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Abstract

Shape regression is of key importance in many scientific fields. In this paper,
we focus on the case where the shape of an object is represented by a con-
figuration matrix of landmarks. It is well known that this shape space has
a finite-dimensional Riemannian manifold structure (non-Euclidean) which
makes it difficult to work with. Papers about regression on this space are
scarce in the literature. The majority of them are restricted to the case of a
single explanatory variable, usually time or age, and many of them work in
the approximated tangent space. In this paper we adapt the general method
for kernel regression analysis in manifold-valued data proposed by Davis et al
(2007) to the three-dimensional case of Kendall’s shape space and generalize
it to multiple explanatory variables. We also propose bootstrap confidence
intervals for prediction. A simulation study is carried out to check the good-
ness of the procedure, and finally it is applied to a 3D database obtained from
an anthropometric survey of the Spanish child population with a potential
application to online sales of children’s wear.

Keywords: Shape space, Statistical shape analysis, Kernel regression,
Fréchet mean, Children’s wear

1. Introduction

Many problems in medical imaging analysis and computer vision involve
predicting the shape of an object as a function of a set of covariates (age,
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dose, etc.).
A significant amount of research and activity has been carried out in

recent decades in the general area of shape analysis. By shape analysis, we
mean a set of tools for comparing, matching, deforming, and modeling shapes.
Three major approaches can be identified in shape analysis based on how the
object is treated in mathematical terms (Stoyan and Stoyan, 1995): Objects
can be treated as subsets of Rm, they can be described as sequences of points
that are given by certain geometrical or anatomical properties (landmarks),
or they can be defined using functions representing their contours.

The majority of research has been restricted to landmark-based analysis,
where objects are represented using k labeled points in the Euclidean space
Rm. These landmarks are required to appear in each data object, and to
correspond to each other in a physical sense. Seminal papers on this topic are
Bookstein (1978), Kendall (1984), and Goodall (1991). The main references
are Dryden and Mardia (1998) and Kendall et al (2009a). In this paper we
concentrate on this approach.

The word “shape” is very commonly used in everyday language, usually
referring to the appearance of a geometric object. In a more formal way,
shape can be defined as the geometrical information about the object that is
invariant under a Euclidean similarity transformation, i. e., location, orien-
tation, and scale. The shape space is the resulting quotient space, and it has
a non-Euclidean structure. As a result, standard statistical methodologies
on linear spaces based on Euclidean distance cannot be used.

When the landmark-based approach is used, the corresponding shape
space is a finite-dimensional Riemannian manifold, and statistical method-
ologies on manifolds must be used. There are several difficulties in general-
izing probability distributions and statistical procedures to measurements in
a non-vectorial space like a Riemannian manifold, but fortunately, there has
been a significant amount of research and activity in this area over recent
years. An excellent review can be found in Pennec (2006).

A first and important difficulty is that we cannot generalize the concept of
expectation of a random element in a manifold, since it would be an integral
with values in the manifold. In a Euclidean space, there is a clear and unique
concept of mean, which corresponds to the arithmetic average of realizations.
In Riemannian manifolds different kinds of means have been introduced and
studied as Fréchet parameters associated with different types of distances
on it (Bhattacharya and Patrangenaru, 2002, 2003; Kobayashi and Nomizu,
1969). Since a mean in a manifold is the result of a minimization, its existence
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is not ensured. Karcher (1977) and Kendall (1990) established conditions on
the manifold to ensure the existence and uniqueness of the mean and in
Woods (2003) a gradient descent algorithm in the manifold is given to find
it.

Although statistical analysis of manifold-valued data has gained a great
deal of attention in recent years, there is little literature on regression anal-
yses on manifolds. Early papers were developed for directional data (Jupp
and Kent, 1987; Mardia and Jupp, 2009). In regression of directional data,
parametric distributions, such as the Von Mises distribution, are commonly
assumed. However, it is very challenging to assume useful parametric distri-
butions for other manifold-valued data. As a result, nonparametric regression
has been most commonly used until now. Local constant regressions are de-
veloped for manifold-valued data defined with respect to the Fréchet mean
in Davis et al (2007). Shi et al (2009) developes a semiparametric regression
model that uses a link function to map from the Euclidean space of covariates
to the Riemannian manifold. Fletcher (2011) introduces a regression method
for modeling the relationship between a manifold-valued random variable
and a real-valued independent parameter based on a geodesic curve, parame-
terized by the independent parameter. The multivariate case using multiple
geodesic bases on the manifold and a variational algorithm is treated in Kim
et al (2014). Recently a regression parametric model based on a normal
probability distribution is introduced in Fletcher and Zhang (2016).

This paper was motivated by an important current application: a 3D an-
thropometric study of the child population in Spain developed by the Biome-
chanics Institute of Valencia. The aim of this study was to generate anthropo-
metric data to help and inform decision makers (parents/relatives/children)
in the size selection process, focusing on online shopping for children’s wear.
After the study was completed, a database was generated consisting of 739
randomly selected Spanish children from 3 to 12 years old. They were
scanned using the Vitus Smart 3D body scanner from Human Solutions,
a non-intrusive laser system formed by four columns allocating the optic sys-
tem, which moves from head to feet in ten seconds, performing a sweep of
the body.

Several new technologies and online services addressing the selection of
proper garment size or model for the consumer have been developed in re-
cent years. These applications can be classified into two groups. The first
uses neural network algorithms to match with other clothes used by the
user (see, for instance, www.whatfitsme.com). This method requires an ini-
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tial database user (your virtual closet) for training algorithms. The second
predicts the size and fit of the garment using user’s anthropometric measure-
ments and their relationship with the dimensions of the garment (see, for
instance, www.fits.me).

In this paper, instead of correlating children’s anthropometric measure-
ments with the dimensions of the garment, we propose to use them to predict
the children’s body shapes represented by landmarks. In order to achieve
that, we adapt the general method for kernel regression analysis in manifold-
valued data proposed by Davis et al (2007) to the the corresponding shape
space. Although it have been used for directional data and planar landmark
data, it is analytical and computationally difficult to generalize it to 3D land-
mark data. Besides, we generalize it to multiple explanatory variables and
propose bootstrap confidence intervals for prediction.

The resulting predicted shape can then be used to choose the most suit-
able size for the selected garments.

In Vinué et al (2014) women’s body shapes represented by landmarks were
used to define a new sizing system. The 3D database used is very similar to
the used in this paper and it was obtained from an anthropometric survey of
the Spanish female population. As in this paper, Clustering algorithms were
adapted to the corresponding shape space.

The R language (R Development Core Team, 2014) was employed in our
implementations. We used the The shapes package by Ian Dryden (Dryden,
2012). This is a very powerful and complete package for the statistical anal-
ysis of shapes. As its efficiency for medium and large datasets is somewhat
limited, we rewrote some parts to accelerate it and enable to run our codes
in a shorter time.

The article is organized as follows. Section 2 concerns basic concepts of
statistical shape analysis. Section 3 show the kernel regression for shape anal-
ysis. Some important details regarding the implementations are described in
Section 4. A simulation study is conducted in Section 5. The application
for regression in children’s body shapes is detailed in Section 6. Finally,
conclusions are discussed in Section 7.

2. Shape space

As was stated before, shape can be defined as geometrical information
of the object that is invariant under a Euclidean similarity transformation,
i. e., location, orientation, and scale (Dryden and Mardia, 1998). In this
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work, the shape of geometrical m-dimensional objects (usually m = 2, 3)
is determined by a finite number of k > m coordinate points, known as
landmark points. Each object is then described by a k × m configuration
matrix X containing the m Cartesian coordinates of its k landmarks.

However, a configuration matrix X is not a proper shape descriptor be-
cause it is not invariant to similarity transformations. For any similarity
transformation, i. e. for any translation vector t ∈ Rm, scale parameter
s ∈ R+, and rotation matrix R, the configuration matrix given by sXR+1kt

T

(where 1k is the k × 1 vector of ones) describes the same shape as X.

Definition 1. The shape space Σk
m is the set of equivalence classes [X] of k×

m configuration matrices X ∈ Rk×m under the action of Euclidean similarity
transformations.

As was mentioned before, the shape space Σk
m admits a Riemannian man-

ifold structure. The complexity of this Riemannian structure depends on k
and m. For example, Σk

2 is the well-known complex projective space. For
m > 2, which is the case of our application, they are not familiar spaces and
may have singularities.

A representative of each equivalence class [X] can be obtained by remov-
ing the similarity transformations one at a time. There are different ways to
do that.

Let X be a configuration matrix. A way to remove the location effect
consists of multiplying it by the Helmert sub-matrix, H, i. e., XH = HX.

The Helmert sub-matrix H is obtained removing the first row in the
Helmert matrix. The Helmert matrix is an h× h orthogonal matrix with its
first row of elements equal to 1/

√
h, and the remaining rows are orthogonal

to the first row. The jth row of the Helmert sub-matrix H is given by the
number −1√

j(j+1)
repeated j times, followed by −j√

j(j+1)
and then h − j − 1

zeros.
To filter scale we can divide XH by the centroid size, which is given by

S(X) = ‖XH‖ = ‖HX‖ =
√
trace((HX)t(HX)) = ‖CX‖

Z = XH

‖XH‖
is called the pre-shape of the configuration matrix X because

all information about location and scale is removed, but rotation information
remains.

Definition 2. The pre-shape space Skm is the set of all possible pre-shapes.
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Skm is a hypersphere of unit radius in Rm(k−1) (a Riemannian manifold that is
widely studied and known). Σk

m is the quotient space of Skm under rotations.
As a result, a shape [X] is an orbit associated with the action of the

rotation group SO(m) on the pre-shape.
From now on, in order to simplify the notation, we will use X to denote

both, a configuration matrix and its shape, provided that it is understood
by context.

For m = 2, this quotient space is isometric with the complex projec-
tive space CPk−2, a familiar Riemannian manifold without singularities. For
m > 2, Σk

m is not a familiar space, and it has singularities; however, the Rie-
mannian structure of the non-singular part of Σk

m can be obtained taking into
account that the quotient space Σk

m/SO(m) is a Riemannian submersion; see
Kendall et al (2009b).

The exponential and logarithmic maps allow to move from the manifold
to the tangent space and vice versa.

The projection:

π : Skm → Σk
m

Z 7→ π(Z)

maps the horizontal subspace of the tangent space to the pre-shape sphere
at Z isometrically onto the tangent space to the shape space at π(Z).

Using this result, the exponential and logarithm maps in Σk
m can be can

be computed, they can be found in pp. 76-77 of Dryden and Mardia (1998).
Before showing the calculus, we need to introduce the vectorizing opera-

tor. The vectorizing operator of an l×mmatrix A with columns a1, a2, . . . , am
is defined as: vec(A) = (aT1 , a

T
2 , . . . , a

T
m)T .

Let X be the representative of a point in Σk
m. To obtain the expression

of the projection onto the tangent plane at X of a pre-shape Z, Z is rotated
to be as close as possible to X. We write the rotated pre-shape as ZΓ̂. The
expression of Γ̂ can be found in pp. 61 of Dryden and Mardia (1998):

Γ̂ = UV T ,

where U, V ∈ SO(m) are the left and right matrices of the singular value
decomposition of XTZ. Then:

logX(Z) = (Ikm−m − vec(X)vec(X)T )vec(XΓ̂), (1)
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where Ikm−m is the (km−m)× (km−m) identity matrix.
Given v in the tangent space at X:

expX(v) = vec−1((1− vTv)1/2vec(X) + v)Γ̂T . (2)

See Dryden and Mardia (1998) and Small (1996) for a more complete
discussion of the tangent space.

In addition, it can be shown that the induced Riemannian distance in
this space is given by the Procrustes distance defined as following.

Definition 3. Given two configuration matrices X1, X2, the Procrustes dis-
tance ρ(X1, X2), is the closest great circle distance between Z1 and Z2 on the

pre-shape hypersphere Skm, where Zj =
HXj

‖HXj‖ , j = 1, 2. The minimization is

carried out over rotations.

By definition, the range of this distance is [0, π/2].
Now we are in a position to introduce the concept of mean shape of a

given set of shape realizations. As was mentioned above, we are faced with
the problem that in non-Euclidean spaces there is not a single concept of
mean that corresponds, as with Euclidean spaces, to the arithmetic average
of realizations. In our procedure we need to use a Fréchet-type mean (Fréchet,
1948), i. e., one that minimizes the sum of squared distances from any shape
in the set.

Definition 4. Given a set of configuration matrices X1, . . . , Xn, the empir-
ical Fréchet mean in Σk

m is given by µ̂, where:

µ̂ = arg min
µ∈Σk

m

n∑
i=1

ρ2(Xi, µ). (3)

The coordinates of logµ̂(Z) are called Kent’s partial tangent coordinates.
For two-dimensional data an explicit eigenvector solution of the optimization
problem is available (see pp. 44 in Dryden and Mardia, 1998), but for m =
3 and higher-dimensional data an iterative procedure based on a gradient
descendent algorithm must be used.

In Pennec (2006) we can find this algorithm for a general Riemannian
manifoldM. To characterize a local minimum of a twice differentiable func-
tion, we just have to require a null gradient and a positive definite Hessian
matrix.
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Given a point z ∈M, the gradient of the function:

hz(y) = ρ2(y, z) y ∈M,

is, according to Pennec (2006),

(gradhz)(y) = −2 logy(z),

where logy(z) denotes the projection of z onto the tangent plane at y, i. e.,
the inverse of the exponential map.

Therefore, given a set of points {x1, . . . , xn} ∈ M, if we consider the
function f :M−→ R defined as:

f(y) =
1

n

n∑
i=1

ρ2(y, xi),

where ρ denotes the Riemannian distance in M and we suppose that the
points xi are away from any singularity, we have:

(grad f)(y) =
1

n

n∑
i=1

(gradhxi)(y) = − 2

n

n∑
i=1

logy(xi). (4)

The gradient descent algorithm is:

yt+1 = expyt(

∑n
i=1 logyt(xi)

n
) (5)

A modification of this algorithm will be used to obtain our non-parametric
regression procedure in Σk

m.
It is worth noting at this point that if the data are fairly concentrated

around the mean, the Euclidean distance in the tangent space around the
mean shape is a good approximation to ρ, i. e., the tangent space is the
linearized version of the shape space in the vicinity of the mean, and so
we can perform standard multivariate statistical techniques in this space.
This is an approach to inference on shape space that is widely used in many
applications.

3. Kernel regression algorithm in the shape space

In this section we consider the regression problem in the shape space, i. e.,
given a sample {(X1, Y1), . . . , (Xn, Yn)}, where Yi, i = 1, . . . , n are random
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configuration matrices and Xi are real valued p-dimensional vectors (random
or not). Our aim is to estimate the regression function µ(X), to predict the
shape of an object given the covariates X ∈ Rp.

Classical regression methods are again not applicable in this setting be-
cause they rely on the vector space structure of the observations.

In Davis et al (2007) the notion of Fréchet expectation µ(X) = E(Y/X)
is used to generalize Euclidean case regression to a general Riemannian man-
ifold M. They propose a method that generalizes Nadaraya-Watson kernel
regression (Nadaraya, 1964) in order to predict manifold-valued data from
(ti, pi), where ti are drawn from a univariate random variable and pi are
points in the manifold. They define a manifold kernel regression estimator
using the Fréchet empirical mean estimator:

mh(t) = argminq∈M(

∑n
i=1Kh(t− ti)ρ2(q, pi)∑n

i=1 Kh(t− ti)
),

where Kh is a univariate kernel function with bandwidth h.
They use this method to study spatio-temporal change in a random design

database consisting of three-dimensional MR images of healthy adults to
compute representative images over time.

Obviously, there are many situations, in particular in our application,
where there are many explanatory variables that determine the shape of an
object. We propose to extended the Davis et al (2007) estimator to the
multiple explanatory variables by using a multivariate kernel (Härdle et al,
2012). So:

mH(X) = argminZ∈Σk
m

(

∑n
i=1KH(X −Xi)ρ

2(Z, Yi)∑n
i=1 KH(X −Xi)

)

where KH(X) := |H|−1/2K(H−1/2X), H is the p × p matrix of smoothing
parameters, symmetric and positive definite, and K : Rp → [0,∞) is a
multivariate probability density.

As it is well known there are a great number of possible kernel choices
but that the difference between two functions K is almost negligible. The
choice of the bandwidth matrix H is the most important factor affecting the
accuracy of the estimator.

In our applications we have chosen a multivariate Gaussian kernel because
it is the most easy way to incorporate the correlation among covariates. In
this way we can put more emphasis in regions with more data and assigns
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less weight to observations in regions of sparse data. Thereby, with respect to
the choice of the bandwith matrix H, we propose to use H = hSX , where SX
is the sample covariance matrix of {X1, . . . , Xn} and choosing the positive
constant h by cross validation.

Finally, in order to solve the minimization problem, we propose to use a
modification of the algorithm stated in the previous section (Eq. 5).

Taking into account all these considerations, the algorithm that we pro-
pose is as follows:

Algorithm 1. Given a sample
{(X1, Y1), . . . , (Xn, Yn)}, where Yi, i = 1, . . . , n are configuration matrices
and Xi ∈ Rp, i = 1, . . . , n. Let X0 be a vector of covariate values the algoritm
to predict the shape corresponding to X0 is:

Initialize m0 = Yi (i at random), δ ∈ (0, 1), d = 1, j = 0, h;

Compute the preshapes of Y1, . . . , Yn → Z1, . . . , Zn.

While d > δ do

Compute the preshape of mj.

For i = 1, . . . , n

Compute the singular value decomposition of mT
j Zi, and let u

and v be the left and right matrices of this decomposition.

φ = vuT

logi = vec(Ziφ)− vec(mj)vec(mj)
T vec(Ziφ)

ki = KH(X0 −Xi)

End for

v =
∑

i ki logi /
∑

i ki

mj+1 = expmj
v

d = ρ(mj,mj+1)

j = j + 1

End while

Return mj

As mentioned in Section 1, this algorithm will be used to predict the
body shape of a child given a number of features such age, height, waist
circumference, etc.
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3.1. Confidence regions

It is also of interest for the apparel industry to generalize confidence
intervals, which are widely used in statistics, to build a region where the
predictions lie within with a given confidence level.

Our approach follows the ideas stated by González-Rodŕıgez et al (2009)
for obtaining confidence regions for the mean of a fuzzy random variable. It
is well known that given X, a real-valued random variable with mean µ and
finite variance, an (1−α)×100% confidence interval for µ can be determined
as CI = [X̄ − δ, X̄ + δ], where X̄ is the sample mean of a random sample of
n independent variables, X1, . . . , Xn, with the same distribution as X, and
where δ = δ(X1, . . . , Xn) is such as that P (µ ∈ CI) = 1 − α. Therefore,
conventional confidence intervals for the mean µ can equivalently be seen as
balls with respect to the Euclidean distance, centered in the sample mean
X̄, and with a suitable radius δ.

Applying these ideas to our regression context, we can define the confi-
dence ball for the mean µ(X0) = E(Y/X0), with level of confidence 1 − α,
CB1−α, as:

CB1−α = {[Y ] ∈ Σk
m : ρ(Y,m(X0)) ≤ δ} :

P (µ(X0) ∈ CB1−α) = 1− α (6)

Like for many other statistical problems, no procedure to calculate δ is
available other than bootstrap methods. In particular, we propose to use
pairwise resampling bootstrap; see Mammen (2000).

Given the sample {(X1, Y1), . . . , (Xn, Yn)}, and given α ∈ (0, 1), the cho-
sen significance level, the procedure to build the confidence region can be
schematized as follows:

1. Let {(X1, Y1), . . . , (Xn, Yn)} be a random sample where Yi is a shape
and Xi a vector of real covariates. Let X0 be the vector of covariate
values where the shape is to be predicted, and let m(X0) be the mean
estimated with this random sample.

2. Obtain B bootstrap sample sets
{(X1, Y1)b

∗
, . . . , (Xn, Yn)b

∗} (where b∗ = 1, . . . , B) from the original ran-
dom sample
{(X1, Y1), . . . , (Xn, Yn)}. For each resample, compute its corresponding
mean, and let this be m(X0)b

∗
.
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3. Compute the distances between the sample mean and each bootstrap
sample mean, i. e., calculate

d∗b = ρ(m(X0)b
∗
,m(X0)),

for b = 1, . . . , B.

4. Choose δ as one of the (1− α) quantiles of the sample (d∗1, . . . , d
∗
B).

4. Implementations

In our implementations, we have used the R language and the shapes

package by Ian Dryden. This package provides many useful tools for the
statistical analysis of shapes that allowed us to reduce the time spent on the
implementation. It works very well for small datasets, but is somewhat slow
for medium and large datasets.

Hence, we have rewritten some parts to accelerate it and enable us to run
our codes in a shorter time. Specifically, we have improved routines preshape
and centroid.size since they were the most time-consuming parts in our
application. We computed a performance profile of both routines, and in our
case they had the same bottleneck. Their main cost was the explicit building
of the Helmert matrix and then the product of that matrix by the input
argument (our dataset). We have improved the code so that the Helmert
matrix is not explicitly built and then it is implicitly applied to the input
argument.

In our case, the input argument (our dataset) was a matrix with dimen-
sions 3075 × 3. The original routine preshape took an average of 49.13
seconds with these data. The new implementation takes an average of 0.056
seconds. Hence, the new code was about 877 times faster.

The original routine centroid.size took an average of 24.54 seconds.
The new implementation takes an average of 0.028 seconds. Hence, the new
code was about 876 times faster.

These improvements in speed have made the full procedure much faster
and its overall time length is now more reasonable.

5. Simulation study

As an illustration of the performance of the methodology, we carry out a
simulation study.
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Configurations are described by k landmarks. First, we generate a com-
pact geometric figure Z (see Fig. 1). Then, three covariates
X = (X(1), X(2), X(3)) are introduced that modify the shape of Z in three
different ways. Each covariate takes two different values {10, 20} and so we
have 8 theoretical mean configurations µ(X). Y given X is defined by a mul-
tivariate normal distribution of a 3k-dimensional mean vector represented by
the previously generated one, and a 3k × 3k covariance matrix Σ, i.e.:

vec(Y/X) ∼ N3k(vec(µ(X)),Σ)

Figure 2 shows the landmarks of the eight mean objects.
Given X, the distribution of the shape of Y is called normal offset. In

Dryden and Mardia (1998) p. 130, the density with respect to the uniform
measure in the shape space is given for the 2-dimensional isotropic case, that
is to say, when the covariance matrix Σ is a multiple of the identity. In this
case the mean shape, m(X), calculated by means of the general algorithm,
is a consistent estimate of µ(X).

Two random samples of sizes 50 and 25, respectively, of Y given X are
obtained for each combination of X-values resulting in random samples of
size n = 400 and n = 200: {(X1, Y1), . . . , (Xn, Yn)}. We take Σ = σIk×3 and
two values for σ, (0.01, 0.05), are selected in such a way that the data are
more or less dispersed.

In figure 3 we can see a simulated shape Yi given X, its prediction and
µ(X) for X = (10, 10, 20) and both σ-values.

In order to do a quantitative analysis and to choose the optimum value
of h, the Procrustes distances between the real and the predicted shape for
each one of the eight sets of covariates are computed. As an illustration,
each cell of the table 1 shows the mean of these values for σ = 0.05, different
values of h, and different numbers of iterations. We can see that they reach
the minimum values and become stable after around 2000 iterations. In
addition, they are quite robust for small values of h reaching the minimum
for h = 0.5. These distances are much smaller than the average of pairwise
distances in the simulated set (0.3809). These good results validates the
proposed method.

With respect to the confidence regions, there are theoretical consistency
results that justify bootstrap confidence intervals in Euclidean spaces, but
these results are not available in our context; hence, simulation studies are,
at this moment, the only way to assess its performance.
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Figure 1: Landmarks corresponding to the original geometric figure.

Table 1: Procrustes distances between the real and the predicted shape.

Number of iterations
h 100 250 500 1000 2000 3000

0.1 0.209 0.145 0.079 0.029 0.017 0.017
0.25 0.209 0.145 0.079 0.292 0.017 0.017
0.5 0.209 0.145 0.080 0.029 0.017 0.017
1.0 0.220 0.169 0.116 0.074 0.060 0.058
1.5 0.237 0.204 0.171 0.144 0.136 0.135
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Figure 2: Mean shapes for different combinations of X-values.
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(a) (b) (c)

σ = 0.05

σ = 0.01

Figure 3: (a) Simulated shape, Yi given X, (b) predicted mean m(X), (c) theoretical mean
µ(X) for X = (10, 10, 20) and both σ-values.
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Table 2: Simulation results showing observed coverage proportions for a nominal coverage
of 95%.

Sample size σ Coverage proportion
n = 200 0.01 100%

0.05 100%
n = 400 0.01 89%

0.05 98%

In order to evaluate the actual performance of the bootstrap confidence
sets, a total number of 100 original samples of size 400 and 200 are generated,
Si = {(Xi1, Yi1), . . . , (Xin, Yin)} for i = 1, . . . , 100, and the corresponding
prediction means are obtained, m(X)1, . . . ,m(X)100.

B = 100 bootstrap samples are taken from each sample Si and the corre-
sponding bootstrap confidence sets at a 95% confidence level (nominal cover-
age) are constructed: CB1

0.95, . . . , CB
100
0.95, or other words, the radii δ1, . . . , δ100

are obtained. The observed coverage proportion of the theoretical prediction
in such confidence regions is calculated as:

p̂i =
card{CBi

0.95 : m(X) ∈ CBi
0.95, i = 1, . . . , 100}

100
. (7)

The results of the simulation study show that the method achieves good
observed coverage proportions. Table 2 summarizes the numerical outputs
of our simulation study.

6. Application to children’s body shapes

The aim of this section is to show how the aforementioned algorithm can
be used to predict the body shape of a child based on a small number of
his or her anthropometric measurements and his or her age. The predicted
shape could then be used to choose the most suitable size in a potential
online sales application. There are multiple ways to perform this last step
and all of them depend on the manufacturer. For instance, one possibility
would be to calculate the Procrustes distance between the predicted shape
and the shapes of the mannequins for each size.

A randomly selected sample of 739 Spanish children aged from 3 to 12
was scanned using a Vitus Smart 3D body scanner from Human Solutions.
Children were asked to wear a standard white garment in order to standardize
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the measurements. From the 3D mesh, several anthropometric measures were
calculated semi-automatically by combining automatic measurements based
on geometric characteristic points with a manual review.

In order to illustrate our procedure, two subsamples of our data set have
been chosen. For both samples children over 7 years old were selected. The
first sample consisted of 244 boys and the second consisted of 251 girls.
The body shape of each child in our data-set was represented by 3075 3D
landmarks, i. e. by a 3075× 3 configuration matrix.

Nine covariates were chosen in order to predict the shape of a child: age,
height, bust circumference, waist circumference, hip circumference, right leg
length, left leg length, right arm length, and left arm length. We choose these
covariates because they are the most usual covariates asked in the online sales
of wear. They are easy to measure in a child and well known by everybody.

Figure 4 shows the prediction that was obtained when algorithm 1 was
applied to predict the shape of a boy and the shape of a girl with the same
covariates X0. The following values for the covariates were employed: age =
9.5 years, height = 1385 mm, bust circumference = 717 mm, waist circum-
ference = 643 mm, hip circumference = 770 mm, right leg length = 871 mm,
left leg length = 872 mm, right arm length = 465 mm, and left arm length
= 465 mm. Note how the two images are slightly different (mainly in the
body trunk) despite the same values for the covariates and despite the short
age of children in our sample.

In this particular application, it would be desirable to have, in addition, a
prediction of the children’s size. Although a kernel regression in the size and
shape manifold could be applied, we can consider a rather simpler approach.
Because size and shape could be considered independent, we can conduct a
kernel shape regression and a univariate kernel regression separately for size
given the above set of covariates. Then we join both predictions.

In order to do a quantitative analysis of the effectiveness of the method
a leave-out cross validation study is conducted. At each step of this study,
a child is leaved out, and the Procrustes distance between their real shape
and the predicted shape from the covariates is calculated. Because of the
computational time just 10 % of children (chosen at random) have been
leaved out, corresponding to 24 steps. The means of these prediction errors
for different values of h and different numbers of iterations are shown in
table 3. We can see that these prediction errors are larger for small numbers
of iterations, and they reach the minimum and become stable after around
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Table 3: Distances between real and predicted shapes for different values of h and number
of iterations.

Number of iterations
h 100 250 500 1000 2000

0.5 0.0447 0.0376 0.0351 0.0350 0.0350
1.0 0.0448 0.0373 0.0341 0.0335 0.0334
1.5 0.0450 0.0375 0.0342 0.0334 0.0334
2.0 0.0451 0.0377 0.0344 0.0336 0.0335
2.5 0.0452 0.0379 0.0346 0.0338 0.0338
3.0 0.0453 0.0381 0.0348 0.0341 0.0340

1000 iterations. In contrast, the prediction errors are quite robust against
h-values, reaching the minimum for h = 2.0. In general, these errors are
considered acceptable in our application, especially taking into account that
just 8 anthropometrical measures plus the age are considered to predict the
shape. In addition, unlike the simulated data set in the previous section, we
must consider that all the shapes in this data set belong to children and,
therefore, they show very similar shapes.

The cross validation study is also used to test how reasonable are the boot-
strap confidence regions. At each one of the 24 steps of the cross-validation
study the confidence interval (determined by the corresponding δ-value) is
obtained. Table 4 shows these values and the distances between the real and
predicted shapes, as can we seen, distances are always smaller than δ-values.

7. Discussion

In this paper we have proposed an approach that represents a novelty
in terms of integrating concepts of statistical shape analysis and regression
procedures. Although it is an important and common problem in real appli-
cations, papers on this subject are scarce in the literature. The main goal
of this work was to show how to apply a general non-parametric regression
method in manifold-valued data to the shape space based on landmarks.
We also generalize the previous procedure to the case of multiple covariates
and we propose bootstrap interval confidences for the predictions. A simu-
lation study with simple objects was successfully conducted to validate the
procedure.

To illustrate our new methodology, it has been applied to a children body
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Table 4: δ-values of the 95 % CI and distances between the real and predicted shape in
24 cases of the cross-validation study.

δ-value Procrustes distance
0.037 0.036
0.032 0.029
0.035 0.034
0.029 0.027
0.056 0.053
0.033 0.030
0.037 0.036
0.035 0.032
0.029 0.027
0.045 0.043
0.046 0.042
0.025 0.024
0.034 0.032
0.046 0.044
0.029 0.027
0.039 0.036
0.036 0.034
0.036 0.034
0.029 0.027
0.057 0.055
0.025 0.024
0.029 0.027
0.033 0.031
0.024 0.023
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(a) (b)

Figure 4: Shape predicted for (a) a boy (left) and (b) a girl (right) with the same covariates
X0 = (9.5, 1385, 717, 643, 770, 871, 872, 465, 465)
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data set with hundreds of subjects in order to predict the shape of a child
given a small set of quantitative measures. The results obtained with this
data set avail the feasibility of our new method. This regression method
could be useful for the implementation of an online sales application.

We used the R language and the shapes package in our implementations.
Due to the large size and large dimensionality of our data set, the overall
computational cost was too large. Thus, we improved the speed of some parts
of certain routines of the aforementioned package to reduce the computational
cost of the procedure. The new implementations were significantly faster than
the original ones.
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