l ec , INPUT) ; // Es tab l i sh Microphone ’ s pin as input pin

44 pinMode (pin9 ,OUTPUT) ; // Es tab l i sh output t en s i on
d i g i t a l W r i t e (pin9 ,HIGH) ;

46 pinMode (pinCS , OUTPUT) ; // SPI communication

48 // SD Card I n i t i a l i z a t i o n

50 i f (SD. begin ())
{

52 S e r i a l . p r i n t l n (”SD card i s ready to use . ”) ;
} e l s e

54 {
S e r i a l . p r i n t l n (”SD card i n i t i a l i z a t i o n f a i l e d ”) ;

56 r e turn ;
}

58
SD. remove (”MEASURE.TXT”) ; // Erase prev ious measurement

60
// LCD i n i t i a l i z a t i o n and s e t t i n g s

62
l cdConf ig (l cd) ;

64
// S e t t i n g s

66
startADC () ;

68 setADCPrescaler (P r e s c a l e r) ;
s e tVo l tageRe f e r ence (1) ; // Set vo l tage r e f e r e n c e by d e f a u l t −−> s e t REFS0

70 setADCres (Reso lut ion) ;
disDI () ;

72
l f s r = s t a r t s t a t e ; // I n i t i a l i z e the l f s r r e g i s t e r

74
measConfig () ; // Fina l ADC c o n f i g u r a t i o n

76
n = 0 ; // Star t the f l a g

78 f i = 0 ; // Star t the f l a g
p r o c e s s i n g = f a l s e ; // Star t the f l a g

80
i f (MODOVOID==true) {

82 SD. remove (”VOID.TXT”) ;
SD. remove (”MEAS.TXT”) ;

84 }
}

86

88
void loop () {

90
i f (n==0 && not (p r o c e s s i n g) && f i <4)

92 {
startMeas (f i) ;

94 }
i f (n>=N && p r o c e s s i n g && f i <4)

96 {
f in i shMeas () ;

98 f i ++;

Mart́ı Sabaté, Marc 106 of 123

APPENDIX E. ARDUINO CODE 2019

n = 0 ;
100 media = mean(vec) ;

f o r (i n t i =0; i<N; i++)
102 {

Re [i] = (double) vec [i] − (double) media ;
104 }

memset ((void ∗)Im , 0 , 4∗N) ;
106 f f t S t u f f (Re , Im) ;

}
108

// Indexat ion and s o r t i n g
110

i f (f i ==4 & p r o c e s s i n g==f a l s e)
112 {

indSort () ;
114 f i =5;

}
116

// Normal izat ion
118

i f (f i ==5 & p r o c e s s i n g==f a l s e)
120 {

norma l i za t i on (MODOVOID, Re) ;
122 }

124 // Pred i c t i on

126 i f (f i ==6 & p r o c e s s i n g==f a l s e & not (MODOVOID))
{

128 p r e d i c t i o n (Re , c , Output) ;
}

130
// Saving r e s u l t s and p r i n t i n g

132
i f (f i ==7 & p r o c e s s i n g==f a l s e & not (MODOVOID)) {

134 sav ing (Output , l cd) ;

136 // Restart measurement

138 f i =0;
n=0;

140 }
}

142

144
//−−−

146 // I n t e r r u p t i o n s
//−−−

148
ISR (TIMER2 COMPA vect) {

150 b i t = ((l f s r >> 0) ˆ (l f s r >> 2) ˆ (l f s r >> 3) ˆ (l f s r >> 5)) ; // & 1u ;
i f (bitRead (l f s r , 1 5)==1) // Optimized d i g i t a l wr i t e (PORTH, 4)=PIN 7

152 {
PORTH |= B00010000 ;

154 }
e l s e

156 {
PORTH &= B00000000 ;

158 }
i f (n<N) { // To avoid array over f l ow

160 vec [n] = ADCH;
n++;

Mart́ı Sabaté, Marc 107 of 123

APPENDIX E. ARDUINO CODE 2019

162 }

164 l f s r = (l f s r >> 1) | (b i t << 15) ; // l f s r a c t u a l i z a t i o n
}

Arduino code/arduino def.ino excerpt

E.2 Header

//−−−
2 // Prueba microfono . h

//−−−
4

//−−−
6 // Inc lude s

//−−−
8

inc lude <s t d i n t . h>
10 # inc lude <arduinoFFT . h> // f l o a t−point FFT l i b r a r y

12 #inc lude <SD. h> // Library to communicate with the microSD card
#inc lude <SPI . h>

14
#inc lude <Liqu idCrysta l I2C . h> // LCD Library

16 #inc lude <Wire . h>
#inc lude <LCD. h>

18
//−−−

20 // Def ines and Typedefs
//−−−

22
d e f i n e CLR(x , y) (x&=(˜(1<<y)))

24 # d e f i n e SET(x , y) (x|=(1<<y))
d e f i n e PI 3 .14159

26
// Def ines f o r s e t t i n g and c l e a r i n g r e g i s t e r b i t s

28 #i f n d e f cb i
#d e f i n e cb i (s f r , b i t) (SFR BYTE(s f r) &= ˜ BV(b i t))

30 #e n d i f
#i f n d e f s b i

32 #d e f i n e s b i (s f r , b i t) (SFR BYTE(s f r) |= BV(b i t))
#e n d i f

34
#d e f i n e BAUDRATE 9600 // Baud ra t e o f UART in bps

36 #d e f i n e I2C ADDR 0x27 // i 2 c memory d i r e c t i o n (obta ined with I2C scan)

38 //−−−
// Global Constants

40 //−−−

42 const u i n t 1 6 t N=512; // Number o f measurements
const i n t m=9; // Power o f two that g i v e s N

44 const i n t loud = 7 ; // Loudspeaker output pin
const char l e c = ”A0” ; // Microphone input pin

46 const i n t pin9 = 9 ; // Used as a vo l tage output
const u i n t 8 t P r e s c a l e r = 8 ; // ADC Clock P r e s c a l e r

48 const u i n t 8 t Reso lut ion = 8 ; // 8 b i t Analog Input Reso lut ion
const u i n t 1 6 t s t a r t s t a t e = 0xACE1u ; // Any nonzero s t a r t s t a t e w i l l work .

Mart́ı Sabaté, Marc 108 of 123

APPENDIX E. ARDUINO CODE 2019

50 const i n t pinCS = 53 ; // microSD communication pin
const u i n t 1 6 t match [] = {25 ,26 ,27 ,28} ; // Value to in t roduce in the OCR2A r e g i s t e r .

52 const i n t Ncoef [] = {121 ,126 ,130 ,135} ; // Number o f c o e f f i c i e n t s to save at each
measurement .

54
//−−−

56 // Function Prototypes
//−−−

58
void startADC (void) ;

60 void stopADC(void) ;
void setADCPrescaler (u i n t 8 t P r e s c a l e r) ;

62 void se tVo l tageRe f e r ence (u i n t 8 t r e f e r e n c e) ;
void setADCres (u i n t 8 t r e s) ;

64 void disDI (void) ;
void measConfig (void) ;

66 void l cdConf ig (L iqu idCrysta l I2C l cd) ;

68 byte mean(byte ∗a) ;
double mean(double ∗a) ;

70 void startMeas (i n t f i) ;
void f in i shMeas (void) ;

72 void f f t S t u f f (double ∗ Re , double ∗ Im) ;
void indSort (void) ;

74 void norma l i za t i on (bool MODOVOID, double ∗Re) ;
void p r e d i c t i o n (double ∗Re , double ∗c , bool ∗Output) ;

76 void sav ing (bool ∗Output , L iqu idCrysta l I2C lcd) ;

78 //−−−
// Global Var i ab l e s

80 //−−−

82 extern v o l a t i l e byte vec [N] ; // array o f r e a l va lue s measured by the
microphone

extern double Re [5 1 2] ;
84 extern double Im [5 1 2] ;

extern i n t I n d i c e s [5 1 2] ;
86 extern bool Output [2 4] ;

88 extern arduinoFFT FFT;
extern double s t a r t ;

90 extern Liqu idCrysta l I2C ;

92 extern v o l a t i l e i n t n ; // v o l a t i l e i s used to share v a r i a b l e s between
ISR and main program

extern i n t f i ; // f l a g to d e f i n e which step i s the f o l l o w i n g in
the proce s s

94 extern bool p r o c e s s i n g ; // f l a t to determine i f the i n t e r r u p t i o n s are
a v a i l a b l e

96 extern v o l a t i l e u i n t 1 6 t l f s r ; // I n i t i a l i z e the l f s r r e g i s t e r
extern v o l a t i l e u i n t 1 6 t b i t ; // Must be 16−b i t to a l low bit <<15 l a t e r in the

code . Aux i l i a r v a r i a b l e
98 extern F i l e myFile ;

Arduino code/arduino def.h excerpt

Mart́ı Sabaté, Marc 109 of 123

APPENDIX E. ARDUINO CODE 2019

E.3 Functions

1 //−−−
// f u n c t i o n s . h

3 //−−−

5 //−−−
// Inc lude s

7 //−−−

9 #inc lude ” a rdu ino de f . h”

11
byte mean(byte ∗a)

13 {
double b=0;

15 f o r (i n t i =0; i<s i z e o f (a) ; i++)
{

17 b += a [i] ;
}

19 byte c=b/(double) s i z e o f (a) ;
r e turn c ;

21 }

23 double mean(double ∗a)
{

25 double b=0;
f o r (i n t i =0; i<s i z e o f (a) ; i++)

27 {
b += a [i] ;

29 }
double c=b/(double) s i z e o f (a) ;

31 r e turn c ;
}

33
void startMeas (i n t f i)

35 {
p r o c e s s i n g = true ;

37 OCR2A = match [f i] ; // = (16 ∗ 10ˆ6) /(200000 ∗ 8) − 1 (must be <256)
TCNT2 = 0 ; // i n i t i a l i z e counter va lue to 0

39 TIMSK2 |= (1 << OCIE2A) ; // i n i t i a l i z e i n t e r r u p t i o n s
}

41
void f in i shMeas (void)

43 {
TIMSK2 &= B11111101 ; // Parar l a s i n t e r r u p c i o n e s

45 p r o c e s s i n g = f a l s e ;
}

47
void f f t S t u f f (double ∗ Re , double ∗ Im)

49 {
FFT. Windowing (Re , N, FFT WIN TYP HAMMING, FFT FORWARD) ; // Weight data

51 FFT. Compute (Re , Im , N, FFT FORWARD) ; // Compute FFT
FFT. ComplexToMagnitude (Re , Im , N) ; // Compute magnitudes

53
myFile = SD. open (”MEASURE.TXT” ,FILE WRITE) ; // Save the read va lue s

55 whi le (myFile) {
i f (f i ==1)

57 {
f o r (i n t i =0; i<Ncoef [f i −1] ; i++) // Each sampling f requency

has i t s own c o e f f i c i e n t s to save

Mart́ı Sabaté, Marc 110 of 123

APPENDIX E. ARDUINO CODE 2019

59 {
myFile . p r i n t (Re [i]) ;

61 myFile . p r i n t (’ , ’) ;
}

63 }
e l s e

65 {
f o r (i n t i =1; i<Ncoef [f i −1] ; i++)

67 {
myFile . p r i n t (Re [i]) ;

69 myFile . p r i n t (’ , ’) ;
}

71 }
myFile . p r i n t (’ \n ’) ;

73 myFile . c l o s e () ;
}

75 }

77 void indSort (void)
{

79 St r ing s t r aux ;
myFile = SD. open (”INDICES .TXT”) ; // Load i n d i c e s to

rea r range the spectrum
81 whi le (myFile) {

i n t i i = 0 ;
83 whi le (i i <512)

{
85 s t r aux = myFile . r e adSt r i ngUnt i l (’ , ’) ;

I n d i c e s [i i] = s t r aux . t o In t () ;
87 i i ++;

}
89 myFile . c l o s e () ;

}
91

myFile = SD. open (”MEASURE.TXT”) ; // Read the measure f i l e
and put the c o e f f i c i e n t s in t h e i r p lace

93 whi le (myFile) {
f o r (i n t i i =1; i i <513; i i ++)

95 {
s t r aux = myFile . r e adSt r i ngUnt i l (’ , ’) ;

97 Re [I n d i c e s [i i]] = s t r aux . toF loat () ;
}

99 myFile . c l o s e () ;
}

101
}

103
void norma l i za t i on (bool MODOVOID, double ∗Re)

105 {
St r ing s t r aux ;

107 i f (MODOVOID==true) {
myFile = SD. open (”VOID.TXT” ,FILE WRITE) ;

109 }
e l s e {

111 myFile = SD. open (”VOID.TXT”) ;
}

113
whi le (myFile) {

115 i n t i i =0;
whi l e (i i <512)

117 {
i f (MODOVOID==1){ // I f the void mode i s ac t ive

, the spectrum w i l l be saved in the void f i l e

Mart́ı Sabaté, Marc 111 of 123

APPENDIX E. ARDUINO CODE 2019

119 myFile . p r i n t (Re [i i]) ;
i f (i i <511){

121 myFile . p r i n t (’ , ’) ;
}

123 }
e l s e {

125 s t r aux = myFile . r e adSt r i ngUnt i l (’ , ’) ; // I f the void mode i s not
ac t ive , the void spectrum w i l l be read and the measured spectrum w i l l be normal ized

Re [i i] = Re [i i] / s t r aux . toF loat () ;
127 }

i i ++;
129 }

myFile . c l o s e () ;
131 f i = 6 ;

}
133 }

135 void p r e d i c t i o n (double ∗Re , double ∗c , bool ∗Output)
{

137 St r ing s t r aux ;
myFile = SD. open (”OUTPUT.TXT”) ; // F i l e conta in ing the

weights o f the l a y e r s to be app l i ed (512 x24)
139 whi le (myFile) {

f o r (i n t i i =0; i i <24; i i ++){
141 Im [i i]=0;

f o r (i n t j j =0; j j <512; j j ++){
143 s t r aux = myFile . r e adSt r i ngUnt i l (’ , ’) ;

c [i i] = c [i i] + Re [j j] ∗ s t r aux . toF loat () ; // The output value o f a
neuron i s the weighted sum of i t s inputs

145 }
c [i i] = 2 .0 / (1 − exp (−2.0∗c [i i])) − 1 . 0 ; // And the n o n l i n e a r i t y added
by means o f the a c t i v a t i o n func t i on (tanh)

147 }
myFile . c l o s e () ;

149 }

151 myFile = SD. open (”THRESH.TXT”) ; // F i l e conta in ing the
t h r e s h o l d s to compare each o f the outputs (24)

whi l e (myFile) {
153 f o r (i n t i i =0; i i <24; i i ++){

s t r aux = myFile . r e adSt r i ngUnt i l (’ , ’) ;
155 Output [i i] = c [i i] > s t r aux . toF loat () ;

}
157 myFile . c l o s e () ;

}
159 f i =7;

}
161

void sav ing (bool ∗Output , L iqu idCrysta l I2C lcd)
163 {

myFile = SD. open (”RESULT.TXT” ,FILE WRITE) ; // P r e d i c t i o n s are saved in
r e s u l t f i l e

165 whi le (myFile) {
f o r (i n t i i =0; i i <24; i i ++){

167 myFile . p r i n t (Output [i i]) ;
myFile . p r i n t (’ , ’) ;

169 }
myFile . p r i n t (’ \n ’) ;

171 myFile . c l o s e () ;
}

173
l cd . home () ;

175 f o r (i n t i i =0; i i <24; i i ++){

Mart́ı Sabaté, Marc 112 of 123

APPENDIX E. ARDUINO CODE 2019

l cd . se tCursor (i i %6, i i /6) ;
177 i f (Output [i i]==1){

l cd . p r i n t (’ 1 ’) ;
179 } e l s e {

l cd . p r i n t (’ 0 ’) ;
181 }

}
183 }

Arduino code/functions.cpp excerpt

E.4 Settings

1 //−−−
// s e t t i n g s . h

3 //−−−

5 //−−−
// Inc lude s

7 //−−−

9 #inc lude ” a rdu ino de f . h”

11 //−−−
// Star t e lements

13 //−−−
void startADC (void)

15 {
s b i (ADCSRA,ADATE) ; // enable auto t r i g g e r

17 // s b i (ADCSRA,ADIE) // enable i n t e r r u p t s when measurement complete
s b i (ADCSRA,ADEN) ; // enable ADC

19 s b i (ADCSRA,ADSC) ; // s t a r t ADC measurements
}

21
void stopADC(void)

23 {
cb i (ADCSRA,ADEN) ; // d i s a b l e ADC

25 }

27 //−−−
// Set and modify ADC p r e s c a l e r

29 //−−−
void setADCPrescaler (u i n t 8 t P r e s c a l e r)

31 {
switch (P r e s c a l e r)

33 {
case 2 :

35 cb i (ADCSRA,ADPS2) ;
cb i (ADCSRA,ADPS1) ;

37 s b i (ADCSRA,ADPS0) ;
break ;

39 case 4 :
cb i (ADCSRA,ADPS2) ;

41 s b i (ADCSRA,ADPS1) ;
cb i (ADCSRA,ADPS0) ;

43 break ;
case 8 :

45 cb i (ADCSRA,ADPS2) ;

Mart́ı Sabaté, Marc 113 of 123

APPENDIX E. ARDUINO CODE 2019

s b i (ADCSRA,ADPS1) ;
47 s b i (ADCSRA,ADPS0) ;

break ;
49 case 16 :

s b i (ADCSRA,ADPS2) ;
51 cb i (ADCSRA,ADPS1) ;

cb i (ADCSRA,ADPS0) ;
53 break ;

case 32 :
55 s b i (ADCSRA,ADPS2) ;

cb i (ADCSRA,ADPS1) ;
57 s b i (ADCSRA,ADPS0) ;

break ;
59 case 64 :

s b i (ADCSRA,ADPS2) ;
61 s b i (ADCSRA,ADPS1) ;

cb i (ADCSRA,ADPS0) ;
63 break ;

case 128 :
65 s b i (ADCSRA,ADPS2) ;

s b i (ADCSRA,ADPS1) ;
67 s b i (ADCSRA,ADPS0) ;

break ;
69 d e f a u l t : // Set 128

s b i (ADCSRA,ADPS2) ;
71 s b i (ADCSRA,ADPS1) ;

s b i (ADCSRA,ADPS0) ;
73 break ;

}
75 }

77 //−−−
// Set and modify Voltage Reference

79 //−−−
void se tVo l tageRe f e r ence (u i n t 8 t r e f e r e n c e)

81 {
// REFS1 REFS0 Voltage r e f e r e n c e

83 // 0 0 AREF, I n t e r n a l Vref turned o f f
// 0 1 AVCC with e x t e r n a l c a p a c i t o r at AREF pin

85 // 1 0 Reserved
// 1 1 I n t e r n a l 1 . 1V Voltage Reference with e x t e r n a l

87 // c a p a c i t o r at AREF pin
switch (r e f e r e n c e)

89 {
case 0 :

91 cb i (ADMUX, REFS1) ;
cb i (ADMUX, REFS0) ;

93 break ;
case 2 :

95 s b i (ADMUX, REFS1) ;
s b i (ADMUX, REFS0) ;

97 break ;
case 1 :

99 d e f a u l t :
cb i (ADMUX, REFS1) ;

101 s b i (ADMUX, REFS0) ;
}

103 }

105 //−−−
// Change ADC r e s o l u t i o n

107 //−−−
void setADCres (u i n t 8 t r e s)

Mart́ı Sabaté, Marc 114 of 123

APPENDIX E. ARDUINO CODE 2019

109 {
switch (r e s)

111 {
case 8 :

113 s b i (ADMUX,ADLAR) ; // l e f t a l i g n ADC value to 8 b i t s from ADCH r e g i s t e r
break ;

115 case 10 :
d e f a u l t :

117 cb i (ADMUX,ADLAR) ;
break ;

119 }
}

121
//−−−

123 // D i g i t a l Input Disab le Reg i s t e r 0
//−−−

125 void disDI (void)
{

127 s b i (DIDR0,ADC5D) ; // Set D i g i t a l b i t o f Analog Input to one l o g i c to reduce
no i s e

s b i (DIDR0,ADC4D) ; // Set D i g i t a l b i t o f Analog Input to one l o g i c to reduce
no i s e

129 s b i (DIDR0,ADC3D) ; // Set D i g i t a l b i t o f Analog Input to one l o g i c to reduce
no i s e

s b i (DIDR0,ADC2D) ; // Set D i g i t a l b i t o f Analog Input to one l o g i c to reduce
no i s e

131 s b i (DIDR0,ADC1D) ; // Set D i g i t a l b i t o f Analog Input to one l o g i c to reduce
no i s e

s b i (DIDR0,ADC0D) ; // Set D i g i t a l b i t o f Analog Input to one l o g i c to reduce
no i s e

133 }

135 void measConfig (void)
{

137
// s e t t imer2 i n t e r r u p t

139 TCCR2A = 0 ; // s e t e n t i r e TCCR2A r e g i s t e r to 0
TCCR2B = 0 ; // same f o r TCCR2B

141 TCNT2 = 0 ; // i n i t i a l i z e counter va lue to 0

143 // turn on CTC mode
TCCR2A |= (1 << WGM21) ;

145 // Set CS21 b i t f o r 8 p r e s c a l e r
TCCR2B |= (1 << CS21) ;

147 // enable t imer compare i n t e r r u p t
// TIMSK2 |= (1 << 0CIE2A) ;

149 TIMSK2 &= B11111101 ; // Parar l a s i n t e r r u p c i o n e s
}

151
void l cdConf ig (L iqu idCrysta l I2C l cd)

153 {
l cd . begin (20 ,4) ; // I n i t i a l i z e LCD 20x4

155 l cd . s e tBack l i ghtP in (3 ,POSITIVE) ; // Back l ight c o n f i g u r a t i o n
l cd . s e tBack l i gh t (HIGH) ;

157
l cd . home () ;

159 }

Arduino code/settings.cpp excerpt

Mart́ı Sabaté, Marc 115 of 123

2019

Part III

Specifications

Mart́ı Sabaté, Marc 116 of 123

CHAPTER 11. SPECIFICATIONS 2019

Chapter 11

Specifications

In this part of the document, the specifications of the project will be stated so as to be able to repeat
the simulations and the measurements.

11.1 Simulations

The computer used to simulate the theoretical model and to compute the data that will be used as train
data set is an Intel(R) Xeon(R) processor X5690 at 3.46GHz, with 24GB of RAM, Windows 8.1 Pro as
OS and an ATI FirePro 2260 GPU. Needed time to compute a 60000 sample data set is 5 hours.

There is another computer involved in the project, where the Artificial Neural Network model has been
created and trained. This computer is an Alienware Aurora R5 version 1.0.16. Its processor is an Intel(R)
Core(TM) i7-6700K at 4GHz with 16GB of RAM, Ubuntu 16.04.6 as OS and a NVIDIA Corporation
GP104 GeForce GTX1080 GPU. Needed time to compute the Artificial Neural Network with the 60000
sample data set is 8 hours.

11.2 Structured plate production

The structured plate with its holes, as seen in the report document, has been crafted using a 3D printer.
The 3D printer is a BQ Witbox with a PLA premium black wire 1.75mm diameter [5]. Its printing
temperature is 210oC, but it starts softening at 60oC. Then it is not recommended to let the crafted
piece sun exposed. The plate has been design using a open source CAD software called OpenSCAD.
The program used to print the plate was customized as follows:

Mart́ı Sabaté, Marc 117 of 123

CHAPTER 11. SPECIFICATIONS 2019

Parameter Value
Quality

Layer Height 0.05mm
Shell

Wall Thickness 0.625mm
Wall Line Count 2

Top/Bottom Thickness 0.625mm
Top Layers 8

Bottom Layers 8
Infill

Infill Density 20%
Infill pattern Tri-Hexagon

Infill Line Directions []
Material

Printing Temperature 210oC
Build Plate Temperature 55oC

Build Plate Temperature Initial Layer 55oC
Flow 70%

Enable Retraction Yes
Retraction Distance 4mm

Speed
Print speed 70mm/s

Top/Bottom Speed 50mm/s
Travel speed 120mm/s

Initial Layer Print Speed 35mm/s

Table 11.1: 3D printer main parameter set up.

11.3 Software and versions

Depending on the part of the project, one software or another one has been used. For model’s simulation
and data set creation, MATLAB has been used, with version R2016a.

In case of microcontroller’s code, Arduino IDE is the chosen software. In this case, version 1.6.12 has
been used. Furthermore, in the Arduino’s code, some libraries have been imported:

Library Version
arduinoFFT 1.4.0

SD 1.0
SPI 1.0

LiquidCrystal I2C 1.0.7
LCD 1.0.7
Wire 1.0

Table 11.2: Arduino library version.

Finally, the Artificial Neural Network has been developed using Python 3.6.6 and the following libraries:

Mart́ı Sabaté, Marc 118 of 123

CHAPTER 11. SPECIFICATIONS 2019

Library Version
numpy 1.16.1
scipy 1.2.0

tensorflow-gpu 1.12.0
matplotlib 3.0.2

random 1.1.0

Table 11.3: Python library version.

11.4 Guidelines for the correct operation of the system

Once the system is all together and ready to be used, the following recommendations should be considered:

• Temperature is a critical parameter. Try to avoid plate’s sun exposure. Its material (PLA) starts
deforming around 60o, and this temperature can be achieved just by sun exposure.

• MicroSD card must not be taken from the microSD socket while the system is powered, under
risk of formatting the microSD card and losing all the information inside. Remember that the
microSD not only contains the result of the image, but it also contains crucial information about
void measurements and rearranging coefficients.

• Avoid placing the system in noisy environments. Even if dissipation should be enough to mask the
noise coming from outside the system, the microphone is sensitive enough to be distorted, so it is
recommended to place the set up two meters away from the noise source.

• Avoid placing the system in non stable surfaces. Any movement suffered by the structured plate
affects the measurement, adding a phase term that has not been considered in the training. Thus,
platform movements can lead to a mistake in the prediction.

• Before start measuring, voltage at the output of the amplifier must be controlled. An output voltage
of 2.5V must be found, in order to cover the maximum range of the microcontroller’s input.

11.5 Material specifications

11.5.1 Solder

Tin used to weld must satisfy the directive on the restriction of the use of certain hazardous substances
in electrical and electronic equipment, or european directive RoHS. Therefore, the tin will not have any
lead content, and green products will be used, which are exempt of it.

11.5.2 Electronic components

Given that this product is not dangerous for the user’s security, electronic components will not be brought
under rigorous quality analysis, but their correct performance will be ensured. It will be compulsory to
check the performance of each component before using them to craft the system.

Mart́ı Sabaté, Marc 119 of 123

2019

Part IV

Budget

Mart́ı Sabaté, Marc 120 of 123

CHAPTER 12. BUDGET 2019

Chapter 12

Budget

In this chapter project’s budget will be discussed, and a general idea of the total cost of the system will be
established. It must be said that this budget has been done considering the costs of the proof of concept,
which is the aim of the project. Therefore, this budget does not represent the production cost of the
system. Moreover, the microcontroller considered in the budget is Arduino Mega 2560, even if Teensy
3.1 has been told to be a better option. In order to estimate this, several changes should be considered,
such as the fact of buying a single PCB instead of a series production, which lowers costs. Prices when
batch size increases are lower than when buying single products. Thus, a scale factor must be taken into
account.

The first table (Table 12.1) shows hardware budget; in other words, materials cost of the project:

Component Price
Signal acquisition 2308.1e

Microphone and preamplifier 1629.00e
Microphone’s power source 593.00e

PCB manufacturing 86.05e
Signal emission 8.79e

Loudspeaker Kemo L10 8.79e
Structure 0.40e

3D printing plate 0.40e
Power supply 1.67e

9V alkaline battery (Duracell 6LF22) 1.67e
LCD display 19.95e

HD44780U 20x4 LCD display 19.95e
Microcontroller and external memory 43.70e

Arduino MEGA 2560 35.00e
Arduino microSD shield 5.61e

1GB microSD card 3.09e
Total 2382.60e

Table 12.1: Material’s budget.

From Table 12.1 it can be outlined that the microphone and its power source are much more expensive

Mart́ı Sabaté, Marc 121 of 123

CHAPTER 12. BUDGET 2019

than the rest of the equipment. In fact, these two items represent the 93% of the material’s budget. In
this Table, VAT has already been considered (21%). PCB manufacturing price can be divided in cost of
PCB (bare board), cost of electronic components, cost of PCB assembly and cost of testing. This division
is shown in Table 12.2:

Component Price
Bill of Materials 1.05e
Resistor 15kΩ 1% 0.08e
Resistor 2.2kΩ 1% 0.06e
Resistor 12kΩ 1% 0.07e
Resistor 1kΩ 1% 0.06e
Resistor 51Ω 1% 0.09e
Resistor 820Ω 1% 0.09e
Capacitor 100nF 0.14e

LM324N 0.46e
PCB board 35.00e

PCB assembly 40.00e
Testing 10.00e
Total 86.05e

Table 12.2: PCB cost development.

Prices have been obtained from www.pcbcart.com. It has to be considered that only one PCB has been
ordered; making the unity cost much more expensive than ordering several PCB. The PCB parameters
to order it are the following ones:

• Material: FR4

• Layers: 2 Layer

• Material Details: Standard Tg 140C

• Part Number: SHIELD MEGA

• Board Type: Single Unit

• Board Size (width): 92.71mm

• Board Size (height): 53.34mm

• Quantity: 1

• Thickness: 1.2mm

• Surface Finish: ENIG (Gold)

• Copper Weight (Finished): 35µm

• Min. Tracing/Spacing: 0.20mm(8thou)

• Min. Annular Ring: 0.30mm(12thou)

• Smallest Holes: 0.40mm

• Holes Numbers: 300-600

Mart́ı Sabaté, Marc 122 of 123

CHAPTER 12. BUDGET 2019

• Surface Mount: 1 side

• Soldermask: Both sides

• Peelable Soldermask: None

• Matt Color: None

• Silkscreen Legend: 2 sides

• Silkscreen Legend Color: Black

• Gold Fingers: No

• Slots in Board: No Slot in Board

• Testing: Yes

• UL Marking: No

• Date Code Marking: No

• Lead Time: 12 days

• Special Requirement Note: PCB is routed to outside line of Top layer

The non-material costs to take into account in the budget of the project are summarized in Table 12.3:

Component Price
Software licenses and libraries 2000.00e

MATLAB R2016b 2000.00e
Spyder3 0.00e

Arduino IDE 0.00e
Computation hardware 3701.11e
Windows Intel computer 1428.89e

Ubuntu Alienware computer 2272.22e
Human resources cost 19040.00e

Salary 19040.00e
Total 24741.11e

Table 12.3: Non-material budget.

Salary from Table 12.3 has been computed as follows: 17eper hour has been considered. Thus, a salary
of 2720efor a full-time job in a month. Then, the total amount has been computed as 2720/2·6+2720·4 =
19040e, where 6 is the number of part-time job months, and 4 is the number of full-time job months.
Finally, the total budget of the project is 27124.71e.

Mart́ı Sabaté, Marc 123 of 123

